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With growing evidence on the therapeutic efficacy and safety of herbal drugs, there has been a substantial increase in their
application in the lung cancer treatment. Meanwhile, their action mechanisms at the system level have not been comprehensively
uncovered. To this end, we employed a network pharmacology methodology to elucidate the systematic action mechanisms of
FDY2004, an anticancer herbal drug composed of Moutan Radicis Cortex, Persicae Semen, and Rhei Radix et Rhizoma, in lung
cancer treatment. By evaluating the pharmacokinetic properties of the chemical compounds present in FDY2004 using herbal
medicine-associated databases, we identified its 29 active chemical components interacting with 141 lung cancer-associated
therapeutic targets in humans. *e functional enrichment analysis of the lung cancer-related targets of FDY2004 revealed the
enriched Gene Ontology terms, involving the regulation of cell proliferation and growth, cell survival and death, and oxidative
stress responses. Moreover, we identified key FDY2004-targeted oncogenic and tumor-suppressive pathways associated with lung
cancer, including the phosphatidylinositol 3-kinase-Akt, mitogen-activated protein kinase, tumor necrosis factor, Ras, focal
adhesion, and hypoxia-inducible factor-1 signaling pathways. Overall, our study provides novel evidence and basis for research on
the comprehensive anticancer mechanisms of herbal medicines in lung cancer treatment.

1. Introduction

Despite the advances in anticancer therapies, lung cancer
(LC) remains the most common reason for cancer mortality,
which accounts for 18.4% of global cancer deaths [1]. Ac-
cumulating evidence and increasing understanding of LC
pathology have led to the development of effective anti-
cancer therapies such as chemotherapy, targeted therapy,
and cancer immunotherapy that can prolong the survival of
patients with LC; however, these therapies may frequently
and inevitably accompany therapeutic resistance and toxic
adverse effects [2, 3]. *erefore, there has been a substantial
increase in the application of herbal drugs in cancer treat-
ment owing to their potent anticancer effects and less
toxicities [4–6]. It has been shown that the administration of
herbal drugs can enhance the efficacy and attenuate the

adverse effects of anticancer therapies, alleviate cancer
symptoms, and improve the survival and clinical outcomes
of patients with cancer [6–8].

FDY2004 is a herbal drug composed of three herbal
medicines, namely, Moutan Radicis Cortex (MRC), Persicae
Semen (PS), and Rhei Radix et Rhizoma (RRR) (Supple-
mentary Table S1) [9]. *is herbal drug may exert potent
antiproliferative effect against LC cells (Supplementary
Table S1) [9]; however, its system-level anticancer mecha-
nisms in LC treatment remain to be elucidated.

With advances in scientific and analytical technologies,
various convergence research methodologies such as net-
work pharmacology have emerged [5, 10–12]. *ey have
been used to investigate complex multiple compound-
multiple target pharmacological mechanisms of herbal drugs
[5, 10–12]. Network pharmacology is used to explore the
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mechanisms underlying various diseases and action
mechanisms of therapeutic herbal drugs [5, 10–12]. It in-
volves the interactions among biological elements, such as
genes, proteins, and metabolites, and integrates pharma-
cology, medicine, and network biology [5, 10–12]. *is
research strategy has been proven beneficial in under-
standing the multiple compound-multiple target mecha-
nisms of herbal drugs via the following: (i) investigation of
their active chemical components and disease-associated
therapeutic targets and (ii) analysis of their therapeutic
functions to uncover the polypharmacological mechanisms
of herbal medicines [5, 10–12]. By employing a network
pharmacology methodology, we uncovered the anti-LC
mechanisms of FDY2004.

2. Materials and Methods

2.1. Investigation of the Active Chemical Components of
FDY2004. We retrieved the chemical components of
FDY2004 from the Traditional Chinese Medicine Systems
Pharmacology (TCMSP) and Anticancer Herbs Database of
Systems Pharmacology (CancerHSP) databases [13, 14]. We
then used the pharmacokinetic characteristics obtained from
the aforementioned databases [13, 14], including oral bio-
availability, Caco-2 permeability, and drug-likeness, to de-
termine the active chemical components of FDY2004. Oral
bioavailability is a measure of an orally administered drug’s
capacity to be transported to the general circulation and sites
of drug action [13, 15]. Chemical compounds whose oral
bioavailability is higher than 30% are regarded to possess
effective absorption abilities [13, 15]. Caco-2 permeability is
an indicator of the diffusion ability of a chemical compound
in the intestinal epithelium, assessed using Caco-2 human
intestinal cells [13]. Compounds with a Caco-2 permeability
of ≥−0.4 are considered to have effective permeability in the
intestines [16, 17]. Drug-likeness is an index used to in-
vestigate the druggability of a chemical component with
respect to its biochemical and physical properties using
Tanimoto coefficients [13, 18]. *e average drug-likeness of
available drugs is 0.18; therefore, chemical compounds
whose drug-likeness is higher than this average value are
regarded to have druggable potential in network pharma-
cology analysis [13, 18]. Consequently, in this study,
chemical components that meet the following criteria were
determined to be bioactive: oral bioavailability ≥ 30%, drug-
likeness ≥ 0.18, and Caco-2 permeability≥−0.4 [11, 13].

2.2. Identification of the Targets of Active Chemical
Components. We retrieved the simplified molecular-input
line-entry system (SMILES) notation for individual chemical
components from the PubChem database [19]. By importing
the SMILES information into diverse in silico tools, in-
volving the SwissTargetPrediction [20], Search Tool for
Interactions of Chemicals 5 [21], PharmMapper [22], and
Similarity Ensemble Approach [23], the human targets of
FDY2004 were obtained. *e LC-associated human targets
were searched using “Lung Neoplasms” (Medical Subject
Headings Unique ID: D008175) as a keyword in the

following comprehensive genomic databases: Comparative
Toxicogenomics Database [24], *erapeutic Target Database
[25], Human Genome Epidemiology Navigator [26], Gen-
eCards [27], DisGeNET [28], DrugBank [29], Online
Mendelian Inheritance inMan [30], and Pharmacogenomics
Knowledge Base [31].

2.3. Construction of Herbal Drug-Associated Networks.
Herbal medicine-active chemical component (H-C), active
chemical component-target (C-T), and target-pathway (T-
P) interaction networks were built by connecting the herbal
components of FDY2004 with their active chemical com-
ponents, the components with their interacting targets, and
the targets with their relevant enriched pathways, respec-
tively. A protein-protein interaction (PPI) network was built
based on the interaction data for the targets obtained from
the STRING database (interaction confidence score≥ 0.7)
[32]. Network visualization and analysis were conducted
using Cytoscape [33]. In the network pharmacology analysis,
individual constituents relevant to a herbal drug, including
its herbal medicines, chemical components, targets, and
pathways, are represented as nodes [34]. *eir interactions
are represented as links (or edges) [34]. *e degree of nodes
is defined as the number of their links, and nodes with a
relatively high degree are called hubs [34].

2.4. Survival Analysis. *e correlation between the expres-
sion status of FDY2004 targets and the survival of patients
with LC was analyzed using Kaplan–Meier plotter [35].

2.5. Functional EnrichmentAnalysis. Functional enrichment
of Gene Ontology (GO) terms and pathways for “Homo
sapiens” by FDY2004 targets was analyzed using g:Profiler
[36] and Kyoto Encyclopedia of Genes and Genomes [37].

2.6.MolecularDocking Analysis. We obtained the structures
of the chemical components and their targets from Pub-
Chem [19] and RCSB Protein Data Bank [38], respectively.
*en, we imported the collected structural information into
Autodock Vina [39] and analyzed the docking scores of
individual chemical component-target pairs. As reported
previously, we considered that a chemical component-target
pair might have a high binding affinity if it has a docking
score of less than −5.0 [40, 41].

3. Results

3.1. Active Chemical Components of FDY2004. From the
TCMSP and CancerHSP [13, 14], we obtained detailed in-
formation on the chemical components of FDY2004
(Supplementary Table S2). *e chemical components that
satisfied the following criteria were considered bioactive:
oral bioavailability ≥ 30%, drug-likeness ≥ 0.18, and Caco-2
permeability≥−0.4 [11, 13]. We also considered numerous
compounds as active compounds because of their high
amounts and potent activity, although they did not meet the
aforementioned criteria [42–56].*us, 35 bioactive chemical
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compounds of FDY2004 were identified (Supplementary
Table S3).

3.2. Targets of the Active Chemical Components of FDY2004.
We obtained 212 human molecular targets for the 29 bio-
active chemical components of FDY2004 (see Materials and
Methods) (Supplementary Table S4).*e information on the
LC-associated human genes and proteins was retrieved from
various genomic databases (see Materials andMethods), and
141 of all the 212 FDY2004 targets were considered LC-
related targets.

3.3. Network Pharmacological Identification of the Action
Mechanisms of FDY2004. By integrating the comprehensive
data of FDY2004, including its herbal and chemical com-
ponents and their LC-related targets, we built a herbal
medicine-active chemical component-target (H-C-T) net-
work representing the polypharmacological features of the
herbal drug (Figure 1). *e network consisted of 173 nodes
(3 herbal medicines, 29 bioactive chemical components, and
141 targets) and 304 links (Figure 1 and Supplementary
Table S4). In this network, quercetin, kaempferol, gallic acid,
emodin, campesterol, (+)-epicatechin, (+)-catechin, and
(−)-catechin had the highest number of interacting targets
(Figure 1), demonstrating that they may be the key phar-
macological compounds underlying the anti-LC effects of
FDY2004. It is noteworthy that 96 of the 141 LC-related
genes/proteins were common therapeutic targets of two or
more bioactive chemical components of FDY2004 (Fig-
ure 1), implying the polypharmacological and coordinated
action mechanisms of FDY2004.

To understand the interactions among the LC-related
targets of FDY2004, a PPI network with 114 nodes and 304
edges was generated, where the targets served as nodes and
their interactions represented edges (Figure 2). We then
searched for nodes with a relatively high degree (i.e., hubs)
[57, 58]. *ey are reported to have key roles in the phar-
macological activities of drugs and serve as potential ther-
apeutic targets [57, 58]. As reported previously, hubs were
defined as nodes with a degree higher than or equal to twice
the average degree of all nodes in a PPI network [11]. *e
nodes TP53, PIK3R1, HSP90AA1, AKT1, VEGFA, EGFR,
JUN, PTK2, TNF, ESR1, NFKB1, and RAC1 were identified
as hubs with high degree (Figure 2), demonstrating that
these targets may be important for the exertion of anti-LC
pharmacological effects of FDY2004. *e expression status
of these hub targets was further shown to be significantly
related to the survival of patients with LC (Figure 3), im-
plying their potential clinical significance and prognostic
role.

3.4. Functional Enrichment Analysis of FDY2004-Associated
Targets and Pathways. To explore the molecular mecha-
nisms of FDY004 in LC treatment based on the biological
functions of its targets, we carried out the GO enrichment
analysis. *e GO terms involved in the various biological
functions, including cell proliferation and growth, cell

survival and death, and oxidative stress responses, were
enriched by the LC-related targets of FDY2004 (Supple-
mentary Figure S1), indicating the anticancer molecular
characteristics of its pharmacological activity.

To investigate the pathway-level pharmacological
properties of FDY2004 against LC, we conducted the
pathway enrichment analysis (Figure 4 and Supplementary
Figure S1). *e following signaling pathways were found to
be enriched by the LC-associated targets of FDY2004:
“Pathways in cancer,” “PI3K-Akt signaling pathway,”
“MAPK signaling pathway,” “TNF signaling pathway,” “Ras
signaling pathway,” “Apoptosis,” “Focal adhesion,” “HIF-1
signaling pathway,” “Cellular senescence,” “EGFR tyrosine
kinase inhibitor resistance,” “Estrogen signaling pathway,”
“PD-L1 expression and PD-1 checkpoint pathway in can-
cer,” “Small cell lung cancer,” “Non-small cell lung cancer,”
“Platinum drug resistance,” “ErbB signaling pathway,” “p53
signaling pathway,” and “VEGF signaling pathway” (Fig-
ure 4 and Supplementary Figure S1).

Together, the results suggest the system-level mecha-
nisms of FDY2004 against LC from the molecular- and
pathway perspectives.

3.5. Molecular Docking of the FDY2004 Targets. To investi-
gate the binding activities of compound-target interactions
for FDY2004, we analyzed their molecular docking affinities
(seeMaterials andMethods). In the docking analysis, 95.19%
of the active compound-target pairs presented docking
scores of ≤−5.0, implying the potential pharmacological
binding activities of the herbal drug (Figure 5 and Sup-
plementary Table S5).

4. Discussion

Although there has been increasing use of herbal drugs in LC
treatment, their system-level anticancer mechanisms have
not been comprehensively understood. Here, we employed a
network pharmacological approach to uncover the thera-
peutic mechanisms of FDY2004 [9] in LC treatment from a
system-level view. *e network pharmacological investiga-
tion of FDY2004 revealed 29 active chemical components
that interact with 141 lung cancer-associated therapeutic
targets, mediating the anti-LC effects of the herbal drug. *e
GO enrichment analysis of the FDY2004 targets revealed the
molecular action mechanisms of FDY2004, involving the
regulation of cell proliferation and growth, cell survival and
death, and oxidative stress responses. Furthermore, the key
FDY2004-targeted oncogenic and tumor-suppressive path-
ways implicated in LC development and progression were
the phosphatidylinositol 3-kinase (PI3K)-Akt, mitogen-ac-
tivated protein kinase (MAPK), tumor necrosis factor
(TNF), Ras, focal adhesion, and hypoxia-inducible factor
(HIF)-1 signaling pathways.

*e LC-related hub targets of FDY2004 were found to
be closely associated with LC pathology and play a role as
prognostic indicators for the survival and therapeutic
sensitivity of patients with LC.*e tumor suppressor TP53
is one of the most frequently mutated and malfunctioned
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genes in the pathological process of LC, and its genetic and
functional status may serve as a predictor for the risk,
survival, and therapeutic outcomes of LC [59–63]. PIK3R1
is involved in the regulation of LC cell growth [64]. *e
upregulation ofHSP90AA1 correlates with the occurrence,
progression, and clinical outcomes of LC, and its inhibi-
tion can repress the proliferation, survival, and metastasis
of LC cells [65, 66]. *e abnormal regulation of Akt1
(encoded by AKT1) and TNF-α (encoded by TNF) may
enhance the growth, survival, proliferation, metastasis,
epithelial-to-mesenchymal transition (EMT), and stem-
ness capacity of LC cells, and they are potential targets that

can alleviate chemotherapy and radiotherapy resistance
[67–76]. Clinical studies have also reported that AKT1 and
TNFmay be prognostic determinants for patients’ survival
and treatment outcomes with LC [73, 77–80]. Vascular
endothelial growth factor (VEGF)-A (encoded by VEGFA)
enhances the metastasis and angiogenesis of LC cells and
thereby contribute to the progression of LC, and its ac-
tivation profile is related to a poor clinical prognosis and
the survival of patients with LC [81–86]. Dysregulated
expression of EGFR and its encoded receptor tyrosine
kinase activity may lead to the induction of various can-
cerous cellular processes underlying the LC pathology,

S100A8

PTP4A3

CXCR1

NR1D2

ABCG2

DRD4

UBA2

ABCC1

STRBP

PPARACYP2D6

TJP1

CCR4

ATM

CYP1A1

AXL

UGT1A7

CA9

AR
MMP2

RRR

GA120

ELANE

DNM1L

AKT1

Mairin

Quercetin

CSNK2A1

GSK3B

FLT3

HMOX1
CDCA8

EIF2AK2

PON1
GA122-Isolactone

PS

Gibberellin A44

Paeonol

Sitosterol

(+)-Epicatechin

Campesterol

PIM1

NR1I2

P4HB

POLBSRD5A2

SQLE

CYP2C9

CASP10

PTPN2

ALOX12

PTPN1 PPARG

MMP13

PLA2G1B
CPSF4

CSNK2B
ALOX15

AKR1B10

CA12
APOB

ARHGEF7

AVPR2

Chrysophanol

PTGS2

KDR
ALPL

FUT4 ESR2
AURKBCXCR4

MTNR1ARPS6KA3
DNMT1 SLC2A1

TYR

ABCB1

PGF
ALOX5 CALML3

MET
CASP9

NEK2 IGF1R
AKR1B1

Emodin

Caffeic acid

(+)-Catechin

Paeoniflorin

GA121-Isolactone

(-)-Catechin

MRC

β-Sitosterol

Hederagenin

Gallic acid

SHBG

NR0B2
CYP2C8

NLRP3

CYP1A2

CASP8
PGD

PTK2 Eupatin
Aloe-emodin

TPMT

UGT2B17

BACE1

Gibberellin A7

PIK3R1

Pentagalloylglucose

MTOR

MMP9

Kaempferol
NFKB1 F3

TP53
ESR1

HSD17B2F13A1UGT1A9
Mutatochrome

α1-Sitosterol

XDH

F2

TNF
FOLH1YAP1

SERPINE1

F10

VCAM1

ESRRA

ELAVL1

MDM2

XBP1

EIF2AK3

USP8

RXRA

RUVBL1

EGFR

RAC1

CA4

MMP1

MMP3

HSP90AA1
ICAM1

CDK1

LCK

FUT7

GATA3

LTF FTO

ALK
ERBB2

Rhein
RELA

VEGFAPhyscion

Daucosterol

MPO

NOX4

CYP1B1

AHR

MAOA
NFE2L2

MTRR

ABCC11

JUN

HSD17B1
CSF2

CYP17A1

CREB1
CASP3

Figure 1: *e herbal medicine-active chemical component-target network of FDY2004. Green hexagon nodes, herbal medicines; red
rectangle nodes, active chemical compounds; blue eclipse nodes, lung cancer-related targets.

ABCG2
NR1I2

ESRRA
RPS6KA3 AHR

ABCC1 ELAVL1

FLT3

AKR1B1

AKR1B10
ATM

HMOX1

VCAM1
MMP3

AR

CASP3PTGS2

GSK3B

ESR1

ALOX5
ALOX12

CSNK2A1

NFE2L2

ABCB1

CDCA8
EIF2AK3

TJP1NR0B2

DNM1L

F10

CASP10

RXRA

CYP1A2

CPSF4

KDR

HSD17B2

NLRP3

SERPINE1

CCR4

CSNK2B

ELANE

ICAM1

CYP2C8 CSF2

F13A1

PON1

MAOA

P4HB

ESR2

USP8

YAP1

GATA3
MMP13

NOX4

CYP1B1

PTPN2

CASP9

UGT1A7

HSD17B1

UGT1A9

DNMT1

SLC2A1

TPMT

MMP1

RELA

AVPR2CREB1

ALOX15

DRD4
CYP2C9

XDH

RAC1

EGFR

PIK3R1

MMP9
TP53

JUN

AKT1

PPARG

MTOR
HSP90AA1NFKB1

ERBB2

VEGFA TNF

APOB
CDK1

MPO

MET

CYP17A1

PGF
LTF

PTP4A3

PPARA

PTPN1
MDM2

NEK2

CASP8

CYP2D6

AURKB

F3

MMP2

CYP1A1

PTK2

ARHGEF7

AXL

IGF1R

F2
CXCR1

MTNR1A
CXCR4

LCK

SRD5A2

EIF2AK2

Figure 2: *e protein-protein interaction network for lung cancer-related targets of FDY2004. Pink nodes, hub targets.

4 Evidence-Based Complementary and Alternative Medicine



making it a key target of widely used antitumor agents
against LC in clinical settings [87–89]. c-Jun (encoded by
JUN) functions as a modulator of the growth, proliferation,
and apoptosis of LC cells as well as a mediator of the
pharmacological effects of cytotoxic drugs [90–92].
Pharmacological modulation of focal adhesion kinase
(FAK; encoded by PTK2) and Ras-related C3 botulinum
toxin substrate 1 (RAC1; encoded by RAC1) reduces the
proliferation, migration, invasion, EMT, motility, angio-
genesis, and stemness activity of LC cells, and this reverses
chemotherapy and radiotherapy resistance [93–103]. *e
expression of estrogen receptor (ER)-α (encoded by ESR1)

might be correlated with the survival and prognosis of
patients with LC, and previous studies have reported its
role as a therapeutic target in LC treatment [104, 105]. *e
polymorphisms of NFKB1 are associated with the risk of
LC occurrence [106].

*e signaling pathways targeted by FDY2004 are known
to function as crucial regulators of LC development and
progression, mediate treatment resistance to anticancer
therapies, and play a role as therapeutic targets. *e PI3K-
Akt, MAPK, Ras, focal adhesion, HIF-1, and erythroblastic
leukemia viral oncogene homolog (ErbB) signaling path-
ways coordinate diverse tumorigenic processes of cancer
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Figure 3: Survival analysis of lung cancer-related hub targets of FDY2004. Kaplan–Meier curves for overall survival of the patients with lung
cancer with respect to the expression of the indicated targets.
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cells, involving cell proliferation and growth, survival and
cell death, anoikis resistance, metastasis, EMT, self-renewal
potential and stemness properties, and angiogenesis, of LC
cells [101, 102, 107–125]. In addition, aberrant regulations of
these signaling pathways may contribute to therapeutic
resistance, which can be overcome by genetic and phar-
macological interventions of their activities
[101, 102, 107–125]. *e TNF signaling pathway is a key
inflammation mediator involved in the development, pro-
gression, metastasis, and recurrence of LC, and the pathway
constituents have prognostic significance in the clinical
outcome of patients with LC [74–76, 126, 127]. *e estrogen
pathway and its components may possess carcinogenic
properties in LC and act as potential targets [128–131]. *e
programmed cell death protein 1 (PD-1)/programmed
death-ligand 1 (PD-L1) pathway is involved in the regulation
of tumor-related immune processes, and it is a key target of
cancer immunotherapy, which attempts to suppress im-
mune escape and enhance antitumor immunity for the
durable regression of malignant tumors of LC [132–134].
*e dysfunction of genes and proteins comprising the p53
pathway, one of the common carcinogenic causes, is asso-
ciated with various cancerous behaviors of LC cells, such as
uncontrolled proliferation, survival, and cell cycle pro-
gression [61, 63, 135–143]. *e genetic and functional ac-
tivities of the pathway components might be correlated with
the survival and anticancer therapeutic sensitivity of patients
with LC [61, 63, 135–137, 139, 141–143].*e VEGF pathway
may induce the progression of LC tumors by activating
malignant angiogenic, metastatistic, and proliferative pro-
grams of cancer cells, and it is the primary pharmacological
target of antiangiogenic anticancer drugs [144–146]. Defects
in the regulation of important cellular phenotypes such as
apoptosis and cellular senescence are themajor drivers of the
development and progression of LC, and their proper
regulation is the key mechanism of anticancer therapeutics
[147–152]. Resistance to platinum-based chemotherapeutics
and epidermal growth factor receptor (EGFR) tyrosine ki-
nase inhibitors is mediated by diverse oncogenic signaling
mechanisms, and co-targeting the resistance-associated
pathways may enhance the efficacy of LC treatment
[153–157].

*e active chemical components of FDY2004 have been
reported to act as anticancer compounds in LC. Aloe-em-
odin induces DNA damage, autophagy, and death of LC cells
by regulating reactive oxygen species (ROS) generation and
signaling activities of the PI3K/Akt/mammalian target of
rapamycin, MAPK, protein kinase C (PKC), and caspase
pathways [158–162]. It also functions as a photosensitizer
that enhances irradiation-induced anoikis in LC cells
[158–162]. Caffeic acid has been shown to improve the
cytotoxicity of chemotherapeutics in LC cells [163]. Cate-
chins may suppress the growth and promote cell cycle arrest
of LC cells by inactivating proliferation-inducing oncogenic
kinases and cell cycle regulators [164, 165]. Chrysophanol
regulates the activation of oxidative stress responses and
relevant signaling pathways to reduce the proliferation,
migration, invasion, and survival potential of LC cells
[166, 167]. Daucosterol disturbs redox homeostasis and cell

cycle processes to elicit growth arrest and death of LC cells
[168, 169]. Emodin inhibits cell proliferation and migration
and promotes EMT, autophagic cell death, and cell cycle
arrest coordinated by chemokine, endoplasmic reticulum
(ER) stress, ROS, p53, cell cycle, nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), tribbles
pseudokinase 3, and PKC signaling; it enhances the efficacy
of anticancer drugs [159, 170–180]. *e proapoptotic and
chemosensitizing effects of gallic acid are mediated by the
EGFR, PD-L1, ROS, NF-κB, caspase, janus kinase (JAK)-
signal transducer and activator (STAT), and mitochondrial
pathways [181–188]. Hederagenin exerts cytotoxic effects
and further synergizes with chemotherapeutic agents in LC
cells [189]. Kaempferol may block the growth, survival,
EMT, and migration of LC cells and enhance anti-LC
therapies [190–192]. Previous studies have reported the
anticancer roles of mairin (betulinic acid) in inducing ap-
optosis, suppressing proliferation, and reversing drug re-
sistance of LC cells [193–195]. *e antiproliferative,
antimetastatic, and cell cycle arrest activities of paeoniflorin
are mediated by the modulation of the FAS pathways and
macrophage activation [196, 197]. Paeonol represses the
proliferation and bone metastasis of LC cells and also serves
as a radiosensitizer by inhibiting the PI3K/Akt pathway to
enhance their apoptosis [198, 199]. Physcion increases the
pharmacological sensitivity of LC cells to cytotoxic drugs
[200]. Rhein induces apoptosis while suppressing the pro-
liferation of LC cells mediated by the modulation of the
calcium, ER stress, and STAT3 pathways [201, 202]. Previous
studies have reported the inhibitory roles of quercetin on the
growth, survival, metastasis, and chemotherapy and radio-
therapy resistance of LC cells via cancer pathways such as
Akt, MAPKs, NF-κB, inflammation, and apoptotic caspase
signaling [203–209]. β-Sitosterol inhibits cancerous auto-
phagic, proliferative, survival, and cell cycle regulatory
processes in LC cells [169, 210, 211]. *ese observations
support the pharmacological mechanisms underlying the
anti-LC effects of FDY2004.

Overall, our study presents novel and comprehensive
insights into and evidence of the anti-LC effects of FDY2004.
Further preclinical and clinical studies are warranted to
investigate the action mechanisms of FDY2004 and evaluate
the pharmacological effects of its combinatorial use with
standard anticancer strategies such as chemotherapy, tar-
geted therapy, cancer immunotherapy, and radiotherapy.
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