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+e secondary metabolites and biological activities of Aspergillus ruber and Aspergillus flavus were comprehensively reported.
About 70 compounds were isolated from both species that belong to different classes using conventional and advanced
chromatographic techniques and unambiguously elucidated employing one- and two-dimensional nuclear magnetic resonance
(1D and 2D NMR) and high resolution mass spectrometry (HRMS). Some of them displayed promising antiviral, anti-in-
flammatory, and antioxidant activities. In silico studies were conducted on human cyclin-dependent kinase 2 (CDK-2), human
DNA topoisomerase II (TOP-2), and matrix metalloprotinase 13 (MMP-13) in an effort to explore the cytotoxic potential of the
diverse compounds obtained from both Aspergillus species. 1,6,8-Trihydroxy-4-benzoyloxy-3-methylanthraquinone (23)
revealed the most firm fitting with the active pockets of CDK-2 and MMP-13; meanwhile, variecolorin H alkaloid (14) showed
the highest fitting within TOP-2 with ∆G equals to −36.51 kcal/mole. +us, fungal metabolites could offer new drug entities for
combating cancer. Relevant data about both Aspergillus species up to August 2020 were gathered from various databases
comprising Scifinder (https://scifinder.cas.org/scifinder/login) for secondary metabolite-related studies; meanwhile, for bi-
ology-related articles, data were collected from both PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) andWeb of Knowledge
(http://www.webofknowledge.com) as well.

1. Introduction

Fungi have been recently considered as a promising
source of secondary metabolites that elicited a wide range
of beneficial values both on the therapeutic and com-
mercial scales. Recently, fungal metabolites have gained a
great attention as an everlasting source of precious
compounds that can serve as novel entities for various
therapeutic approaches [1]. +ese metabolites belong to a
vast array of chemical classes represented mainly by
terpenoids, alkaloids, peptides, lactones, and steroids.
Meanwhile, to these metabolites, various biological

activities were assigned as anticancer, antiviral, antibac-
terial, and anti-inflammatory activities [2]. Fungi possess
the advantage that they can be effectively cultured giving a
high rate of reproduction with concomitant production of
active metabolites [3]. Besides, many fungal metabolites
showed suitable oral-bioavailability and appropriate
physico-chemical characters being safer than synthetic
moieties that are critical in the formulation of different
dosage forms [1, 4].

Although, a large number of pharmaceutical products
such as penicillins, griseofulvin, fucidin and ergot con-
taining pharmaceutical products are of fungal origin but
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studies performed on fungal metabolites are still quite
small [5, 6].

Fungal metabolites are usually isolated from the fungal
culture medium undergoing fermentation followed by its
extraction employing various solvents and its subsequent
evaporation under vacuum at 40°C. +e obtained extract is
subjected to different conventional and advanced chro-
matographic techniques for the isolation of metabolites [7].
Meanwhile, the isolated fungal metabolites are structurally
elucidated using 1D and 2DNMR (one- and two-dimensional
nuclear magnetic resonance) and MS (mass spectrometry).
+e absolute configurations were further confirmed via
Marfey’s reactions in addition to Mosher’s reaction and other
chemical structural modification procedures [8].

Genus Aspergillus is a highly popular fungus which in-
cludes many species from which many metabolites belonging
to different classes such as alkaloids, steroids, polyketides,
peptides, and terpenoids were isolated. Some of these me-
tabolites showed outstanding biological activities, particularly
anticancer and antimicrobial [9, 10]. In this review, the
secondary metabolites and biological activities of two As-
pergillus species, namely, Aspergillus ruber and Aspergillus
flavus,were comprehensively reported. Data were collected in
an effort to give a full picture about the chemistry and biology
of these two species that undoubtedly could help other re-
searchers who wish to undergo further studies on these two
reported species. +e data compiled in this review were
collected from various databases including PubMed (http://
www.ncbi.nlm.nih.gov/pubmed), Web of Knowledge (http://
www.webofknowledge.com), and SciFinder (https://scifinder.
cas.org/scifinder/login)Additionally, in silico virtual studies
were conducted on critical enzymes involved in the forma-
tion, progression, and metastasis of cancer as well, namely,
human cyclin-dependent kinase 2 (CDK-2), human DNA
topoisomerase II (TOP-2), and matrix metalloprotinase 13
(MMP-13) in an effort to explore the cytotoxic potential of
both Aspergillus species isolated compounds as future
perspectives.

2. BiologicalActivityandSecondaryMetabolites
Obtained from Aspergillus ruber

A. ruber is a fungus that is popular by possessing a sub-
stantial amount of secondary metabolites belonging to
various classes in which some of them showed promising
biological activities. Six compounds (1–6) were isolated from
A. ruber using various chromatographic techniques and then
structurally elucidated by comparing their 1D and 2D NMR
and MS with that previously reported in literature. +ese
compounds were determined to be echinulin (1), neo-
echinulin A (2), erythroglaucin (3), physcion (4), fla-
voglaucin (5), and isodihydroauroglaucin (6). +e absolute
configurations of (1) and (2) were further confirmed by
advanced Marfey’s method in which alanine was assigned to
be L-Ala. Compounds (5) and (6) were assessed for antiviral
potential versus human cytomegalovirus (HCMV) and
herpes simplex-1 virus (HSV-1). Both compounds displayed
a promising significant antiviral potential versus HSV-1
virus displaying EC50 values of 6.95 and 4.73 μM,

respectively, with moderate cytotoxic effect versus Vero cell.
On the contrary, they showed no activity versus HCMV, in
addition compound (6) revealed weak antibacterial effect
[11]. Additionally, tetrahydroauroglaucin (7) was isolated in
an abundant amount and low price from the fermentation
culture media of the marine derived fungus,A. ruber. It
showed a notable antibacterial activity [12, 13].

Besides, the cultivation ofA. ruber obtained from crinoid
on two different culture media, namely, rice solid and
soybean, resulted in the variation in the obtained secondary
metabolites as evidenced by the HPLC profiles of their
extracts. +is was followed by subsequent fractionation and
purification using plethora of chromatographic techniques
followed by characterization using various NMR and MS
techniques that resulted in the identification of different
secondary metabolites. From the soyabean extract, a new
alkaloid compound, epoxyisoechinulin A (8) and fifteen
known compounds (2, 9-22) were isolated. Meanwhile from
the solid rice culture media, compounds (17, 4, 28) in ad-
dition to compounds (4, 22-29) were identified. +e known
isolated compounds are preechinulin (9), cyclo(Trp-Ana)
(10), questinol (11), neoechinulin A (2), neochinulin E (12),
neochinulin B (13), variecolorin H (14), variecolorin J (15),
cryptoechinuline G (16), dihydroxyisoechinulin A (17), 2-
(1,1-dimethyl-2-propen1-yl)-1H-indole-3-carboxaldenhyde
(18), rubrocristin (19), neoechinulin E (20), eurotinone (21),
physcion (4), asperflavin (22), 1,6,8-trihydroxy-4-benzoy-
loxy-3-methylanthraquinone (23), 2-methyleurotinone (24),
2-hydroxydiplopterol (25), catenarin (26), 2-O-methyl-9-
dehydroxyeurotinone (27), and isodihydroauroglaucin (28).
By comparing the metabolites obtained from both culture
media, it was clearly obvious that the amount of alkaloids is
higher in soybean culture medium due to its richness with
nitrogen. Meanwhile, anthraquinone and polyketides are
more abundant in rice culture medium that is rich in carbon,
suggesting the induction of PKS (polyketide synthase)
biosynthetic pathways triggered by the culture condition.
However, testing the isolated compounds against a panel of
microorganisms, namely, Staphylococcus aureus, Vibrio
alginolyticus, Exiguobacterium aurantiacum, Vibrio cholera,
Escherichia coli, Vibrio parahaemolyticus, Salmonella, Shi-
gella castellani, Vibrio vulnificus, Bacillus cereus,Morganella
morganii, and Citrobacter freundii, unfortunately showed no
antibacterial activity against the tested strains [14–16].
Asperinines A (29) and B (30) are two new compounds
isolated from A. ruber possessing tetrahydroanthrene and
1,4-anthraquinone moiety [17].

In addition, a red pigment, namely, erythroglaucin (31),
was isolated fromA. ruber through various chromatographic
techniques, namely, thin layer chromatography and column
chromatography. Upon reaction with ferrous ions (Fe2+),
this pigment resulted in the formation of a dark blue
complex that is found to be insoluble in chloroform, ether,
methanol, water, and dimethylsulfoxide [18]. Moreover,
from the ether extract of A. ruber culture media, a yellow
pigment was isolated, purified, and characterized to be
physcion (4) that is soluble in chloroform but insoluble in
methanol. It also possess iron chelating properties as it can
react with iron forming a reddish-brown colored complex
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postulating the probability that physcion may contribute to
iron metabolism or transportation via fungal cells [19].

Additionally, three compounds that are diketopiper-
azines possessing dehydrotryptophan moieties, namely,
isoechinulins A (32), B (33), and C (34), were isolated from
A. ruber; their structures were unambiguously determined
using 13C-NMR spectral data, taking into consideration the
chemical shifts and the multiplicities as well. It is note-
worthy to mention that isoechinulin A (32) is a potent
inhibitor to the growth of silkworm larvae [20, 21]. Besides,
compounds (35-36), two new compounds possessing in-
dole moiety, were isolated from the same Aspergillus species
and also displayed a potent inhibition to silkworm larvae
growth [15, 16, 22].

Furthermore, tannase enzyme was effectively produced
in high yield from A. ruber upon culturing on solid state
fermentation medium [23]. It is noteworthy to highlight that
tannase is an enzyme that effectively catalyzes the deester-
ification of tannins to glucose and gallic acid. +is enzyme is
of great importance for plant biomass recycling and in
treatment of tannery effluents as well in addition to its
beneficial value in the production of gallic acid that is of
great pharmaceutical importance (Figure 1 displays sec-
ondary metabolites isolated from A. ruber).

3. BiologicalActivityandSecondaryMetabolites
Obtained from Aspergillus flavus

A. flavus is a well-known saprophyte and opportunistic
pathogen as well that resulted in the production of multiple
secondary metabolites [24]. A. flavus was found to be the
highest productive strain of kojic acid (37) that is highly
produced by an amount estimated by 18.61 g/L in a three-
liter batch reactor and this production is greatly enhanced,
employing the strategy of double pH. It is noteworthy to
mention that kojic acid is highly popular in pharmaceutical
and cosmetic preparation as a promising whitening agent for
the skin [25]. In addition, two new compounds, namely, 5-
acetoxy-3-hydroxy-3-methylpentanoic acid (38) and 5-
chloro-2-methoxy-N-phenylbenzamide (39), were isolated
fromA. flavus in addition to other known compounds which
are kojic acid methyl ether (40), cyclo(leucylprolyl) (41),
uracil (42), linoleic acid (43), and glycerol linoleate (44). All
the isolated compounds showed no cytotoxic effect against
(KB-3-1) that is a human cervix carcinoma cell [26].

In a study carried on culture filtrate of A. flavus, it was
found that the extract is rich in flavonoid and total phenolic
contents estimated by 158.33mg quercetin/mL and
65.77mg GAE/mL of the crude extract, respectively. +e
crude extract displayed a potent antifungal and antibac-
terial activity against many common human pathogens. It
also showed antioxidant activity manifested by its free
radical scavenging behavior towards DPPH·(stable free
diphenylpicrylhydrazyl radical) in which 700 µg/mL of the
extract scavenged 64.53% of the free radicals. Meanwhile,
2mg/mL of the crude extract effectively inhibits RBCs
hemolysis by 70% comparable to 78% inhibition elicited by
ibuprofen, a standard drug [27].

Furthermore, A. flavus is a source of amino peptidases
which have a plethora of commercial applications among
which is their utilization to enhance the functional potential
of protein products and develop flavor to cheese [28].

Moreover, cyclopiazonic acid, an indole-hydrindane-
tetramic acid that acts as a neurotoxin, was produced by
A. flavus. UHPLC triple-TOF HRMS was used to identify
several CPA-type alkaloids fromA. flavus, two of which were
new, namely, 3-hydroxy-2-oxo CPA and 11,12-dehydro
α-CPA; meanwhile eighteen compounds were identified
from it which are α-CPA (45), β-CPA (46), α-CPA imine
(47), cAATrp 2-oxo CPA (48), speradine A-D (49-52), 3-
OH-speradine A (53), speradine F (54), speradine H (55),
cyclopiamide A-F (56-61), and cyclopiamide J (62) [29].

Ustiloxin B (63), a cyclic tetrapeptide compound,
asperentin (64), and aflatrem (65), an indole diterpene, were
also isolated from A. flavus [30–32]. It is noteworthy to
mention that A. flavus is a rich source of aflatoxins mainly
aflatoxin B1 that is considered to be an aggressive hep-
atocarcinogen in experimental models in addition to trig-
gering of tumors in colon and kidneys. Aflatoxin B1 is
changed to aflatoxin M1 that is equally carcinogenic [33].
Figure 2 illustrates the secondary metabolites isolated from
Aspergillus flavus. Additionally, LC-MS analysis of the ethyl
acetate extract of A. flavus associated with the soft coral
Sarcophyton ehrenbergi led to the identification of seven
compounds, namely, asperorydine B (66), 4-methyl-5,6-
dihydro-2H-pyran-2-one (67), speradine A (53), maltor-
yzine (68), aflatoxine B1, asperorydine G (69), and asper-
orydine M (70) [34], (Figure 3).

+e biological activities of both A. ruber andA. flavus are
represented in Table 1.

4. Exploring the Cytotoxic Potential of Both
Aspergillus Species Isolated Compounds
Using Virtual Screening as
Future Perspectives

Cancer is the biggest health problem facing the healthcare
system worldwide. +e major challenge appears from its
diverse etiology, and its hazardous consequence is that it
ultimately lead to death. Althoughmany therapeutic regimes
and protocols were developed, most of these treatments are
only effective with about 40% of the case based on early
diagnosis. Another challenge merged significantly that in-
volved a dramatic exponential increase in the new cancer
cases in the last decade, especially in the developing
countries. In the Eastern Mediterranean Region (EMR), the
increase in the expected cases reaches 1.8 folds in the next
few years. +us, cancer is considered the second cause of
death in the developing countries and the fourth cause in the
EMR [35].

Nowadays, management of cancer can be achieved
mainly through different guidelines that involve surgery,
radiation, and the use of chemotherapeutic agents. Fur-
thermore, modifications of the known anticancer drugs to
overcome multidrug resistance mechanisms proved to be
inefficient in the majority of cases, and this potentiates the
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need to search for new safer lead drugs with lower side
effects. Natural resources still represent the main focus for
discovery of novel anticancer leading entities, whereas 60%

of drugs used in its management are supplied from nature.
Recently, marine sponges were proclaimed to be an excellent
source of novel, effective entities displaying potent
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Figure 1: Secondary metabolites isolated from Aspergillus ruber.
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anticancer activity. Consequently, this encourages the in-
vestigation of related molecules. In spite of displaying a
prominent activity in the experimental models, only few had
passed to the clinical trials phase. +us, there is an urgent

demand for continual search for active compounds with
neoteric nuclei [36].

+us, molecular modelling studies were performed on
crucial enzymes implicated in the formation, progression, and
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Figure 2: Secondary metabolites isolated from Aspergillus flavus.
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metastasis of cancer which are human cyclin-dependent kinase
2 (CDK-2) (PDB ID 1PXP, 2.30 Å), human DNA topoisom-
erase II (TOP-2) (PDB ID 4G0U, 2.70 Å), and matrix metal-
loprotinase 13 (MMP-13) (PDB ID 1XUD, 1.8 Å). In silico
studies were performed on the previously listed enzymes which
were downloaded from protein data bank (http://www.pdb.
org) using Discovery Studio 2.5 (Accelrys Inc., San Diego, CA,
USA), adopting C-docker protocol. Free binding energies (∆G)
were calculated as mentioned previously for the most stable
docking poses [37–39].

+e three enzymes chosen to test the probable cytotoxic
potential of the identified enzymes are human cyclin-dependent
kinase, human DNA topoisomerase II, and matrix metal-
loproteinases (MMPs). Human cyclin-dependent kinases
constitute enzyme collection that tremendously affects cell cycle
occurrence and transcription. CDK2 firmly binds to cyclin A
and E forming a complex with the latter that involved in the
G1- to S-phase transition while its complex with the former
eventually causes cell cycle progression via the S to M phase.
+erefore, CDK2 inhibition resulted in an effective cell
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Figure 3: Secondary metabolites isolated from Aspergillus flavus (continued).

Table 1: +e biological activities of both A. ruber and A. flavus.

Compound Genus Biological activity References

Flavoglaucin (5) A. ruber
Promising significant antiviral potential versus HSV-1

virus displaying EC50 value of 6.95 μM
Moderate cytotoxic effect versus Vero cell

[10]

Isodihydroauroglaucin (6) A. ruber

Promising significant antiviral potential versus HSV-1
virus displaying EC50 value of 4.73 μM

Moderate cytotoxic effect versus Vero cell
Weak antibacterial effect

[10]

Tetrahydroauroglaucin (7) A. ruber Notable antibacterial activity [11, 12]
Isoechinulin A (32) A. ruber Potent inhibition to the growth of silkworm larvae [14, 15, 21]
Compounds (35-36) A. ruber Potent inhibition to the growth of silkworm larvae [14, 15, 21]
Kojic acid (37) A. flavus Promising whitening agent for the skin [24].

Tannase enzyme A. ruber Treatment of tannery effluents
Production of gallic acid [22]

Total extract A. flavus

Potent antifungal and antibacterial activity against many
common human pathogens.

Promising antioxidant activity manifested by its free
radical scavenging behavior towards DPPH·

Effective inhibition of RBC hemolysis by 70% (at 2mg/mL of the
crude extract) comparable to 78% inhibition elicited by ibuprofen

[26]

Amino peptidases A. flavus Functional potential of protein products and develop flavor to cheese [27]
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Table 2: Free binding energies (∆G) in kcal/mol for compounds identified from A. ruber and A. flavus in human cyclin-dependent kinase 2
(CDK-2), DNA topoisomerase II (TOP-2), and matrix metalloprotinase 13 (MMP-13) active centers using C-docker protocol.

Compound CDK-2 TOP-2 MMP-13
Echinulin (1) 14.07 26.35 FD
Neoechinulin A (2) −22.96 −5.07 −26.00
Erythroglaucin (3) −37.21 −19.45 −35.68
Physcion (4) −35.63 −16.23 −32.68
Flavoglaucin (5) −21.40 −3.53 −25.23
Isodihydroauroglaucin (6) −0.82 15.03 −2.97
Tetrahydroauroglaucin (7) −8.02 8.27 −15.45
Epoxyisoechinulin A (8) −22.39 −2.13 −8.94
Preechinulin (9) −21.94 −10.72 −20.062
Cyclo(Trp-Ana) (10) −26.50 −14.94 −29.04
Questinol (11) −37.08 −19.77 −33.94
Neochinulin E (12) −17.39 −7.88 −18.84
Neochinulin B (13) −21.03 −4.82 −22.88
Variecolorin H (14) −16.99 −36.51 −24.82
Variecolorin J (15) FD 36.51 29.86
Cryptoechinuline G (16) 15.29 30.36 FD
Dihydroxyisoechinulin A (17) −25.96 −5.31 −8.262
2-(1_1-Dimethyl-2-propen1-yl)-1H-indole-3-carboxaldenhyde (18) −15.05 −5.94 −19.58
Rubrocristin (19) −36.00 −17.65 −30.94
Neoechinulin E (20) −5.90 11.03 −7.58
Eurotinone (21) −23.47 −11.828 −25.39
Asperflavin (22) −17.88 −5.264 −14.27
1,6,8-Trihydroxy-4-benzoyloxy-3-methylanthraquinone (23) −47.41 −23.38 −37.81
2-Methyleurotinone (24) −20.48 −7.72 −19.16
2-Hydroxydiplopterol (25) 94.27 80.51 FD
Catenarin (26) −5.05 −5.07 −4.66
2-O-Methyl-9-dehydroxyeurotinone (27) −18.19 −7.014 −21.30
Isodihydroauroglaucin (28) −0.82 15.02 −2.97
Asperinine A (29) FD 22.17 FD
Asperinine B (30) FD 26.36 FD
Erythroglaucin (31) −37.21 −19.45 −35.68
Isoechinulin A (32) −1.36 14.23 11.73
Isoechinulin B (33) −8.89 14.26 1.85
Isoechinulin C (34) −26.94 −3.48 −6.28
Compound (35) −20.47 −3.81 −21.91
Compound (36) −5.61 15.21 −1.61
Kojic acid (37) −16.53 −10.71 −16.37
5-Acetoxy-3-hydroxy-3-methylpentanoic acid (38) −25.67 −19.78 −29.52
5-Chloro-2-methoxy-N-phenylbenzamide (39) −28.82 −11.4486 −32.0189
Kojic acid methyl ether (40) −16.99 −10.3046 −18.7795
Cyclo(leucylprolyl) (41) −13.27 −2.68683 −18.1432
Uracil (42) −23.44 33.38 −24.07
Linoleic acid (43) −20.39 −0.25 −23.88
Glycerol linoleate (44) −21.40 1.915 −25.87
α-CPA (45) 18.63 30.26 45.24
β-CPA (46) 6.77 25.60 4.12
α-CPA imine (47) 22.87 33.67 39.92
cAATrp 2-oxo CPA (48) −10.64 2.20 −15.32
Speradine B (50) 6.99 16.18 9.94
Speradine C (51) −5.16 13.21 15.64
Speradine D (52) −4.62 13.76 16.68
3-OH-speradine A (53) 47.50 49.92 FD
Speradine F (54) 70.29 48.89 FD
Speradine H (55) 17.00 35.30 26.63
Cyclopiamide A (56) 29.32 38.30 27.17
Cyclopiamide B (57) 14.91 34.73 20.46
Cyclopiamide C (58) 17.89 32.15 23.19
Cyclopiamide D (59) 20.78 31.61 21.79
Cyclopiamide E (60) 29.65 50.31 47.67
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Table 2: Continued.

Compound CDK-2 TOP-2 MMP-13
Cyclopiamide F (61) 30.32 40.30 29.17
Cyclopiamide J (62) 36.08 50.93 FD
Ustiloxin B (63) −21.82 4.91 FD
Asperentin (64) −25.95 −7.46 −25.53
Aflatrem (65) 75.33 84.32 FD
CK8 (CDK-2 inhibitor) −39.34 ND ND
Doxorubicin (TOP-2 inhibitor) −39.99 −15.98 −16.29
PB4 (MMP-13 inhibitor) ND ND −73.00
Positive values indicate unfavorable interaction. FD, fail to dock; ND, not done; CK8, N-[4-(2,4-dimethyl-thiazol-5-yl)-pyrimidin-2-yl]-N′, N′-dimethyl-
benzene-1,4-diamine; PB4, N, N′-bis (4-fluoro-3-methylbenzyl) pyrimidine-4,6-dicarboxamid.

(a)

(b)

Figure 4: Continued.
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proliferation inhibition and consequently arrested cancer
progression [40]. However, human DNA topoisomerase II
adjusts the critical functions within the cells by causing
massive changes with respect to the shape of alteration
regarding the chromosomal DNA structure resulting in
DNA unwinding affecting cell survival [41]. Regarding
matrix metalloproteinases (MMPs), they are group of
enzymes that are able to decompose extracellular matrix of
vital components that promptly leads to cancer cell growth
and metastasis and thus their inhibition constitutes an
advanced strategy in combating cancer [42].

Data obtained from virtual screening of the identified
compounds in the active pockets of human cyclin-dependent
kinase 2 (CDK-2), humanDNA topoisomerase II (TOP-2), and
matrixmetalloprotinase 13 (MMP-13) revealed that some of the
docked compounds showed considerable binding affinities
towards the tested proteins; however, others showed weak
interactionsmanifested by the positive values of∆G.Meanwhile
1,6,8-trihydroxy-4-benzoyloxy-3-methylanthraquinone (23)
revealed the most firm fitting with the active pockets of both
CDK-2 andMMP-13 displaying free binding energies of −47.41
and −37.81kcal/mole, respectively. It showed superior binding
when compared toDoxorubicin, the potent standard anticancer
agent and to CK8 (CDK-2 inhibitor) but moderate activity
when compared to PB4 (MMP-13 inhibitor). However, var-
iecolorin H (14) showed the highest fitting score within the
active center of TOP-2 with ∆G equal to −36.51kcal/mole
exceeding that of doxorubicin that showed −15.98 kcal/mole as
free binding energy (Table 2).

+e highest fitting of 1,6,8-trihydroxy-4-benzoyloxy-3-
methylanthraquinone (23) could be explained by the virtue
of formation of multiple bonds with the amino acid residues
present at the active site represented by the formation of
three H- bonds with Leu 83 and Lys 89 at CDK-2 active
center and two H- bonds with Gly 237 and His 251 at MMP-
13 active pocket. Meanwhile, variecolorin H (14) formed two

H- bonds with Glu 522 and Lys 505 at TOP-2 active site as
revealed in Figure 4.

5. Conclusion

In this study, it was concluded that nearly about seventy
secondary metabolites were isolated from two Aspergillus
species, namely, Aspergillus ruber and Aspergillus flavus.
+ey were unambiguously elucidated employing one- and
two-dimensional nuclear magnetic resonance (1D and 2D
NMR) in addition to high resolution mass spectrometry
(HRMS). Some of them displayed promising anticancer,
antiviral, and antimicrobial activities; meanwhile, the others
displayed no activity that necessitates further investigation.
In silico studies judged by different proteins, inhibition
revealed that some of the identified compounds showed
considerable cytotoxic potential with 1,6,8-trihydroxy-4-
benzoyloxy-3-methylanthraquinone and variecolorin H
exhibited the highest activity. Further in vitro followed by in
vivo studies should be conducted to confirm the in silico
studies. +us, more highlights should be shed on the dis-
covery of new drug entities combating cancer and other
debilitating disorders derived from fungal metabolites.
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(c)

Figure 4: 2D and 3D binding mode of 1,6,8-trihydroxy-4-benzoyloxy-3-methylanthraquinone (23) in the active center of human cyclin-de-
pendent kinase 2 (CDK-2) (a), variecolorin H (14) in the active center of DNA topoisomerase II (TOP-2) (b), and 1,6,8-trihydroxy-4-benzoyloxy-3
methylanthraquinone (23) in the active center of matrix metalloprotinase 13 (MMP-13) (c) active centers using C-docker protocol.
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