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Objective. To explore the therapeutic targets, network modules, and coexpressed genes of Radix Rhei Et Rhizome intervention
in cerebral infarction (CI), and to predict significant biological processes and pathways through network pharmacology. To
explore the differential proteins of Radix Rhei Et Rhizome intervention in CI, conduct bioinformatics verification, and initially
explain the possible therapeutic mechanism of Radix Rhei Et Rhizome intervention in CI through proteomics. Methods. +e
TCM database was used to predict the potential compounds of Radix Rhei Et Rhizome, and the PharmMapper was used to
predict its potential targets. GeneCards and OMIM were used to search for CI-related genes. Cytoscape was used to construct a
protein-protein interaction (PPI) network and to screen out core genes and detection network modules. +en, DAVID and
Metascape were used for enrichment analysis. After that, in-depth analysis of the proteomics data was carried out to further
explore the mechanism of Radix Rhei Et Rhizome intervention in CI. Results. (1) A total of 14 Radix Rhei Et Rhizome potential
components and 425 potential targets were obtained. +e core components include sennoside A, palmidin A, emodin,
toralactone, and so on.+e potential targets were combined with 297 CI genes to construct a PPI network.+e targets shared by
Radix Rhei Et Rhizome and CI include ALB, AKT1, MMP9, IGF1, CASP3, etc. +e biological processes that Radix Rhei Et
Rhizome may treat CI include platelet degranulation, cell migration, fibrinolysis, platelet activation, hypoxia, angiogenesis,
endothelial cell apoptosis, coagulation, and neuronal apoptosis. +e signaling pathways include Ras, PI3K-Akt, TNF, FoxO,
HIF-1, and Rap1 signaling pathways. (2) Proteomics shows that the top 20 proteins in the differential protein PPI network were
Syp, Syn1, Mbp, Gap43, Aif1, Camk2a, Syt1, Calm1, Calb1, Nsf, Nefl, Hspa5, Nefh, Ncam1, Dcx, Unc13a, Mapk1, Syt2, Dnm1,
and Cltc. Differential protein enrichment results show that these proteins may be related to synaptic vesicle cycle, vesicle-
mediated transport in synapse, presynaptic endocytosis, synaptic vesicle endocytosis, axon guidance, calcium signaling
pathway, and so on. Conclusion. +is study combined network pharmacology and proteomics to explore the main material
basis of Radix Rhei Et Rhizome for the treatment of CI such as sennoside A, palmidin A, emodin, and toralactone. +e
mechanismmay be related to the regulation of biological processes (such as synaptic vesicle cycle, vesicle-mediated transport in
synapse, presynaptic endocytosis, and synaptic vesicle endocytosis) and signaling pathways (such as Ras, PI3K-Akt, TNF,
FoxO, HIF-1, Rap1, and axon guidance).
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1. Introduction

Cerebral infarction (CI) or ischemic stroke (IS) mainly
results from blood supply disturbances in local brain tissue
areas, leading to necrosis of ischemic hypoxic lesions in the
brain tissue, which results in the manifestation of corre-
sponding neurological deficits [1]. Epidemiological studies
have shown that stroke has become the disease with the
highest mortality rate in China [2, 3]. CI is divided into
cerebral thrombosis, cerebral embolism, and lacunar in-
farction according to the different pathogenesis. Among
them, cerebral thrombosis is the most common type of CI,
accounting for about 60% [4]. Timely thrombolysis to re-
store blood supply after infarction is the most important
measure to save the ischemic area. Although reperfusion
after ischemia can restore its function, ischemia-reperfusion
injury makes the irreversible damage to the brain tissue after
the blood flow restored [5–7]. Cerebral ischemia-reperfusion
injury (CIR) is mainly related to the formation of free
radicals (oxygen and lipid free radicals), oxidative stress,
energy metabolism disorders, apoptosis, excitatory amino
acid toxicity, calcium overload, inflammation, and so on
[6–9]. Currently, the preventive and therapeutic drugs for
CIR include excitatory amino acid-regulating drugs, neu-
rotrophic growth factors, free radical scavengers, nitric oxide
synthase inhibitors, intracellular calcium overload inhibi-
tors, and natural plant active compounds (flavonoids, sa-
ponins, polysaccharides) [8, 10–13]. Of particular
importance is that natural plant active compounds are be-
coming potential CIR drugs.

Radix Rhei Et Rhizome is an important part of the
traditional Chinese medicine (TCM) formulas for the
treatment of CI in the acute phase, which has a long history
of medicinal use [14–18]. Modern medical research proves
that rhubarb aglycones have significant protective effects on
ischemic brain tissue: it can maintain the integrity of the
blood-brain barrier, reduce inflammation, inhibit apoptosis,
and protect nerves [15–19]. However, its specific mechanism
is still unclear. +erefore, this research hopes to propose a
new method to analyze the regulatory mechanism of Radix
Rhei Et Rhizome on CI biological networks. +e develop-
ment of high-throughput omics and chemoinformatics has
given the opportunity to analyze the mechanisms of natural
plant components for disease treatment [20–24]. +erefore,
based on previous research, this study will integrate pro-
teomics and chemoinformatics strategies to further explore
the molecular mechanism of Radix Rhei Et Rhizome’s in-
tervention in CI and provide reference information for new
drug development and its clinical application. +e idea and
process of this research are shown in Figure 1.

2. Material and Methods

2.1. Construction of Pharmacodynamic Molecular Database
and Radix Rhei Et Rhizome’s Compounds Prediction. All
compounds of Radix Rhei Et Rhizome were obtained from
the traditional Chinese medicine database and analysis
platforms TCMSP database (http://lsp.nwu.edu.cn/) [25]
and TCM@Taiwan (http://tcm.cmu.edu.tw/zh-tw/) [26]. In

order to obtain potential active compounds from these
compounds, this study used drug-likeness (DL), Caco-2
permeability, and oral bioavailability (OB) indicators
[20–24, 27–30] and combined literature [31] to predict
potential pharmacological compounds in Radix Rhei Et
Rhizome. +e standard was OB≥ 30%, DL≥ 0.18, and Caco-
2 permeability>−0.4. After the potential compound pre-
diction, a total of 9 Radix Rhei Et Rhizome’s potential
compounds were obtained: (-)-catechin, aloe-emodin, beta-
sitosterol, daucosterol, eupatin, mutatochrome, palmidin A,
rhein, and toralactone. Meanwhile, due to the limitation of
the pharmacokinetic parameter model, in order to avoid the
omission of potential compounds, a large number of studies
related to Radix Rhei Et Rhizome were searched to sup-
plement its active compounds. Finally, according to refer-
ences [32, 33], a total of 5 oral absorbable compounds with
bioactivity were supplemented: chrysophanol, danthron,
emodin, sennoside A, and physcion. +e 3D structure of all
screened compounds was saved in mol2 format.

2.2. Potential Targets Prediction and CI Gene Collection.
In addition to screening the active components of Radix Rhei
Et Rhizome, determining the targets of the active ingredients
is also an important step to clarify the biological basis of
TCM.+e PharmMapper server platform (http://lilab-ecust.
cn/pharmmapper/) was used to predict potential targets.
After importing the “mol2” format file, the number of
returned targets was set to 300, and the pharmacophore
model was selected as the setting condition [34].+e PDB ID
of the protein target was imported into UniProt KB (https://
www.uniprot.org/uniprot/), with the species restricted to
“Homo sapiens” (for potential targets) (Table S1) or “Rattus
norvegicus” (for proteomics data) (Table S2), to obtain the
official symbol of Radix Rhei Et Rhizome potential target.

+e keyword “cerebral infarction” was entered into the
GeneCards database (http://www.genecards.org/) [35] and
the OMIM database (http://www.ncbi.nlm.nih.gov/omim)
[36] to search for reported CI-related genes. +e genes in the
GeneCards database with relevance score >1 were selected.
After removing duplicate genes and false positive genes, the
CI gene set was obtained (Table S3).

2.3. Network Construction and Analysis Methods. In system
pharmacology, the construction and analysis of biological
network diagrams are very important for TCM pharmaco-
logical analysis. +e network formed by nodes and edges
(connections between nodes) is a mathematical-based and
quantifiable mapping of various regulatory relationships under
complex biological systems. String 11.0 (https://string-db.org/)
was used to query protein-protein interaction (PPI) relation-
ships [37]. +e results were saved in TSV format, and the
node1, node2, and Combinedscore information in the file was
retained and imported into Cytoscape 3.7.1 software to draw
the relevant network [38]. +e “NetworkAnalyzer” plugin that
comes with Cytoscape software was used to analyze the degree
and betweenness of the network. +ese two parameters are
often used to illustrate the importance of nodes, that is, the
higher the degree and betweenness, the more important the

2 Evidence-Based Complementary and Alternative Medicine

http://lsp.nwu.edu.cn/
http://tcm.cmu.edu.tw/zh-tw/
http://lilab-ecust.cn/pharmmapper/
http://lilab-ecust.cn/pharmmapper/
https://www.uniprot.org/uniprot/
https://www.uniprot.org/uniprot/
http://www.genecards.org/
http://www.ncbi.nlm.nih.gov/omim
https://string-db.org/


node in the network.+e clusters of networks were detected by
MCODE (Cytoscape’s plugin). +e MCODE algorithm was
originally a clustering algorithm designed to detect protein
complexes in PPI networks, which can detect tightly connected
regions (i.e., molecular complexes) in large-scale protein in-
teraction networks [38]. +is method can now also be used to
detect clusters in other types of networks.

2.4. Gene Ontology (GO) Enrichment, Pathway Enrichment,
andReactomeEnrichmentAnalysis. DAVID ver. 6.8 (https://
david-d.ncifcrf.gov) was used for the GO enrichment analysis
of targets and genes in clusters and for the pathway en-
richment analysis of targets and genes in PPI networks [39].
+e Reactome Pathway Database (https://reactome.org/) was
used for reactome pathway enrichment [40].

3. Results and Discussion

3.1. Potential Compound-Potential Target Network of Radix
Rhei Et Rhizome. A total of 14 components and 425 targets
were used to construct the potential compound-potential
target network of Radix Rhei Et Rhizome. In this network,
nodes near the center have a greater degree than nodes near
the periphery (Figure 2).

3.2. Radix Rhei Et Rhizome-CI PPI Network Analysis

3.2.1. Radix Rhei Et Rhizome-CI PPI Network Construction.
+e Radix Rhei Et Rhizome-CI PPI network is composed of
645 nodes (371 potential target nodes, 231 CI gene nodes,

and 43 Radix Rhei Et Rhizome-CI target nodes) and 14,119
edges. +e following are the top 20 nodes in the network: (1)
Radix Rhei Et Rhizome targets: EGFR (203 edges), SRC (201
edges), MAPK1 (193 edges), and MAPK8 (167 edges). (2) CI
genes: INS (292 edges), IL6 (273 edges), VEGFA (244 edges),
TNF (241 edges), TP53 (235 edges), EGF (210 edges),
CXCL8 (178 edges), IL10 (163 edges), IL1B (160 edges),
CCL2 (159 edges), and APP (157 edges). (3) Radix Rhei Et
Rhizome-CI targets: ALB (302 edges), AKT1 (266 edges),
MMP9 (191 edges), IGF1 (182 edges), and CASP3 (170
edges) (Figure 3). +e preliminary enrichment results of
biological processes and signaling pathways are shown in
Figures 4 and 5.

In this study, a total of 14 Radix Rhei Et Rhizome
compounds and 425 potential targets were predicted for
analysis using the network pharmacological method. Al-
though the number of predicted targets for each potential
compound is different, the overlap of the target set of some
compounds is large. In other words, Radix Rhei Et Rhi-
zome’s compounds have common targets probably because
these compounds come from the same structural parent. For
example, rhein, aloe-emodin, chrysophanol, physcion, and
emodin are known as rhubarb aglycones.

In terms of the blood-brain barrier, studies have
shown that emodin can maintain the integrity of the
blood-brain barrier, reduce inflammation, and inhibit
apoptosis [41–45]. In another study, emodin reduced
blood-brain barrier permeability and reduced infarct size
by inhibiting the expression of connexin 43 (Cx43) and
aquaporin 4 (AQP4) in cerebral ischemia/reperfusion
model rats [46]. In terms of inhibiting inflammation,
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Figure 1: +e idea and process of this research.
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emodin can inhibit transforming growth factor (TGF)-β,
tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and
intercellular adhesion molecule 1 (ICAM-1), so as to
protect the brain [42]. Chrysophanol inhibits the in-
flammatory response by reducing the expression of IL-1β,
caspase-1, and NALP3, thereby improving neurological
deficits, infarct volume, cerebral edema, and blood-brain
barrier permeability in mice with ischemia-reperfusion
injury. Chrysophanol can also improve the survival rate,
nervous system score, and motor function of mice with
middle cerebral artery occlusion by reducing the ex-
pression of TNF-α, IL-1β, and NF-κB p65 [47]. In terms of
inhibiting apoptosis, emodin can inhibit neuronal apo-
ptosis [43, 44, 48]. Its specific mechanism may be that

emodin can increase Bcl-2 and inhibit caspase-3 and Bax
expression to reduce glutamate-induced HT22 cell apo-
ptosis [43]. Rhein increases the expression of mature brain-
derived neurotrophic factor (BDNF) and phosphorylation
of Akt and cAMP response element binding protein
(CREB), which improves the behavior and function of CI
mice [49]. Rhein also reduced the expression of BAX,
caspase-9, caspase-3, and cleaved caspase-3 and increased
the expression of Bcl-2, thereby reducing the infarcted area
of cerebral ischemia-reperfusion injury mice [50]. In ad-
dition, chrysophanol can inhibit NO-related neuronal cell
death by attenuating nitrite and nitrate (NOx-) and 3-
nitrotyrosine (3-NT) levels and reducing lysed caspase-3
protein expression [51].
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Figure 2: Potential Compound-Potential Target Network of Radix Rhei Et Rhizome (Blue hexagons stand for potential targets. Red circles
stand for potential compounds.).
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In terms of oxidative stress, emodin inhibits the apo-
ptosis of primary rat cortical neurons induced by hydrogen
peroxide (H2O2) [44]. It was also found that emodin can
inhibit the apoptosis of neurons after oxyglucose deprivation
and reduce the damage of PC12 nerve cells by increasing the
expression of activin A [45]. Chrysophanol also increases
total superoxide dismutase (SOD) and manganese-depen-
dent SOD (MnSOD) activities in cerebral ischemia-reper-
fusion injury models and inhibits the production of reactive
oxygen species (ROS) [51]. In addition, rhein can reduce
malondialdehyde (MDA) and increase the activities of
SOD, catalase (CAT), and glutathione peroxidase (GSH-
Px) and improve neurological function scores [50].

Chrysophanol can improve endoplasmic reticulum (ER)
stress by reducing ER stress-related factors (such as glu-
cose-regulated protein 78 (GRP78), phosphorylated
eukaryotic initiation factor 2α (p-eIF2α), CCAAT-en-
hancer-binding protein homologous protein (CHOP),
caspase-12, and NF-κB/κB-α) [52].

In terms of various compound combinations and syn-
ergies, rhubarb aglycones (aloe-emodin, rhein, emodin,
chrysophanol, and physcion) can improve disorders of
amino acid, energy, and lipid metabolism caused by cerebral
ischemia-reperfusion injury [15]. Further research shows
that rhubarb aglycones can reduce IgG content and increase
type IV collagen (CoLIV) and laminin (LN) levels, thereby
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Figure 3: Radix Rhei Et Rhizome-CI PPI network (Red, yellow, and orange circles stand for CI genes, Radix Rhei Et Rhizome targets, and
Radix Rhei Et Rhizome-CI targets, respectively. +e larger the node size, the higher the degree of the node. +e thicker the line, the greater
the edge betweenness of the node.).
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reducing cerebral microvascular basement membrane
damage caused by thrombolysis [53]. Pharmacokinetic
studies have shown that in CI model rats, the maximum
plasma concentration (C max), half-life (t 1/2), and area
under the curve (AUC 0-t) increased significantly, but the
overall clearance (CL) value decreased significantly, indi-
cating that rhubarb anthraquinones are more easily absor-
bed after coadministration [54].

3.2.2. Biological Processes of Radix Rhei Et Rhizome-CI PPI
Network. Eighteen (18) clusters returned after analyzed by
MCODE (Table 1 and Figure 6). +e cluster score (complex

score) is defined as the product of the complex subgraph,
C� (V, E), density, and the number of vertices in the
complex subgraph (DC× |V|). +e higher the score, the
denser the cluster.

+e potential targets and CI genes in the cluster were
introduced into DAVID for GO enrichment analysis. +e
biological process of the top 10 clusters is taken as an ex-
ample (Table S4). For example, cluster 1 is related to GO:
0045429, GO:0031663, GO:0048661, GO:0071260, GO:
0045944, GO:0008217, GO:0006954, GO:0043066, GO:
0002576, GO:0070374, and GO:0051092; cluster 2 is asso-
ciated with GO:0002576, GO:0070374, GO:0043066, GO:
0030335, GO:0001934, GO:0010628, GO:0042730, GO:
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Figure 4: +e preliminary enrichment results by ClueGO.
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0030168, GO:0007165, GO:0043406, and GO:0043065; and
cluster 3 is involved in GO:0042632, GO:0019433, GO:
0042157, GO:0017187, GO:0007584, GO:0034375, GO:
0043691, GO:0019915, GO:0006465, and GO:0070328. +e
details of clusters and biological processes are shown in
Table S4. Since the biological processes in cluster 1 are
representative, the main biological processes of cluster 1 are
shown as an example (Figure 7).

3.2.3. Signaling Pathways of Radix Rhei Et Rhizome-CI PPI
Network. Nineteen (19) CI-related signal pathways were
returned. +e relationship among signaling pathways,

targets, and components is shown in Figure 8. +e details of
signaling pathways are shown in Figure 9 and Table S5. +e
number of targets regulated by the components of Radix
Rhei Et Rhizome is shown in Table 2.

3.2.4. Reactome Pathways of Radix Rhei Et Rhizome-CI PPI
Network. Ninety-three (93) CI-related signal pathways were
returned. +e relationship among reactome pathways, tar-
gets, and components is shown in Figure 10. +e details of
reactome pathways are shown in Figure 11 (Table S6). +e
number of targets regulated by the components of Radix
Rhei Et Rhizome is shown in Table 3.
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Figure 5: +e Metascape results: (a) top biological processes, signaling pathways, and reactome pathways and (b) PPI network colored by
enrichment results or P-values.
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Table 1: Clusters of Radix Rhei Et Rhizome-CI PPI network.

Cluster Score Nodes Edges Targets and genes

1 44 67 1452

IGF1, NOS3, SERPINE1, MMP2, CRP, CCL5, VWF, PTEN, CASP8, MYD88, CD40, TLR4, MMP1, PLG,
NGF, CTGF, HRAS, HSPA4, HIF1A, MMP9, RHOA, ANXA5, CREB1, SOD2, REN, CYCS, GRB2,

MAPK1, MMP3, BCL2L1, IL2, TGFB1, ADIPOQ, AGT, FGF2, SELE, CD40LG, PTGS2, ALB, IL10, IL1B,
HGF, MAP2K1, CCL2, IL4, ACE, CAT, THBS1, CXCL8, PPARG, AR, JAK2, ESR1, HMOX1, MMP7,

CSF3, EDN1, BDNF, EGFR, SELP, MAPK14, CDC42, ICAM1, MMP13, STAT1, APOE, APP

2 25.821 79 1007

AKT1, XIAP, PIK3CA, SRC, F13A1, ALDOA, F3, NFKB1, AKT2, PTPN11, FGA, FGG, AGTR1, NR3C1,
AIF1, PPBP, HSP90AA1, SERPINF2, NQO1, NOS2, ABL1, FGB, SOCS3, CD34, MIF, BMP2, PDGFRB,
PDGFB, MET, HMGB1, IL6, KIT, PGF, MDM2, HPGDS, TEK, MBP, LGALS3, ENG, SOD1, MAPK8,
TNF, PLAU, GFAP, PTK2, INS, RAF1, IL1A, GSK3B, TP53, CASP3, FAS, PTPN1, PROS1, TGFB2,
VEGFA, HRG, ELANE, IGFBP3, TLR3, MAPK10, PGR, NCF1, CCNA2, CASP1, FGF1, IGF1R, F8,

PLAUR, RETN, ADAM17, LDLR, KDR, CFD, MMP14, F5, PARP1, S100B, EGF

3 6.846 27 89 PAH, LPL, ARSA, RNASE2, APCS, CTSK, IMPDH1, CTSL, PON1, FABP4, RBP4, LPA, BPI, CST3,
PROZ, RNASE3, SCARB1, F7, LIPG, FABP5, GM2A, PROC, HMGCR, GC, HABP2, HEXB, APOA1

4 5.706 35 97
F11, SERPINC1, HP, APOM, AKR1B1, HK1, HSP90AB1, SERPINA1, APOB, ENO2, ABCA1, OLR1,
ATIC, PIK3CG, PLA2G7, CDK6, F10, ANG, SERPIND1, ZAP70, RHEB, LCAT, BACE1, HCK, MMP12,

BTK, TTR, COG2, LIPC, ITGAL, AURKA, SYK, BRAF, APOC2, F12

5 4.783 24 55 PNP, BHMT, HADH, NR1I3, NT5M, SHMT1, YARS, TPI1, RAN, STS, UCK2, UCP3, ACADM, TYMS,
RXRA, AHCY, LDHB, IVD, CYP1A1, PDE3B, PSPH, ADK, SULT1A1, AKR1C3

6 4 21 40 G6PD, MAP2, RAC2, GLRX, PTGER3, GSTP1, RHOB, RHOD, ASAH1, DCX, PSAP, CHIT1, CALM1,
CRYZ, CTSS, CDA, PRDX1, HTR1A, LTA4H, QPCT, NPY

7 4 8 14 GLO1, GMPR, APRT, APEX1, IMPDH2, UMPS, DTYMK, TK1
8 4 4 6 RXRB, THRB, RARG, RARB
9 4 5 8 GALE, GNPDA2, UAP1, GALK1, GNPDA1

10 3.818 34 63
APOH, FBN1, TIMP3, THBD, HSPA8, EPHA2, INSR, PF4, ADAM10, PLAT, F2, RAC1, APAF1,

PIK3R1, ERBB4, GSR, CASP7, CDK2, CHEK1, NOS1, EIF4E, HSPA1A, ESR2, CCL11, CYBA, FGFR2,
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Figure 6: Clusters of Radix Rhei Et Rhizome-CI PPI network (Blue, pink, and purple circles stand for CI genes, Radix Rhei Et Rhizome
targets, and Radix Rhei Et Rhizome-CI targets, respectively.).
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+e main biological processes, signaling pathways, and
reactome pathways are shown in Figures 7, 9, and 10, re-
spectively. Current studies have found that the occurrence
and development of CI have slowed blood flow and vascular
sclerosis in the cerebral vessels [55]. Astrocytes, endothelial
cells, and pericytes constitute the neurovascular units re-
quired for neuronal metabolism [56, 57]. When CI occurs,
the neurovascular unit is abnormal: hypoxia results in the
dysfunction of the endothelial cell barrier of the blood-brain
barrier, leading to a decrease in intracellular cAMP levels
and an increase in vascular permeability [58, 59]. Ischemia
and reperfusion cause various cells in the neurovascular unit
to initiate cell death programs, including apoptosis, auto-
phagy-related cell death, iron death, cell scoring, and ne-
crosis [60, 61]. During CI, these cells contribute to
postischemic inflammation at multiple stages of the is-
chemic cascade [62]. In the inflammatory response,
microglia and astrocytes and infiltrating immune cells
release a variety of inflammatory factors, including cyto-
kines, chemokines, enzymes, and free radicals, which not
only cause brain damage but also affect brain tissue repair
[63, 64]. Recent studies have also shown that anti-in-
flammatory is an important treatment strategy for CI [65].
After thrombolysis, oxidative stress becomes the central
link in cerebral ischemia-reperfusion. During reperfusion,

oxygen is replenished, which is essential for maintaining
the viability of neurons [66]. However, prooxidase and
mitochondria also use oxygen as a substrate, and a large
amount of oxygen free radicals (oxidants) are generated
during reperfusion. Endogenous antioxidant enzymes,
including SOD, can clear oxidants and reduce oxidant-
induced brain damage [67, 68].

+e network pharmacology strategy was used above to
predict the mechanism of Radix Rhei Et Rhizome inter-
vention in CI. In order to further explore it, the previous
proteomics data were analyzed in depth. +e proteomics
data come from reference [69].

3.3. Bioinformatics Analysis of Proteomics Proteins

3.3.1. Proteomics Proteins’ PPI Network. +e proteomics
proteins of reference [69] are shown in Table S2. A total of 76
proteins were input into String for PPI data. +e proteomics
proteins’ PPI data were composed of 76 proteomics protein
nodes and 182 edges (Figure 12).

3.3.2. Enrichment Analysis Results. DAVID and Metascape
(http://metascape.org/gp/index.html#/main/step1) were
utilized to analyze the proteins in the proteomics proteins’
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Figure 7: Bubble chart of biological processes (+e X-axis is fold enrichment.).
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PPI network (Figure 13). +e details of biological processes,
signaling pathways, and reactome pathways are shown in
Table S7. +e clusters are shown in Figure 14.

+e top 20 proteins in Figure 12 were Syp, Syn1, Mbp,
Gap43, Aif1, Camk2a, Syt1, Calm1, Calb1, Nsf, Nefl, Hspa5,
Nefh, Ncam1, Dcx, Unc13a, Mapk1, Syt2, Dnm1, and Cltc.
+ese proteins may be the key targets of Radix Rhei Et
Rhizome in the treatment of CI. As a specific marker protein
of synaptic vesicles, synaptophysin (SYP) is a sign of synapse
occurrence. Its density and distribution can indirectly reflect
the number and distribution of synapses in the body [70, 71].
Studies have found that after CI in rats, the synaptophysin

immune response was significantly enhanced compared
with the sham operation group, and the expression reached a
peak at 2 weeks after cerebral ischemia, and it significantly
decreased at 3 weeks [72]. +is experimental study found
that after Radix Rhei Et Rhizome treatment, its expression
was significantly increased compared with the model group,
indicating that Radix Rhei Et Rhizome may resist synapse
damage or promote synaptic regeneration after cerebral
ischemia. Synapse protein I gene (SYN1) mainly mediates
the delivery of synaptic vesicles and circulation [73] and
plays an important role in neurodegenerative diseases [74],
such as Alzheimer’s disease, Parkinson’s disease, and

Figure 8: Signaling pathways of Radix Rhei Et Rhizome-CI PPI network (Red circles stand for signaling pathways. Dark blue circles stand for
Radix Rhei Et Rhizome targets. Light blue circles stand for CI genes. Yellow circles stand for Radix Rhei Et Rhizome-CI targets. Green circles
stand for Radix Rhei Et Rhizome compounds.+e larger the node size, the higher the degree of the node.+e thicker the line, the greater the
edge betweenness of the node.).
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amyotrophic lateral sclerosis. +is study suggests that SYN1
may be a potential drug target for neurodegenerative dis-
eases caused by CI, among which Radix Rhei Et Rhizome can
reduce CI by interfering with SYN1.

GAP-43 is a calmodulin-binding phosphoprotein that
has been isolated and identified in recent years [75]. In the
process of neuron development and regeneration, GAP-43 is

synthesized in large quantities along with the growth of
axons and is a marker of axon growth. +e expression
product is mainly located on the plasma membrane surface
of the axon growth cone [76]. Studies have shown that the
increase in GAP-43 content in the penumbra of the ischemic
penumbra of onemiddle cerebral artery 3 to 14 days after the
embolization of the middle cerebral artery is synchronized
with the recovery of the function of the affected limb [77].
Another study found that the expression of GAP-43 in the
brain increased significantly after cerebral infarction, peaked
at 1 week after ischemia-reperfusion, and began to decrease
after 2 weeks [78, 79].+is experiment found that Radix Rhei
Et Rhizome can significantly enhance the expression of GAP-
43 in the cortical ischemic penumbra, suggesting that Radix
Rhei Et Rhizome can effectively promote the regeneration of
axons in CI model rats and induce the recovery of nerve
function.

MBP is mainly located on the serosal surface of the
myelin sheath and is themain protein of themyelin sheath of
the central nervous system. Its main function is to maintain
the integrity and functional stability of the myelin sheath of
the central nervous system, and its neural tissue specificity is
high [80]. When acute cerebral infarction (ACI) occurs,
when the human central nervous system is damaged, the
blood-brain barrier function is unbalanced, which increases
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Figure 9: Signaling pathways of biological processes (+e X-axis is fold enrichment.).

Table 2: +e number of targets regulated by the components of
Radix Rhei Et Rhizome.

Components Number of targets
Sennoside A 103
Palmidin A 99
Emodin 98
Toralactone 96
Mutatochrome 96
Rhein 95
Physcion 95
Eupatin 93
(-)-Catechin 91
Aloe-emodin 88
Chrysophanol 86
Beta-sitosterol 85
Daucosterol 85
Danthron 53
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its permeability, andMBP can easily pass through the blood-
brain barrier and be released into the blood. At present, the
detection of serum NSE and MBP expression levels is of
great value in assessing the prognosis of ACI disease [81].
+e results of this study showed that the MBP level of the CI
group increased rapidly and the MBP level decreased after
Radix Rhei Et Rhizome treatment, suggesting that Radix
Rhei Et Rhizome treatment of the ACI rat model can
promote the disease outcome and reduce the MBP level.

Allogeneic inflammatory factor-1 (AIF-1) is a 17 kDa
cytoplasmic calcium-binding inflammatory response scaf-
fold protein, which is mainly expressed in immune cells [82].

AIF-1 affects the immune system at several key points,
thereby regulating inflammatory diseases [83]. AIF-1 pro-
motes the expression of inflammatory mediators such as
cytokines, chemokines, and inducible nitric oxide synthase
(iNOS) and promotes the proliferation and migration of
inflammatory cells. Current research shows that it regulates
central nervous system (CNS) damage [82, 83].+e results of
this study showed that the level of cerebral infarction (AIF-
1) increased rapidly, and the level of AIF-1 decreased after
Radix Rhei Et Rhizome treatment. It is suggested that Radix
Rhei Et Rhizome can promote the outcome of CI and reduce
the level of inflammation.
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Figure 10: Reactome pathways of Radix Rhei Et Rhizome-CI PPI Network (Green hexagons stand for potential compounds. Blue, pink, and
purple circles stand for CI genes, Radix Rhei Et Rhizome targets, and Radix Rhei Et Rhizome-CI targets, respectively. Red diamonds stand for
reactome pathways. Dark lines stand for relationships among reactome pathways and targets. Light lines stand for relationships among
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+e alpha (CAMK2A) of calcium/calmodulin-depen-
dent protein kinase II (CaMKII) plays a key role in neuronal
plasticity and brain learning and memory [84, 85]. After
Radix Rhei Et Rhizome intervention, the expression of

CAMK2A was upregulated. +e main biological function of
Syt1 is to trigger vesicle fusion [86], which is related to the
molecular mechanism of neuronal endocytosis and exocytosis
coupling [87]. +is study found that Syt1 was upregulated
after Radix Rhei Et Rhizome intervention. Calmodulin 1
(CALM1) is highly expressed in the human brain tissue, and
its biological function is mainly related to axon transmission
[88]. In addition, the Calm1 signaling pathway is crucial for
the migration of precerebellar neurons in mice [89]. Calm1-L
plays a functional role in the central and peripheral nervous
system [90]. +is study found that Calm1 was upregulated
after Radix Rhei Et Rhizome intervention. A recent study also
showed that CALM1 rs3179089 gene polymorphism is as-
sociated with CI in Chinese Han population [91].

Calbindin 1 (Calb1) acts as a buffer, sensor, and
transporter of intracellular Ca2+. Different types of hippo-
campal neurons have different Calb1 concentrations. Since
Calb1 can inhibit the increase of free Ca2+, it accelerates the
collapse of the Ca2+ gradient after the influx of Ca2+ stops
[92, 93]. Current research shows that it plays a role in
neurotransmitter and hormone release, neuron differentia-
tion, brain wiring, and neuron development [94, 95]. +e
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Figure 11: Reactome pathways of biological processes (+e X-axis is FDR.).

Table 3: +e number of targets regulated by the components of
Radix Rhei Et Rhizome.

Components Number of targets
Palmidin A 222
Sennoside A 213
Toralactone 212
Emodin 209
Rhein 209
Eupatin 207
(-)-Catechin 205
Aloe-emodin 202
Physcion 202
Mutatochrome 193
Chrysophanol 178
Beta-sitosterol 171
Daucosterol 168
Danthron 116
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results of this study showed that the level of Calb1 was
downregulated in the CI group, and the level of Calb1 was
upregulated after Radix Rhei Et Rhizome treatment. It is
suggested that Radix Rhei Et Rhizome may promote disease
outcome through neurotransmitter and other methods.

N-ethylmaleimide-sensitive fusion protein (NSF) is an
ATPase that plays an important role in intracellular
membrane vesicle transport [96]. It is highly conservative in

evolution and participates in the secretion process of dif-
ferent species and different cell types [96, 97]. Current re-
search shows that it plays an important role in the process of
neurotransmitter release by synaptic vesicle exocytosis at
presynaptic nerve terminals [97, 98].+e results of this study
showed that the level of NSF in the cerebral infarction group
was downregulated and the level of NSF was upregulated
after treatment.
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Neurofilament light chain (Nefl) belongs to one of the
main subtypes of neurofilament protein. It is the main
cytoskeleton structural protein of neurons, which is dis-
tributed in axons [99, 100]. Nefl is also an important in-
dicator for judging acute axonal injury [99]. In clinical studies
of relapsing multiple sclerosis, Nefl is used as an effective
evaluation index for drug anti-inflammatory therapy [101].
Recent studies have shown that emodin activates mTOR and
Notch pathways in hypoxic PC12 cells by inhibiting Nefl
[102]. In this study, the expression level of Nefl in CI model
rats was higher but decreased after intervention, indicating
that there is acute axon damage in acute stroke andRadix Rhei
Et Rhizome may be able to protect axons.

+e endoplasmic reticulum stress chaperone protein
HSPA5 is mainly related to endoplasmic reticulum stress.
Current studies have shown that endoplasmic reticulum
stress can induce autophagy activation [103]. Previous
studies have confirmed that in the mouse brain I/R model,
the expression of HSPA5 protein is increased, and it has a
neuroprotective effect [104]. At present, by injecting HSPA5
siRNA into the anterior ventricle of CI mice, the expression
of LC3-1/LC3-I is significantly reduced, and it will also lead
to the loss of nerve cells in the cerebral ischemic cortex of
mice and aggravation of neurobehavioral damage. +is is
similar to the effect of the autophagy inhibitor 3-MA, in-
dicating that HSPA5-mediated autophagy may play a
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neuroprotective effect in mouse I/R [105, 106]. +e results of
this study showed that the level of HSPA5 in the CI group
was downregulated, but after treatment, the level of HSPA5
was upregulated.

NCAM1 is a member of the cell adhesionmolecule family
and is a molecular cleavage of the immunoglobulin super-
family. NCAM1 is a membrane protein that includes three
subtypes: NCAM-120, NCAM-140, and NCAM-180. It is
mainly expressed in the nervous system and is involved in
regulating the function of nerve cells and neuron migration
[107]. NCAM1 is expressed in neural stem cells. In addition,
astrocytes also express many adhesion molecules, such as
VCAM1, NCAM1, and ICAM1, which represent many po-
tential drug targets for inflammatory diseases of the central
nervous system [108–110].+is study showed that the level of
NCAM1 in the CI group was downregulated. After Radix
Rhei Et Rhizome treatment, the level of NCAM1 was upre-
gulated, suggesting that Radix Rhei Et Rhizome may inhibit
adhesion molecules and is related to inflammatory factors.

Dcx is a microtubule-associated phosphoprotein,
which is specifically expressed in newborn neuroblasts

and immature neurons in DG [111, 112]. +erefore, Dcx
has been widely used to label the cell bodies, processes,
and growth cones of newborn neurons. Studies have re-
ported that after CI, Dcx strengthens the differentiation of
nerve cells in the DG area of the hippocampus and
promotes the rehabilitation of nerve function [113]. +is
study showed that the level of Dcx in the CI group was
downregulated, and after treatment, the level of Dcx was
upregulated, suggesting that Radix Rhei Et Rhizome may
regulate the generation of new neurons and promote the
outcome of CI.

+e limitation of this study is that although the phar-
macokinetic parameters are used to predict the composition
of Radix Rhei Et Rhizome and the composition was sup-
plemented as much as possible by searching the literature,
due to the limitations of the current detection technology,
there are still active ingredients that may not be included.
Since the intestinal flora may metabolize and secondary
modify the active components of Radix Rhei Et Rhizome,
these components may be traced in the blood. In the future,
better technology is needed to detect these components. In
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addition, although this study analyzed the main active
components of Radix Rhei Et Rhizome in the treatment of CI
through chemoinformatics and explored its possible syn-
ergistic effects, there is still a lack of in vivo and in vitro
experiments related to their intervention in CI. In the future,
we will explore the synergistic compatibility of these com-
ponents in the CI in vitro model and the CI in vivo model
and look forward to further development of new drugs for
the treatment of CI, laying the foundation for its clinical
application.

Our previous research evaluated the therapeutic effect of
Radix Rhei Et Rhizome on cerebral hemorrhage [114], while
this study explored the mechanism of Radix Rhei Et Rhizome
in the treatment of CI, and this study found that Radix Rhei Et
Rhizome may regulate the synaptic remodeling and the re-
generation of nerve cell axons after cerebral ischemia.
Compared with previous research [114], this study explored
the mechanism of Radix Rhei Et Rhizome intervention in CI.
+is study found that Radix Rhei Et Rhizome may treat CI
through biological process (such as platelet degranulation, cell
migration, fibrinolysis, platelet activation, hypoxia, angio-
genesis, endothelial cell apoptosis, coagulation, and neuronal
apoptosis), signaling pathways (such as Ras, PI3K-Akt, TNF,
FoxO, HIF-1, and Rap1), and reactome pathways (such as
inflammatory cytokines, platelet activation, response to ele-
vated platelet cytoplasmic Ca2+, and hemostasis).

4. Conclusion

Radix Rhei Et Rhizome may play the therapeutic role for CI
through regulating biological modules such as synaptic
vesicles and neurotransmitter secretion and transport, en-
ergy metabolism, neuronal programmed death (apoptotic
autophagy) module, calcium ion regulation of exocytosis
and cytoplasmic calcium ion release, endoplasmic reticulum
oxidative stress, and neuroplasticity (neuron and synaptic
plasticity).
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