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Alismatis rhizoma (AR), which is the dried rhizome of Alisma orientale (Sam.) Juz. (Alismataceae), is an important component of
many famous Chinese formulas for hypoglycemic.,is study aimed to evaluate the insulin resistance (IR) alleviating effects of AR
triterpenes (ART) and ARTcomponent compatibility (ARTC, the mixture of 16-oxo-alisol A, 16-oxo-alisol A 23-acetate, 16-oxo-
alisol A 24-acetate, alisol C, alisol C 23-acetate, alisol L, alisol A, alisol A 23-acetate, alisol A 24-acetate, alisol L 23-acetate, alisol B,
alisol B 23-acetate, 11-deoxy-alisol B and 11-deoxy-alisol B 23-acetate) in high-fat diet-induced IR mice and plamitate-treated IR
C2C12 cells, respectively. A dose of 200mg/kg of ARTwas orally administered to IR mice, and different doses (25, 50, and 100 μg/
ml) of ARTC groups were treated to IR C2C12 cells. IPGTT, IPITT, body weight, Hb1AC, FFA, TNF-α, MCP-1, and IR-associated
gene expression (p-AMPK, p-IRS-1, PI3K, p-AKT, p-JNK, and GLUT4) weremeasured in IRmice. Glucose uptake, TNF-α, MCP-
1, and IR-associated gene expression were also measured in IR C2C12 cells. Results showed that ART alleviated high-fat diet-
induced IR in the skeletal muscle of mice, and this finding was further validated by ARTC. ,is study demonstrated that ART
presented a notable IR alleviating effect by regulating IR-associated gene expression, and triterpenes were the material basis for the
IR alleviating activity of AR.

1. Introduction

In recent years, increasing research attention has been paid
to novel, effective antidiabetes agents derived from natural
sources [1]. Alismatis rhizoma (AR) is the tuber of Alisma
orientale (Sam.) Juz. (Alismataceae), which is an aquatic
plant that has been cultivated mainly in oriental countries
(e.g., China, Japan, and Korea) but is also widely distributed
in other areas (e.g., North America and Europe). AR has
various activities, such as diuretic, hyperlipidemic, inflam-
matory, antitumoral, and damp-heat clearing activities
[2–8]. AR is traditional folk medicine that has long been
used to promote health and longevity (Sheng Nong’s herbal
classic) for more than several thousand years. AR is currently

included in the Pharmacopoeia of China not only as a di-
uretic but also as a representative hypoglycemic and
hypolipidemic traditional Chinese herbal medicine. AR is an
important component of many famous Chinese formulas for
hypoglycemic from Febrile and Miscellaneous Disease
(Shang Han Lun in Chinese) or Synopsis of Golden
Chamber, including Zexie docotion, Ba wei shen qi wan, and
Liu wei di huang wan [5, 9, 10], for usage as hypoglycemic
because of their low toxicity, high effectiveness, and minimal
side effects. Our previous studies reported the hypoglycemic
activity of the ethanol extract of AR [11, 12]. Fourteen
terpenoids were isolated from the ethanol extract of AR
triterpenes (ART), which could promote glucose uptake in
3T3-L1 cells [13]. Meanwhile, the potential effect of ARTon
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glucose metabolism, especially insulin resistance (IR), has
not been investigated.

Type 2 diabetes (T2MD) comprises 90% of the total
number of diabetes cases around the world. IR is an early
metabolic abnormality in the progression of T2DM [14]. IR,
which is characterized by low efficacy of insulin-induced
glucose uptake [15], is caused by the dysregulated insulin-
related signaling and glucose metabolism defects, such as
impaired glucose transportation, phosphorylation, oxida-
tion, and glycogen synthesis [16–18]. Apart from such well-
recognized factors, low-grade inflammation is also an im-
portant contributing factor to IR [19]. Proinflammatory
cytokines, such as tumor necrosis factor alpha (TNF-α) and
monocyte chemotactic protein-1 (MCP-1), aggravate IR in
patients [20, 21]. As a result, alleviation and drug inter-
vention of IR are major tasks to lessen the risk of T2DM.

Skeletal muscles are the main target organs for insulin-
mediated glucose uptake, metabolism, and utilization and is
also the earliest and most important site of IR [22, 23]. In
skeletal muscle, insulin biding with insulin receptor (IRS-1)
usually leads to four-stage glucose transporter 4 (GLUT 4)
translocation in a complex process through IRS-1/phos-
phatidylinositol 3-kinase (PI3K)/AKT-GLUT4 pathway
[24, 25]; this pathway is responsible for insulin-induced
glucose uptake. However, glucose homeostasis is broken in
IR cases [14, 26]. AMP-activated protein kinase (AMPK) is a
key regulator of energy homeostasis and ameliorates in-
flammation through inhibition of nuclear factor-κB (NF κB)
activity [27]. ,ese kinases, such as c-Jun N-terminal kinase
(JNK), are activated in high-fat diet-induced or saturated
fatty acid-induced IR, which catalyzes the phosphorylation
of serine residues in IRS-1; this condition ultimately results
in decreased phosphorylation of IRS-1 tyrosine residues and
the activity of insulin-activated downstream signaling
pathways [28–38]. Currently, the therapies for IR focus on
reconstructing glycemia levels in subjects by following the
recommended lifestyle [30]. Several insulin sensitization
agents are commonly used, including thiazolidinediones
(TZDs) (e.g., rosiglitazone and pioglitazone) and biguanides
(e.g., metformin), which could improve IR and increase the
utilization efficacy of circulating insulin; these improve-
ments ultimately decrease the blood glucose [31]. However,
TZD drugs have an increased risk of fracture and bladder
cancer, especially for cardiovascular aspects [32–34]. More
safe and efficient pharmacological intervention is required
due to the limitation.

,us, this study primarily aimed to evaluate the effect
of ART and in the treatment of IR mice through body
weight, glucose tolerance, hemoglobin A1c (HbA1c), Free
Fatty Acid (FFA), inflammatory factors (e.g., TNF-α and
MCP-1), AMPK/JNK, and IRS-1/PI3K/AKT/GLUT4
signaling pathway and further validated by ART com-
ponent compatibility (ARTC, including 16-oxo-alisol A,
16-oxo-alisol A 23-acetate, 16-oxo-alisol A 24-acetate,
alisol C, alisol C 23-acetate, alisol L, alisol A, alisol A 23-
acetate, alisol A 24-acetate, alisol L 23-acetate, alisol B,
alisol B 23-acetate, 11-deoxy-alisol B, and 11-deoxy-alisol
B 23-acetate; their structure is shown in Figure 1) in IR
C2C12 cells.

2. Materials and Methods

2.1. ARTPreparation. According to our previous study [35],
the extraction and purification method of Alismatis Rhizoma
Triterpenes was as follows. Dried rhizomes of Alismatis Rhi-
zoma were ground into powder (24 mesh) and then twice
extracted by a decoction with 80% ethanol for 1h. ,e filtrate
was concentrated and subjected to chromatography on an
HP20 macroreticular resin (Beijing Greenherbs Science and
Technology Co., Beijing, China) column by using deionized
water, 40% ethanol, and 75% ethanol as eluent. After collecting
and concentrating the 75% ethanol fraction, the ARTyield was
determined to be 0.72%.AnACQUITYUHPLC I-Class system
coupled with a Xevo XS quadrupole time of flight mass
spectrometer (Waters, Milford, MA, USA) was used, and the
LC conditions were based on a previous LC-Q-TOF-MS
method [12, 36]. Chromatographic separation was carried out
at 40°C on a Waters CORTECS C18 column
(2.1mm× 100mm; 1.6μm), with 0.1% of formic acid in water
as mobile phase A and acetonitrile B as mobile phase
B. Gradient elution was performed as follows: 45%–45% B for
0–0.5min, 46%–65%B for 0.5–2min, 65%–90%B for 2–7min,
and 90%–100% B at 7–10min.,e flow rate was 0.25mL/min.
,e mass-spectrometry conditions were optimized as follows:
dissolvent gas temperature, 500°C; capillary voltage, 3.5 kV;
source temperature, 150°C; dissolvent gas flow, 800L/h; and
cone gas flow, 50L/h.,eMS scan rangewasm/z 50–1000, and
the collision energy was set at 20 eV. For quantitation of ART,
standard and sample solutions were prepared as follows: a
series of working standard solutions of fourteen analytes [(1)
16-oxo-alisol A, (2) 16-oxo-alisol A 23-acetate, (3) 16-oxo-
alisol A 24-acetate, (4) alisol C, (5) alisol C 23-acetate, (6) alisol
L, (7) alisol A, (8) alisol A 23-acetate, (9) alisol A 24-acetate,
(10) alisol L 23-acetate, (11) alisol B, (12) alisol B 23-acetate, (13)
11-deoxy-alisol B, (14) 11-deoxy-alisol B 23-acetate] were
freshly prepared by diluting the mixed standard solutions with
acetonitrile at the ratios of 2, 5, 10, 20, 50, 100, 200, 500, 1000,
and 2000ng/mL (Table S1). ,e ARTsamples: 20mg powders
were dissolved with 50mL acetonitrile, then centrifuged at
12000 rpm for 10min. ,e supernatant was diluted 100 times
with acetonitrile to obtain a sample solution. Sample and
working standard solutions were injected into LC-MS to ac-
quire peak area responses (the detailed quantitative ion channel
was shown in Table S2). Chromatogram of the sample (a) and
standard solutions (b) were shown in Figure 2. According to
the working standard concentration linearity curve (Table S1),
fourteen triterpenes in ART were detected. ART containing
fourteen triterpenes amounted to 885.9mg/g (Table 1).

,e ingredients of ARTCwere obtained according to our
previous research [37].,en, ARTCwas prepared as follows:
fourteen pure triterpenes were accurately weighed and
mixed: 16-oxo-alisol A (1.42mg), 16-oxo-alisol A 23-acetate
(0.73mg), 16-oxo-alisol A 24-acetate (0.75mg), alisol C
(3.52mg), alisol C 23-acetate (18.84mg), alisol L (3.26mg),
alisol A (2.86mg), alisol A 23-acetate (0.94mg), alisol A 24-
acetate (1.12mg), alisol L 23-acetate (1.01mg), alisol B
(13.27mg), alisol B 23-acetate (32.26mg), 11-deoxy alisol B
(6.57mg), and 11-deoxy alisol B 23-acetate (2.04mg). ,e
contents of these compounds in ART extract and ARTC
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were equal. In in vitro experiment, the mother liquid of
ARTC (100mg/mL in DMSO) was then diluted with a
DMEM medium to the required drug concentrations and
filtered with a 0.22 μm Millipore filtration system (Lot. No.
R9BA69583) to eliminate bacteria.

2.2. Animal. Ethical approval for the present study was
obtained from the Ethical Committee of the Fujian Medical
University, China. Male C57BL/6J mice (6 weeks old and
weighing 16–18 g) were purchased from Shanghai SLAC
Company. ,e production license number was SCXK
(Shanghai) 2017-0005. Mice were fed in the Fujian Medical

University SPF Animal Center, and the breeding facilities
used permission license number SYXK (Fujian) 2016-0006.
,e temperature was 22–24°C, the relative humidity was
50%–70%, and the light/dark cycle was 12/12 h. All animal
experiments were performed in accordance with the
Guidelines for the Care and Use of Laboratory Animals of
Fujian Medical University (Fujian, China).

2.3. Construction of IR-Mouse Model. ,e male C57BL/6J
mice were randomly divided into Chow (n� 10) and model
(n� 30) groups. ,e Chow group was given a chow-fat diet,
and the model group was given HFD. ,e Chow-fat diet
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Figure 1: Chemical structures of the 14 compounds used for ARTC studies.
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(CHOW, D12450B, 10% calories from fat) and HFD
(D12492, 60% calories from fat) were purchased from
Guangdong Animal Center (Guangzhou, China). After 10
weeks, the mice were fasted for 12 h and then fasting blood
glucose (FBG), fasting insulin (FINS), and IPITT were
measured. Homeostasis model assessment of IR index
(HOMA-IR) was also calculated to determine whether the IR
model was established successfully (Figure S1).

,e HOMA-IR formula was as follows:

HOMA − IR �
[FBG(mmol/L)∗ FINS(mIU/L)]

22.5
. (1)

2.4. Mouse Grouping and Administration. After establishing
the IR-mousemodel, the model group was randomly divided
into three groups, namely, a positive control group
(HFD+POS), an HFD group, and an HFD+ART group.
Each group had 10 mice whose weights were recorded. ,e
CHOW group was given a standard diet, the HFD+POS
group was given HFD added with 200mg/kg/d metformin,
and the HFD+ART group was given HFD added with
200mg/kg/d ART. All drugs were mixed as feed supple-
ments through the equivalent incremental method and fed
for 4 weeks. Positive drug metformin was bought from
Farmhispania (Farmhispania S.A. Barcelona, Spain).

2.5. Intraperitoneal Glucose Tolerance Tests (IPGTT) and
Intraperitoneal Insulin Tolerance Test (IPITT). For IPGTT
tests, five mice per group were randomly selected, fasted for
12 h, and intraperitoneally injected with 2 g/kg glucose so-
lution. For IPITT tests, five mice per group were randomly
selected, fasted for 6 h, and intraperitoneally injected with
0.5U/kg insulin solution. A glucometer was used to measure
FBG and BG 15, 30, 60, and 120min after intraperitoneal
injection of each mice. ,e AUC in blood sugar was cal-
culated as follows:

AUC � (FBG + 15min BG) ×
15
2

+(15min BG + 30min BG) +
15
2

+(30min BG + 60min BG) +
30
2

+(60min BG + 120min BG) ×
60
2

.

(2)

2.6. Western Blot Assay. Total protein was extracted with
RIPA lysis buffer added with protease inhibitor (Beyotime
Biotechnology, China) on ice, and the concentration of
protein samples was determined by the BCA method. Cell-
membrane proteins were extracted using a Mem-PERa Plus
Membrane Protein Extraction Kit according to the manu-
facturer’s protocol. Samples were separated with 10%
SDS/PAGE gel and then transferred onto NC membrane
(Merck Millipore, Bedford, MA, USA). ,e protein band

was blocked with 5% skim milk for 1 h at room temperature
and incubated with primary antibodies overnight at 4°C.,e
primary antibodies included the following: AMPK,
p-AMPK, GLUT-4, AKT, P-IRS-1 (ser307), IRS-1 (ser307),
P-AKT, and antiactin mouse (purchased from Santa Cruz,
USA); and JNK, P-JNK, and PI3K (purchased from Abcam,
USA).,e information of all antibodies is shown in Table S3.
After washing with TBST buffer, bands were incubated with
secondary antibodies. HRP AffiniPure Goat Anti-Mouse lgG
(H+L) and HRP AffiniPure Goat Anti-Rabbit lgG (H+L)
were purchased from Emarbio Science & Technology
(Beijing, China). Proteins were detected and visualized using
an ECL chemiluminescence kit (Jiancheng-BIO, Nanjing
China). Actin served as an internal reference. ,e expressed
proteins were quantified by densitometry analysis by using
IMAGEJ software (National Institutes of Health, Bethesda,
MD, USA).

2.7. Cell Culture and Treatment. C2C12 cells were cultured
in DMEM media (with 10% FBS and 100U/mL penicillin,
and 100mg/mL streptomycin) in a 5% CO2 incubator at
37°C. When cell density reached 70%–80%, the culture
media was changed into high-glucose DMEMwith 2% horse
serum (HS) to induce cellular differentiation. To establish
the C2C12 cell IR model, C2C12 cells were treated with
0.5mM PA for 16 h. To evaluate the therapeutic potential of
ART in the IR cell model, C2C12 cells were placed onto six-
well plates (0.25×106/well), and cellular differentiation was
induced with 2% HS. Hunger treatment with low-glucose
DMEM (1% BSA) was conducted for 12 h, and then
grouping and administration were conducted as follows:

Control group (Con): 2% HS DMEM+0mM PA;
Model group (PA): 2% HS DMEM+0.5mM PA;
PA+ARTC25: 2% HS DMEM+0.5mM PA+25μg/mL
ARTC;
PA+ARTC50: 2% HS DMEM+0.5mM PA+50μg/mL
ARTC;
PA+ARTC100: 2% HS DMEM+0.5mM PA+100μg/mL
ARTC.

After intervention for 16 h, the culture media (with/
without 100 nM insulin) was changed and incubated for
30min.

2.8. MTT Assay. Differential C2C12 cells were seeded onto
96-well plates with low-glucose DMEM culture medium (1%
BSA). After 0.5mM PA treatment for 16 h, the medium was
changed with 2% HS and incubated with high-glucose
DMEM (added with different final concentrations of ARTC,
namely, 0, 12.5, 25, 50, 100, 200, 300, and 400 μg/mL). After
culturing for 24 h, the culture media was absorbed and
washed with PBS twice. About 100 μL of 0.5mg/mL MTT
solution was added, and the cells were cultured in a 37°C
incubator for 4 h in darkness. ,en, the MTTreagent in each
well was removed and DMSO (100 μL/well) was added. ,e
mixture was vortexed and OD570 nm was measured. To ex-
amine the influence of PA on C2C12 cell viability, we used
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the same method as above with the PA final concentrations
set as 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 1mM.

Cell viability was calculated as follows:

Cell viability(%) �
ODtreatment − ODblank( 

ODcontrol − ODblank( 
× 100%. (3)

2.9. Glucose-Uptake Assay. ,e glucose-uptake rate was
detected by the fluorescent D-glucose analog 2-[N-(7-
nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glu-
cose method. After cell differentiation by HS for 4 days, cells
were seeded onto 24-well plates (incubated with or without
insulin (100 nM) for 15min and treated with 50 μM2-NBDG
for 20min). All procedures were conducted following the
instructions of the Screen QuestTM Fluorimetric Glucose
Uptake Assay Kit (AAT Bioquest, CA, USA). Fluorescence
intensity was detected by fluorescent spectrometry (BIO-
TEK, USA) at an excitation of 485 nm and an emission of
535 nm.

2.10. Statistical Analysis. All data were analyzed using SPSS
version 17.0 software (SPSS Inc., Chicago, IL, USA). Results
are expressed as the mean± SEM. All data were analyzed by
one-way ANOVA, and Student’s t-test was subsequently
conducted for multiple comparisons. P< 0.05 was consid-
ered as a significant difference between each group.

3. Results

3.1. Determination of Triterpenes in ART. UPLC–Q-TOF–MS
analysis showed that 16-oxo-alisol A, 16-oxo-alisol A
23-acetate, 16-oxo-alisol A 24-acetate, alisol C, alisol C
23-acetate, alisol L, alisol A, alisol A 23-acetate, alisol A
24-acetate, alisol L 23-acetate, alisol B, alisol B 23-acetate,
11-deoxy-alisol B, and 11-deoxy-alisol B 23-acetate were
the major triterpenes in ART. ,e number of total tri-
terpenoids containing 14 triterpenes in ARTwas 885.9mg/g
(Table 1).

3.2. ART Treatment Improves IR by Regulating Body Weight,
Glucose Tolerance,HbA1C, FFA, and Inflammatory Factors in
IR Mice. A high-fat diet-induced IR model (HFD) was
established following our previous studies [11, 38] to explore
the ART therapeutic potential in IR mice. We used ART
treatment to intervene with these mice and observe the
response. At the time point of 10 weeks, the IR model was
established (Figure S1). After ART (200mg/kg) treatment
for 4 weeks (11–14 weeks), the body weight of IR mice
(HFD+ART group) was significantly decreased compared
with that of HFD group mice (Figure 3(a)). Efficacy mon-
itoring indicators were considered. Specifically, the level of
FBG, FINS, HbA1c, FFA with a close relationship with IR
occurrence and promotes the development of IR-type dia-
betes [39]) in serum was determined, and the HOMA-IR in
each group was conducted. After ART treatment, FBG,
FIINS, HbA1C, FFA concentration, and HOMA-IR were
decreased compared with those of HFD group mice

(Figures 3(b)–3(f )). IPGTTand IPIGG were performed after
4 weeks of ART treatment to investigate the ART effect on
glucose. As shown in Figure 3(g), the HFD+ART group
exhibited a significantly low level of blood glucose con-
centrations at 0, 15, 30, 60, and 120min in IPGTT assay
compared with HFD group mice. ,e area under the curve
(AUC) of blood glucose concentrations was also significantly
decreased in the HFD+ART group than in the HFD group
(P< 0.01) (Figure 3(h)). In the IPITT assay, HFD+ART
group showed more significant and faster glucose reduction
than the HFD group at 0, 15, 30, 60, and 120min (P< 0.01)
(Figure 3(i)). ,e AUC of blood glucose concentrations at
HFD+ART group was lower than that at HFD group
(P< 0.05) (Figure 3(j)). ,ese results indicated that ART
treatment could promote glucose metabolism. Meanwhile,
the HFD-induced upregulation of serum tumor TNF-α and
MCP-1 expression was also reduced by ART treatment
(Figures 3(k) and 3(l)).

3.3. ART Treatment Regulates IR-Associated Protein
Expression. We analyzed IR-associated protein expression
in the skeletal muscle of mice using Western blot analysis to
evaluate the evidence base of ART treatment of IR. As shown
in Figure 4, HFD group mice showed significantly down-
regulated AMPK (phosphorylated, Figure 4(a)), AKT
(phosphorylated, Figure 4(b)), PI3K (Figure 4(c)), and
GLUT4 (Figure 4(d)) compared with CHOW group.
Moreover, HFD group mice showed significantly upregu-
lated relative protein expression of IRS-1 (phosphorylated,
Figure 4(e)) and JNK (phosphorylated, Figure 4(f)) com-
pared with CHOW. Interestingly, ART treatment could
reverse all IR-associated gene dysregulations (Figure 4). ,e
relative expression levels of p-AMPK, p-AKT, p-IRS-1, and
p-JNK protein were quantified by gray analysis and nor-
malized to corresponding nonphosphorylated proteins. ,e
relative expression levels of PI3K protein were quantified by
gray analysis and normalized to actin. ,e relative expres-
sion levels of GLUT4 protein were quantified by gray
analysis and normalized to Na+ −K+-ATPase. All results
were represented as the mean± SEM. ART treatment could
regulate IR-associated gene expression in the skeletal muscle
of high-fat diet-induced IR mice via AMPK/JNK and IRS-1/
PI3K/AKT/GLUT4 signaling pathway.

3.4. ARTC Ameliorates Glucose Consumption and IR-
Associated Inflammation in Skeletal Muscle Cells. Cell via-
bility in response to different PA concentrations (0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.7, and 1mM) and ARTC concentrations (0,
12.5, 25, 50, 100, 200, 300, and 400 μg/ml) was measured
after treatment for 24 h (Figures 5(a) and 5(b)) to test the
cytotoxicity of PA and ARTC. As a result, PA at 0.5mM
reduced cell viability to approximately 85% of control, and
25–100 μg/ml ARTC doses were chosen to further explore
the improvement effect in IR cell. PA-induced IR C2C12 cell
model was constructed [40]. After 16 hours of PA inter-
vention on C2C12 cells, the glucose consumption of the cells
decreased by 12.95% (P< 0.01) compared with that of the
control group. In this model, ARTC treatment could reverse
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Figure 3: ART treatment improves IR by regulating glucose tolerance and insulin sensitivity in IR mice. (a) Body weight of four groups of
mice, namely, the CHOW group (normal diet, n� 10), HFD group (high-fat diet, n� 10), HFD+ART group (high-fat diet with ART
treatment, 200mg/kg, n� 10), and HFD+POS group (high-fat diet with positive drug metformin treatment, 200mg/kg, n� 10), in 14 weeks
were recorded. (b–f) Result of FBG (b), FIINS (c), HOMA-IR (d), HbA1C (e), and FFA (f), level in the blood of each group. (g and h) ,e
glucose level (g) of each group in the IPGTTassay was determined, and the AUC (h) was calculated. Glucose level (i) of each group in the
IPITTassay was determined, and the AUC (j) was determined as well. (k and l) Result of tumor TNF-α (k) andMCP-1 (l) expression of each
group. ∗∗P< 0.01 vs. CHOW group, ##P< 0.01 vs. HFD group.
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Figure 4: Continued.
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the PA-induced decrease in glucose uptake in a dose-de-
pendent manner (Figure 5(c)). Meanwhile, the levels of
proinflammatory cytokines TNF-α and MCP-1, which re-
flect inflammation status in IR C2C12 cells, significantly
decreased by ARTC treatment than those of IR C2C12 cell
model group (P< 0.05, Figures 5(d) and 5(e)). Western blot
analyses of p-IκBα and p-NF-κB (Figures 5(f)–5(h)) were
performed for further confirmation. ,e results showed that
ARTC had an anti-inflammatory effect on IR C2C12 cells.

3.5. ARTC Treatment Could Regulate IR-Associated Protein
Expression in PA-Induced IR C2C12 Cells. Additional
comprehensive protein detection was performed to further
confirm the ARTC regulation on IR-associated genes. In PA-
induced IR cells, the protein expression levels of p-AMPK,
p-JNK PI3K, p-AKT, and GLUT4 were suppressed. By
contrast, the level of p-IRIS-1 increased significantly. As
shown in Figure 6, the expression levels of p-AMPK
(Figure 6(a)), p-JNK (Figure 6(b)) PI3K (Figure 6(c)),
p-AKT (Figure 6(d)), p-IRIS-1 (Figure 6(e)), and GLUT4
(Figure 6(f)) could be reversed after ARTC intervention.
Furthermore, the relationship was dose dependent. ,e
relative expression levels of p-AMPK, p-AKT, p-IRS-1, and
p-JNK protein were quantified by gray analysis and nor-
malized to corresponding nonphosphorylated proteins. ,e
relative expression levels of PI3K protein were quantified by
gray analysis and normalized to actin. ,e relative expres-
sion levels of GLUT4 protein were quantified by gray
analysis and normalized to Na+ −K+-ATPase. All results
were represented as the mean± SEM.,ese results indicated
that ARTC treatment had a significant regulatory effect on
the expression of IR-associated genes related to AMPK/JNK

and IRS-1/PI3K/AKT/GLUT4 signaling pathway in C2C12
cells induced by PA.

4. Discussion

IR is a complex metabolic syndrome that may occur with
obesity, diabetes, or cardiovascular diseases and lead to
many abnormalities [41]. In a mouse model, IR has man-
ifested as hyperglycemia, hyperinsulinemia, increased
HOMA-IR, impaired glucose tolerance and insulin toler-
ance, dysglycemia, and inflammatory factor disorder
[42–44]. At the cellular level, IR primarily manifests as
glucose metabolism disorder caused by insulin stimulation
to target cells or tissues, especially skeletal muscle tissue [45].
Glucose metabolism usually refers to the process of glucose
absorption and utilization by organisms and includes mostly
AMPK/JNK and IRS-1/PI3K/AKT/GLUT4-mediated insu-
lin signaling pathway disorder.

Currently recognized IR-mouse models include trans-
genic, knockout, genetic inherited (spontaneous), and in-
ducible IR [46]. Owing to their stability and convenience,
male C57BL/6J mice fed with HFD for 10 weeks were
adopted as the IR-mouse model [11, 38]. To determine the
actual material foundation of the anti-IR effect of ART from
AR, UPLC-Q-TOF-MS was used to identify and determine
the major ingredients from ART. To evaluate the anti-IR
effect in vitro, we used the ARTC (a mixture of 16-oxo-alisol
A, 16-oxo-alisol A 23-acetate, 16-oxo-alisol A 24-acetate,
alisol C, alisol C 23-acetate, alisol L, alisol A, alisol A 23-
acetate, alisol A 24-acetate, alisol L 23-acetate, alisol B, alisol
B 23-acetate, 11-deoxy-alisol B, and 11-deoxy-alisol B 23-
acetate, whose contents were equal to that of the ART
extract).
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Figure 4: ART treatment could regulate IR-associated gene expression in IR mice. (a) p-AMPK, relative protein expression of each group.
(b) p-AKT relative protein expression of each group. (c) PI3K relative protein expression of each group. (d) GLUT4 relative protein
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Figure 5: ARTC treatment in PA-induced IR C2C12 cells. (a) Cell viability was determined after 24 h PA treatment by MTTassay. (b) Cell
viability in different concentrations of ARTC (0, 12.5, 25, 50, 100, 200, 300, and 400 μg/ml) was measured by MTTassay. (c) Glucose uptake
was detected in ARTC-treated IR C2C12 cells. (d) ,e concentration of proinflammatory cytokines TNF-α by ARTC treatment. (e) ,e
concentration of proinflammatory cytokines MCP-1 by ARTC treatment. (f ) Western blotting. (g) p-IκBα relative protein expression of
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Figure 6: Effects of ARTC on the protein expression of IR-associated genes related to the AMPK/JNK and IRS-1/PI3K/AKT/GLUT4
signaling pathway in PA-induced IR C2C12 cells. (a) Western blot analysis of p-AMPK expression in each group. (b) Western blot analysis
of p-JNK expression in each group. (c) Western blot analysis of p-IRIS-1 expression in each group. (d) Western blot analysis of p-IRIS-1
expression in each group. (e)Western blot analysis of PI3K expression in each group. (f ) Western blot analysis of GLUT4 expression in each
group. #P< 0.05, ##P< 0.01 vs. model group; ∗P< 0.01, ∗∗P< 0.05 vs. control group, n� 3.
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In order to prove triterpenes are medicinal ingredients
that alleviate high-fat diet-induced insulin resistance in
skeletal muscle of mice, both in vivo and in vitro experiments
were conducted. In vivo, as for AR triterpenes extract (ART)
preparation, the ethanol extraction process and macro-
porous adsorption resin purify process of AR was used. As a
result, the ART containing 14 structures clearly triterpenes
amounted to 885.9mg/g (the purity of triterpenes in ART
has reached 88.59%). In vitro, in order to further confirm
that triterpenes are the medicinal ingredients, ART com-
ponent compatibility (ARTC, the composition and quantity
of triterpenes equivalent to the ARTextract triterpenes) was
used for palmitate-treated IR C2C12 cells to exclude other
components (such as sesquiterpenoids). So, ARTC prepa-
ration: fourteen pure triterpenes were accurately weighed
and mixed: 16-oxo-alisol A (1.42mg), 16-oxo-alisol A 23-
acetate (0.73mg), 16-oxo-alisol A 24-acetate (0.75mg), alisol
C (3.52mg), alisol C 23-acetate (18.84mg), alisol L
(3.26mg), alisol A (2.86mg), alisol A 23-acetate (0.94mg),
alisol A 24-acetate (1.12mg), alisol L 23-acetate (1.01mg),
alisol B (13.27mg), alisol B 23-acetate (32.26mg), 11-deoxy
alisol B (6.57mg), and 11-deoxy alisol B 23-acetate
(2.04mg); it only contained these 14 triterpenes rather than
other components.

So, we investigated the anti-IR therapeutic effect of ART
in an IR-mouse model and a C2C12 cell model. First, the IR-
mouse model fed with HFD for 10 weeks was successfully
constructed.,rough FBG level measurement, IPGTTassay,
and HOMA-IR score calculation, we found that the HFD
group showed significant IR characters, indicating that the
IR-mouse model was established. ,en, after ART therapy
for 4 weeks, the body weight significantly decreased.
,rough IPGTTand IPIGG assays, we found that ARTcould
improve IR. Meanwhile, HbA1c as a standard marker for
glycemic excursion in diabetic patients was also identified as
an IR-prediction marker [47]. Notably, IR is a disease with
complex networks of glucose metabolism and fat meta-
bolism.When the tissue is insulin sensitive, excessive FFA in
circulation creates IR [48]. Afterwards, the increase in li-
polysis produces and releases more FFA, which forms the
inflammatory basis in IR disease [49]. Herein, HbA1c, FFA,
TNF-α, and MCP-1 level in the ART treatment group all
significantly decreased compared with the HFD group.
Moreover, considering the critical role of skeletal muscle in
insulin-stimulated systemic glucose metabolism, skeletal
muscle glucose metabolism disorders could affect systemic
glucose homeostasis and insulin sensitivity [50, 51]. Skeletal
muscle is an important tissue for the body’s glucose uptake
and utilization and plays a major role in maintaining the
dynamic balance of blood glucose. Accordingly, we detected
IR-associated gene expression in mouse skeletal muscle and
found that ART treatment regulated the AMPK/JNK and
IRS-1/PI3K/AKT/GLUT4 signaling pathway. AMPK also
ameliorated inflammation and maintained energy homeo-
stasis by inhibiting NF-κB activity. IR induced by HFD
activated JNK, which led to decreased phosphorylation of
IRS-1 tyrosine residues and prevented the transfer of GLUT4
from the intracellular storage to the plasma membrane
through the IRS-1/PI3K/Akt signaling cascades. IRS-1/

PI3K/Akt signaling pathways are the classical pathways in
the regulation of glucose uptake andmetabolism [14, 24–29].
PI3K becomes the focus on the effects of cell growth and cell
proliferation by nutrition, especially glucose uptake and cell-
cycle regulation. AKT is involved in the signaling pathway of
glucose-stimulated insulin secretion in skeletal muscle cells
as signaling molecules in insulin secretion, the effects of
translocation of GLUT4 in skeletal muscle [52, 53]. ,e
above research shows that the AMPK/JNK and IRS-1/PI3K/
AKT/GLUT4 signaling pathway is closely implicated in
HFD-induced IR. Previous studies have suggested that in
HFD-induced hyperlipidemia mouse, the methanol extract
of the tuber of Alisma orientale can lower serum lipid levels
and prevents hepatic steatosis pathogenesis by inhibiting the
expression of hepatic lipogenic genes [7, 54]. Triterpenes
isolated from AR have the activity of promoting glucose
uptake [55]. Recent studies have also shown that alisol A-24-
acetate promotes glucose uptake via the activation of AMPK,
phosphorylation of JNK and p38 in C2C12 myotubes. [56].
Alisol B 23-acetate protects against nonalcoholic steatohe-
patitis in mice via farnesoid X receptor activation [57].
Furthermore, the NF-κB signaling pathway is obviously
suppressed in liver cells treated with alisol F and 25-
anhydroalisol F [58]. Alisol A, alisol C, alisol B 23-acetate,
alisol A-24-acetate, alisol C-23-acetate, and 16-oxo-alisolA
have been described with modulating effects of glucose
uptake [13]. So, compared to these triterpene compounds,
the ARTis characterized bymultiple triterpenes components
and may show better activity in improving the IR than a
single component, different triterpenes in AR have different
sets of gene targets [5]. So, the overall effect of all triterpenes
may be better than the pure one triterpene.

Although AR compounds have been found to improve
genes related to glucose and lipid metabolism, the regulation
of the insulin signaling pathway has not yet been system-
atically reported. To further facilitate evidence-based cellular
exploration, the IR model of C2C12 cells induced by PA was
accustomed. After the ARTC intervention, we found that
ARTC treatment promoted PA-induced glucose con-
sumption in a dose-dependent manner [39]. ,e inter-
vention of ARTreduced the expression of TNF-α and MCP-
1 levels in the IR model cells, implying the anti-inflam-
matory effect of ART. It also led to the activation of AMPK
and AKTand the inhibition of IκBα, NF-κB, JNK, and IRS-1,
ultimately promoting GLUT4 expression. In summary,
ARTC exerted a significant regulatory effect on IR-associ-
ated genes related to the AMPK/JNK and IRS-1/PI3K/AKT/
GLUT4 signaling pathway in C2C12 cells induced by PA.

5. Conclusions

,e above results showed that ART attenuated the im-
pairment of AMPK/JNK and IRS-1/PI3K/AKT/GLUT4-
mediated insulin signaling in skeletal muscles of HFD-fed
mice. ART treatment significantly ameliorated HFD-in-
duced weight gain and improved glucose tolerance in mice.
,e expression levels of proinflammatory cytokines were
markedly attenuated by ART in various in vivo models. ART
treatment markedly augmented AMPK phosphorylation
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expression in the skeletal muscle of mice. Furthermore, the
intervention of ARTC reduced the expression levels of TNF-
α and MCP-1 in IR model cells, leading to the activation of
AMPK and AKT/PI3K and the inhibition of IκBα, NF-κB,
JNK, and IRS-1, ultimately promoting GLUT4 expression.
In conclusion, our results demonstrated that ARTmarkedly
ameliorated IR in vivo and in vitro. ART exerted a notable
alleviated IR effect by regulating IR-associated gene ex-
pression, and triterpenes were the material basis for the
alleviation of IR activity by AR.
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