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Introduction. It has been reported that the traditional Chinese medicine Huangqin-Tang decoction (HQT) has a protective effect
on the epithelial barrier function of ulcerative colitis, but its mechanism has not been fully clarified. +is study intends to explore
the protective mechanism of HQT in regulating microRNA (miRNA) for the first time. Methods. Based on the Balb/c mice
ulcerative colitis model, themice were given a gavage of 0.1mL/10 gHQTevery day for 7 days; on the 8th day, the colon of themice
was dissected, the length of the colon for the mice was measured, and the score was given based on this. Analysis of colonic
mucosal injury was conducted by hematoxylin-eosin staining.+en, the differential miRNA was screened and sequenced in colon
tissue using the HiSeq platform. And the differential miR-185-3p gene was verified by RT-PCR. Finally, the effects of HQT on
miR-185-3p, occludin protein expression, and transepithelial electrical resistance (TEER) value were observed in combination
with the CaCo2 intestinal epithelial cell model. Results. HQT treatment can alleviate the shortening of colon length and reverse the
intestinal mucosal injury. miRNA sequencing of colonic tissue showed that miR-185-3p was significantly downregulated in the
model group, while HQT could upregulate miR-185-3p, thereby affecting the myosin light chain kinase (MLCK)/myosin light
chain phosphorylation (p-MLC) pathway and leading to increased expression of occludin protein, which ultimately protected the
intestinal epithelial barrier function. Conclusion. HQT can protect colon epithelial barrier function by regulating miR-185-3p.

1. Introduction

Intestinal mucosal barrier injury is an important cause of
ulcerative colitis (UC), while an injured intestinal mucosal
barrier can cause increased intestinal permeability, allowing
antigens of bacterial or food origin in the intestinal lumen to
enter the mucosa, thus triggering an immune response in the
intestine and an outbreak of an uncontrollable cascade of
inflammatory signals. Studies have shown that increased
intestinal mucosal permeability may be an early event in the
onset of UC, and patients with US at rest develop increased
intestinal permeability and associated intestinal symptoms

even though no significant abnormalities are observed under
endoscopy [1–3]. +erefore, improving patients’ intestinal
epithelial barrier function is considered to be the key to
effective treatment of UC. +e traditional Chinese medicine
HQT is a classic prescription for treating dysentery, and it
was first recorded in the Treatise on Febrile Diseases by
Zhang Zhongjing: the combination of sun disease and
Shaoyang disease with diarrhea should be treated with
Huangqin-Tang decoction. HQT which is composed of
Scutellaria, white peony root, date, and roasted licorice root
has been used by doctors for successive generations for the
treatment of abdominal pain, diarrhea, pus, blood stool, and
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other gastrointestinal symptoms [4]. +e main compo-
nents of HQT were baicalin, wogonoside, paeoniflorin,
glycyrrhizic acid, mucorin, and A-7-O-glucuronide by
high-performance liquid chromatography (HPLC) [5, 6].
Baicalin can inhibit NF-KB and regulate Treg/+17 cell
balance in the colon tissue of experimental animals so as
to exert anti-inflammatory and immunomodulatory ef-
fects [7, 8]. Wogonin, paeoniflorin, and glycyrrhetinic
acid can upregulate the tight junction proteins such as
claudin-1 and zonula occluden-1 (ZO-1), thereby alle-
viating intestinal barrier function impairment [6]. HQT
has been effectively used to treat ulcerative colitis in clinic
[9]. In addition, HQT can effectively alleviate experi-
mental ulcerative colitis induced by dextran sulfate so-
dium (DSS) and 2,4,6-trinitrobenzene sulfonic acid
(TNBS) [10, 11]. Animal studies show that HQT can
inhibit the pathway (RasPI3K-Akt-HIF-1a and NF-kB) in
colon tissue from playing an anti-inflammatory role [12].
It has also been reported that HQT can regulate the
balance of + cell subsets to play an immunomodulatory
role [6, 13, 14]. In addition, miRNA abnormalities are
considered to be closely related to the occurrence of UC.
MiR-192/miR-122/miR-29 can regulate the expression of
Toll and NOD-like receptors in intestinal innate im-
munity cells, leading to the occurrence of UC [15–17].
miR-210/miR-155 can regulate the expression of cytokine
IFN-c/transcription factor Hif1a/IL-2, thus affecting the
differentiation and function of intestinal adaptive im-
mune cells [18–20]. +e reduction of miR-21 and miR-
200B can injure the intestinal epithelial barrier function
[21–25]. However, whether HQT can effectively regulate
miRNA is unclear. In this article, we plan to use colon
mucosa tissue to sequence and analyze miRNA and clarify
the miRNA that HQT can regulate, so as to provide a
scientific basis for improving the therapeutic mechanism
of HQT.

2. Materials and Methods

2.1. Preparation of HQT. According to the method reported
in our literature, raw medicinal materials including Radix
Scutellariae, Radix Paeoniae Alba, Glycyrrhizae Radix, and
Fructus Jujubae were mixed according to the ratio of 9 : 6:6 :
49 [12].+e rawmedicinal materials were soaked in 10 times
the volume of distilled water for 30min, and decocted them
at 100°C for 30min. +en, the extract was collected from the
decocted water. 10 times the volume of distilled water was
added to the herb residue, and a decoction for it of 30min
was needed. +e extract needed to be collected, and the two
extractive solutions needed to be combined, concentrated,
and freeze-dried.

2.2. Animal Modeling. Twenty-four male Balb/c mice pur-
chased fromGuangdongMedical Laboratory Animal Center
(certificate No: SYXK (Guangdong) 2018-0002) were ran-
domly divided into 3 groups, with 8 mice in each group. +e
groups were named the control group (distilled water), the
DSS group (3%DSS + distilled water), and the HQT group

(3%DSS + 4.55 g/kgHQT) [12]. Except for the normal group,
mice in other groups were free to drink 3% DSS solution.
Meanwhile, mice in the HQT group were given a gavage of
0.1mL/10 g HQT every day [26], and mice in the normal
group and model group were given a gavage of 0.1mL/10 g
distilled water. +e model was administered continuously
for 7 days, during which the activity state, mental state, and
hair gloss of mice were observed every day, and the diet and
water consumption, fecal characteristics, blood stool, and
body mass were recorded, and a disease activity index (DAI)
score was made. On the eighth day of the experiment, the
mice in each group were killed and the length of their colon
tissue was recorded. Observe whether there are edema,
adhesion, ulcer, necrosis, and other pathological changes on
the intestinal lumen side of the colon, and a pathological
score needs to be given. In addition, the colon tissues were
divided into three parts for the subsequentWB test, RT-PCR
test, and hematoxylin-eosin staining (HE). +e study was
approved by the local ethics committee of Guangdong
Medical University under the No. GT-IACUC201909121.

2.3. miRNA Sequencing Analysis. Total RNA was extracted
from colon tissue. Firstly, the integrity of RNA was tested by
the Agilent 2100 Bioanalyzer.+e TruSeq Small RNA Sample
prep Kit was used to construct a small RNA library, and the
library was amplified and enriched by PCR. +en, the pu-
rified library was selected by gel electrophoresis, and the
library quality was inspected by Agilent High Sensitivity
DNA Kit.+e qualified library should have a single peak and
without adaptor. +e library was further quantified by
Quant-iT PicoGreen dsDNA Assay Kit. Finally, sequencing
was performed on the Illumina platform. Data analysis
includes the following: (1) Based on the reference genome,
conduct adaptor removal and quality filtration for the data,
annotate the small RNA sequence which is removed from
the duplicated sequence, and annotate the abundance. (2)
Focus on analyzing the characteristics and expression
quantity of miRNA. (3) Carry out cluster analysis and target
gene prediction of differential miRNA. Analyzed by DESeq
(Version 1.18.0, Anders S and Huber W, 2010), the miRNA
met the requirement of (|log2FoldChange|> 1) and P< 0.05
was defined as a differential miRNA. +e miRNA se-
quencing analysis was completed by Nanjing Personal Gene
Technology Co., Ltd.

2.4. RT-PCR. In this experiment, the TB green chimeric
fluorescencemethod was used for test, and the operation was
carried out according to the instructions of the Takara real-
time fluorescence quantitative kit. +e mice miRNA-185-3p
primers were purchased from Guangzhou Ribo Biotech-
nology Co., Ltd. (Mira10011661-100). β-actin: F:
CTTCTTTGCAGCTCCTTCGTT, R: AGGAGTCCTTCT-
GACCCATTC. PCR reaction system: 12.5 μLTB Green
Premix Ex Taq II (2X), 1 μL PCR forward primer (10 μM),
1 μL mRQ 3′ primer (10 μM), 2 μL DNA template (<100 ng),
8.5 μL DEPC water, and total volume 20 μL.

PCR reaction condition: hold (1 cycle) 95°C, 30 s; PCR
(40 cycle) 95°C, 5 s, 60°C, 30 s; dissociation (1cycle) 95°C,
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15 s, 60°C, 30 s; 95°C, 15 s.+e average value of the three tubes
was taken and the relative value of miRNA-185-3p/β-actin
was calculated.

2.5. Western Blotting. Adding protease inhibitor and
phosphatase inhibitor (Solarbio, BC3711) into the lysate to
fully extract protein, centrifuging at 4°C and 12000 rpm for
30min to obtain supernatant.+e protein concentration was
tested by the bicinchoninic acid (BCA) method, and 20 µg
protein of loading was applied for electrophoresis, followed
by PVDF membrane transfer for 1 h, 5% skimmed milk
powder sealing for 1 h, and primary antibody incubation at 4
degrees Celsius overnight: B-actin (Affinity AF7018, 1 :
10000), p-MLC (Affinity AF3829, 1 : 200), MLC (Affinity
AF8618, 1 : 500), MLCK (Affinity AF5314, 1 : 500), and
occludin (Invitrogen 71-1500, 1 :1000). Add the secondary
antibody of the corresponding species and incubate it for 1 h,
then conduct ECL development, and finally use Image J
software for grayscale analysis.

2.6. CaCo2 Cell Barrier InjuryModel. +e logarithmic growth
phase CaCo2 cells were digested into cell suspension, which
needed to be planked. Cultured the cell suspension for about 14
days to grow it into dense monolayer epithelial cells, and the
TEER value (ion current resistance, which is related to the
integrity of the tight junction between cells) was tested.
According to the literature report, the TNF-α concentration of
10ng/mL was used [27], and the change rate of the TEER
resistance value was tested after 24 hours�TEER value before
treatment/TEER value after treatment. According to the ex-
perimental design, the control group, the TNF-a group, and the
HQT group (TNF-α+HQT50μg/mL) (HQT dose was con-
firmed by concentration gradient) were set. Each group had 3
parallel holes. After continuing to put the cell suspension in the
incubator for 24 hours, the change rate of TEERwas tested, and
samples were collected to extract RNA and protein.

2.7.CellTransfection. According to the instructionmanual of
RNAi products of GenePharma, the experiment set for the
inhibitor NC group, the inhibitor miRNA-185-3p group, the
mimic NC group, and the mimic miRNA-185-3p group, and
the synthetic sequences were as follows: inhibitor NC: 5′-
CAGUACUUUUGUGUAGUACAA-3′, inhibitor miRNA-
185-3p: 5′-GACCAGAGGAAAGCCAGCCCCU-3′, mimic
NC: 5′-UUGUACUACACAAAAGUACUG-3′, and mimic
miRNA-185-3p: 5′-AGGGGCUGGCUUUCCUCUGGUC-
3′. Planking CaCo2 cells. Diluting lip-3000 and oligo with
Opti-MEM, respectively, mixing them at a ratio of 1 :1. Make
the solution standing and adding CaCo2 cells into it, testing
TEER value and collecting samples after transfection for 72 h.

2.8. Statistical Analysis of Data. Adopting SPSS19 statistical
software, the single factor analysis of variance method was
used for comparison among multiple groups, and a two-side
t-test was used for comparison between two samples.
P< 0.05 was defined as statistically significant.

3. Results

3.1. Protective Effect ofHQTon theUCBarrier Function Injury
Model. +e DAI score is used to evaluate the changes of
animal symptoms after DSS modeling, which includes three
indexes: weight loss ratio (%), stool characteristics, and
blood stool. It can be seen that the DAI score of mice in the
HQT group is significantly lower than that of mice in the
DSS group (P< 0.01) (Figure 1(a)). In the DSS model group,
the colon of mice developed a contracture deformity, and the
colon length was significantly shortened (P< 0.01). After
HQT treatment, the colon length of mice was significantly
prolonged (P< 0.01) (Figures 1(b) and 1(c)). Compared
with the control group, the colon tissue of mice in the DSS
group showed obvious congestion, edema, adhesion, and
ulcer. Mucosal injury, crypt structure disorder, gland de-
formation, arrangement disorder decreased, goblet cells
decreased, submucosa edema, and muscularis edema
thickened, and a number of inflammatory cells infiltrated,
while HQT significantly improved the pathological changes
of the colon (Figure 1(e)). Transcriptional expression of
occludin in colon tissue of mice in the DSS group was
significantly decreased, and HQT treatment could reverse
the downregulation (P< 0.01) (Figures 1(f)–1(h)).

3.2. Sequencing of miRNA in Colonic Mucosal Tissue.
Genomic miRNA sequencing of mouse colonic mucosal tissue
was carried out, which was divided into 3 groups, with 8
samples in each group, and 24 samples in total. +e groups are
named the control group, the DSS model group, and the
DSS+HQTtreatment group, respectively.+e sequencing data
quantity was 20M/sample, and 1389 genes were found. Dif-
ferential gene screening should satisfy |log2FoldChange|> 1
and P value <0.05. Compared with the control group, 26 genes
were upregulated and 15 genes were downregulated in the DSS
group. Compared with the DSS model group, the HQT+DSS
treatment group had four genes upregulated and four genes
downregulated. Compared with the control group,
miR-185-3p was significantly downregulated (downregulated
by 2.38 times) in the DSSmodel group; in comparison with the
DSS model group, miR-185-3p was significantly upregulated
(upregulated by 2.02 times) in the HQT+DSS treatment
group. +is indicates that miR-185-3p is a potential regulatory
gene for HQT treatment (Figure 2). miR-185-3p simulta-
neously satisfies two conditions: one is meeting differential
gene screening requirements; the other is that gene changes can
be reversed by HQTtreatment, indicating that miR-185-3p is a
potential regulatory gene for HQT treatment (Figure 2).

3.3. HQT Regulates the Expression of Mirna-185-3p in Colon
Tissue. Compared with the control group, miRNA-185-3p
was significantly downregulated in mice in the DSS animal
model, and the downregulation of miRNA-185-3p was re-
versed after HQT treatment (Figure 3(b)), which was con-
sistent with the results of miRNA sequencing (Figure 3(a)).
MLCK is a direct target gene of miRNA-185-3p, which is
upregulated in the DSS animal model group, and the
upregulation of MLCK can be significantly reversed after
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HQT treatment (Figure 3(d)). In addition, HQT can also
reverse the downregulation of miRNA-185-3p induced by
TNF-α in the injury model of CaCo2 monolayer cell barrier
mediated by TNF-α (Figure 3(c)). +ese results indicate that
HQT can regulate the expression of miRNA-185-3p.

3.4. Expression of miRNA-185-3pat HQT Regulates CaCo2
Monolayer Cell Barrier Function. In the TNF-α induced
model group, the TEER value decreased by 36.32%, while in
the HQT group, it increased by 22.58% compared with that
of the TNF-α group (P< 0.01) (Figure 4(a)). Occludin, a
tight junction protein induced by TNF-α, decreased sig-
nificantly, but was recovered by the HQT treatment group
(P< 0.05) (Figures 4(b) and 4(c)). Meanwhile, HQT could

reverse the upregulation of MLCK transcription induced by
TNF-α (P< 0.01) (Figures 4(b), 4(d), and 4(e)). In addition,
in CaCo2 monolayer cells, firstly, it was proved that over-
expression of miRNA-185-3p and interference of miRNA-
185-3p expression were effective (Figure 4(f )). Inhibitor
miRNA-185-3p expression decreased the TEER value by
0.3361 (P< 0.05), while the overexpression of miRNA-185-
3p expression increased the TEER value by 0.053
(P � 0.7482) (Figure 4(g)). Interference of miRNA-185-3p
caused the downstream target gene MLCK/p-MLC to be
upregulated correspondingly(P< 0.05), while over-
expressing miRNA-185-3p did just the opposite (P< 0.01).
Meanwhile, the effect of HQTon regulating themiRNA-185-
3p/MLCK/p-MLC signaling pathway is similar to that of
overexpressing miRNA-185-3p (Figures 4(h)–4(j)).
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4. Discussion

+e mouse acute colitis model induced by DSS is the UC
closest to human beings. It can injure the colon epithelial
barrier function, with the characteristic of being simple, rapid,
and repeatable. +e injury of the colon mucosa can lead to a
decrease of the expression of intestinal mucosal tight junction
proteins such as occludin and ZO-1. +e exposure of in-
testinal small vessels and the decrease of intestinal reab-
sorption, result in bloody stool, loose stool, and weight loss
[28]. TNF-a activates the ATPase at the head of the actin
heavy chain, and the energy generated causes the cytoskeletal
actin microfilament to slide and the actin ring to contract,
which ultimately destroys the normal distribution of tightly
attached proteins, thereby increasing intestinal epithelial
permeability. +erefore, TNF-a is often used to establish the
barrier injury model of CaCo2 monolayer epithelial cells
[29, 30]. After UC mice were given a gavage of dextran
coupled with fluorescein isothiocyanate (FITC) as a tracer to
reflect intestinal epithelial permeability, Scholar Zou et al.
found that HQT could significantly reduce FITC content in
the blood of mice. +is study further confirmed that im-
munohistochemical results of colon tissues showed that HQT
could upregulate the expression of ZO-1 and occludin [11],
which indicates that HQT has a protective effect on the in-
testinal epithelial barrier function of mice. In this study, a
model of intestinal epithelial barrier injury in vitro and in vivo
induced by DSS and TNF-a was used to simulate the path-
ological changes of the intestinal mucosal barrier during the
occurrence of UC and further confirm that HQT has the
function of protecting the intestinal epithelial barrier, which is
consistent with the results of previous studies.

In the past, the research on the therapeutic mechanisms
of HQT focused on regulating immunity, inhibiting in-
flammation, and regulating intestinal flora. HQTcan inhibit
the expression of NF-κB, JAK/STAT, MAPK, and other
inflammatory pathways in colon tissues or cells of experi-
mental mice [11, 12, 26, 31, 32]. HQT can inhibit the ex-
pression of +1/+17-related transcription factors such
as T-bet and ROR-ct and upregulate the expression of
+2/Treg-related transcription factors GATA-3 and Foxp3,
thus regulating the balance of CD4+ T cell subsets and the
secretion of corresponding cytokines [13]. In addition, HQT
can reverse the imbalance of intestinal flora, promote the
quantity growth of probiotics and lactobacillus, and inhibit
the proliferation of Vibrio desulphurizer and Clostridium
tenella [12]. In this study, we focused on the mechanism of
regulation of HQT on miRNA and found for the first time
that HQT can regulate miR-185-3p.

Scholar Dan Ma used a TNF-a-induced barrier injury
model of CaCo2 monolayer cells, and found that the inhibitor
miR-185-3p can damage barrier function. On the contrary,
upregulating miR-185-3p can enhance barrier function, in-
dicating that miR-185-3p can maintain barrier function.
Furthermore, the target gene of miR-185-3p was verified to be
MLCK by a dual-luciferase reporter gene experiment, and then
it was confirmed that MLCK could upregulate p-MLC (T18
and S19), thereby activating ATPase at the head of the actin
heavy chain, destroying the normal distribution and expression

of tight junction protein and leading to the increase of in-
testinal epithelial permeability [29, 33]. +e increase of MLCK
expression was observed in colon tissue of IBD patients, which
was positively correlated with the degree of pathological
changes of the tissues [34]. When mice express continuously
activated MLCK, it can increase the expression of p-MLC as
well as intestinal epithelial permeability, which can be reversed
by anMLCK inhibitor [35–38]. Scholar Huang et al. found that
Pulsatilla decoction can regulate tight junction protein through
the MLCK/p-MLC pathway to improve intestinal epithelial
barrier function in UC mice [39]. Scholar Du et al. found that
adrenomedullin, 1,25-(OH)2-VitD3, and other active mole-
cules can reduce the expression of MLCK/p-MLC, and then
reduce intestinal epithelial permeability and relieve UC
[40, 41]. +erefore, regulating the distribution of tight junction
protein by intervening in the MLCK/p-MLC pathway can be
regarded as a breakthrough point to improve the intestinal
epithelial barrier. In this study, HQTsignificantly alleviated the
injury of the CaCo2 monolayer cell barrier caused by TNF-a,
which not only increased the expression of occludin, a tight
junction protein but also upregulated the expression of miR-
185-3p and downregulated MLCK/p-MLC, indicating that
HQT can take effect by regulating the miR-185-3p/MLCK/p-
MLC pathway. Furthermore, using the DSS-induced UC
model ofmice, it was found that HQTcould also upregulate the
expression of miR-185-3p and tight junction protein occludin.
+e abovementioned content indicated that HQT could me-
diate themiR-185-3p pathway to intervene in the occurrence of
UC (Figure 5).

For analysis of miRNA differential gene sequenced in
colon mucosa and GO functional enrichment analysis, it
mainly involves protein modification processes (GO:
0036211) and macromolecular modification (GO: 0043412).
+e modification can regulate the localization, metabolism,
function, degradation, and activity of proteins. In addition,
cellular protein localization (GO: 0008104), macromolecular
localization (GO: 0033036), signal regulation (GO: 0023051),
and localization regulation (GO: 0032879) were also
enriched. It is speculated that many proteins, such as tight
junction proteins, are redistributed during UC, which leads
to the impairment of intestinal epithelial barrier function.
+en, KEGG analysis showed that the enrichment pathway
involved cytoskeleton regulation pathway (Mmu04810),
adhesion junction pathway (Mmu04520), and bacterial in-
vasion pathway (Mmu05100), which were closely related to
intestinal epithelial barrier function. At the same time,
immune regulation pathways, such as the B cell receptor
pathway (Mmu04662), T cell receptor pathway
(Mmu04660), and Fc-c receptor-mediated phagocytosis
pathway (Mmu04666), were also enriched, suggesting that
UC is an autoimmune disease. In addition, the enrichment
of the MAPK signaling pathway (Mmu04010) and auto-
phagy pathway (Mmu04140) suggested that inflammation
and autophagy were involved in the occurrence of UC.
Finally, using KO analysis, we observed that miRNA target
genes participated in the regulation of the MLCK pathway,
MAPK pathway, and T cell receptor pathway, among which
MLCK was considered as a miR-185-3p target gene, which is
one of the reasons why this paper focuses on the miR-185-3p
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study. However, we focused on finding the differential
miRNA regulated by HQT, but unfortunately only miR-185-
3p was found, which is supposed to be the reason for the
small amount of sample data (20M).

5. Conclusion

In this study, for the first time, we observed that HOQ could
protect UC barrier function by upregulating miR-185-3p,
then inhibiting the MLCK/p-MLC pathway, and finally
interfering with occludin through the mouse UC model
induced by DSS combined with the injured CaCo2 mono-
layer cell barrier induced by TNF-a.
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