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Xiaoxianxiong Tang (XXXT) is a well-known traditional Chinese medicine formula. Evidence is emerging supporting the benefits
of XXXT in ameliorating therapy for non-small cell lung cancer (NSCLC). .e purpose of this study aimed to explore the effects
and mechanisms of XXXT through network pharmacological analysis and biological validation. TCMSP database was used to
identify potentially active compounds in XXXTwith absorption, distribution, metabolism, excretion screening, and their potential
targets. .e disease targets related to NSCLC were predicted by searching for .erapeutic Target database, GeneCards database,
DrugBank database, and DisGeNETdatabase. Of the 4385 NSCLC-related targets, 156 targets were also the targets of compounds
present in XXXT. Subsequently, GO function and KEGG pathway enrichment and PPI network analyses revealed that, of the 95
targets and 20 pathways influenced by 20 ingredients in XXXT, 20 targets were associated with patient survival, and XXXTcould
exert an inhibitory action on the PI3K-AKT signaling pathway. Moreover, XXXT restrained the proliferation of A549 and
H460 cells in a concentration-dependent manner and suppressed the mRNA and protein levels of key targets CCNA2, FOSL2, and
BIRC5 closely linked to the PI3K-AKTpathway. Hence, XXXT has the potential to improve therapy for NSCLC by targeting the
PI3K-AKT signaling pathway.

1. Introduction

Lung cancer is the major cause of cancer-related deaths all
over the world, which lies behind almost one-quarter of all
cancer deaths [1, 2]. Non-small cell lung cancer (NSCLC) is
the main subtype of lung cancer, and its proportion is ap-
proximately 80% in all lung cancer cases. .e propensity for
recurrence and distant metastasis of NSCLC leads to poor
prognosis [3]. It is worth noting that recurrence and me-
tastasis also occur following target therapy and recent im-
munotherapy [4, 5]. Moreover, some conventional therapies
are accompanied by serious side effects, thus reducing the
life quality of patients [6]. .erefore, it is necessary to ex-
plore novel drugs for the treatment of NSCLC.

TCM has been employed for fighting cancer for
thousands of years [7, 8]. Xiaoxianxiong Tang (XXXT) is a
prescription that was first recorded in the Treatise on
Exogenous Febrile Disease (Shanghan Lun) in the Eastern
Han Dynasty 1700 years ago. XXXT is composed of 3
herbs, including Coptidis Rhizoma (Huanglain in Chi-
nese), Arum Ternatum %unb (Banxia in Chinese), and
Trichosanthes Kirilowii Maxim (Gualou in Chinese).
Traditionally, XXXT was used to dissipate phlegm and
reduce lumps. Recently, it has been reported that XXXTor
its active ingredients exert antiproliferative effects on a
variety of tumor cells [9–14]. However, the active com-
ponents of XXXT and their molecular mechanisms on
NSCLC are yet to be determined.
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In order to understand the molecular mechanisms of
XXXT in the anticancer action in NSCLS, we used network
pharmacology to identify the active components present in
XXXT and their potential targets. By interrogating the
disease targets related to NSCLC, a pool of common targets
was revealed and validated experimentally. .e overall
structure flowchart is shown in Figure 1.

2. Materials and Methods

2.1. Predication of Potential Targets of XXXT. .e bioactive
compositions in XXXT were obtained from the Traditional
Chinese Medicine System Pharmacology Database (TCMSP,
https://tcmspw.com/index.php) [15], which captures the
associations between herbs, targets, and diseases. Pharma-
cokinetic properties were known as the key parameters
affecting biological activity, including absorption, distribu-
tion, metabolism, and excretion. Drug-likeness (DL≥ 0.18)
and oral availability (OB≥ 30%) were applied to filter active
compounds in XXXT, which were used to establish a da-
tabase of target genes. .e gene names were standardized
and annotated through UniProtKB database (https://www.
uniprot.org/) [16].

2.2. Screening of the Putative Targets of NSCLC and PPI
Network Construction. .e disease targets related to
NSCLC were predicted by integrating multisource data-
bases, containing .erapeutic Target Database (TTD,
https://db.idrblab.org/ttd/) [17], GeneCards database
(https://www.genecards.org/) [18], DrugBank database
(https://go.drugbank.com/) [19], and DisGeNETdatabase
(http://www.disgenet.org/) [20]. .e bioinformatics
server (http://www.bioinformatics.com.cn/) was used to
generate Venn diagrams of drug and disease targets, and
the targets were identified as potential therapeutic targets
of XXXT against NSCLC. .e protein-protein interaction
(PPI) network was established by searching the STRING
Database (https://string-db.org/) [21]. All PPI data were
“Homo sapiens” with confidence score ≥0.9, and separate
nodes were hidden in the network. .e obtained PPI
information was imported into the Cytoscape software
(https://cytoscape.org/).

2.3. GeneOntology andKEGGPathway Enrichment Analyses.
DAVID (https://david.ncifcrf.gov/) [22], an online bio-
informatics database, was widely applied to obtain the bi-
ological processes, cellular components, molecular
functions, and KEGG pathways of drug and disease targets.
GO and pathway terms were screened with a false discovery
rate (FDR) <0.05 and ranked according to their count, and
the top 20 GO/KEGG enrichment was further analyzed.

2.4. Network Construction and Topology Analysis. .e
Cytoscape version 3.7.2 was applied to build the drug-dis-
ease-target network. In detail, the XXXT chemical ingre-
dients and putative therapeutic targets against NSCLC were
imported into the Cytoscape software, and the size of nodes

was arranged according to the ascending order of the
number of degree values. .e Cytoscape was employed to
map the network relationship of bioactive compounds,
potential targets, and KEGG pathways for XXXT treatment
of NSCLC. Topological properties of the network, including
closeness, degree, and betweenness were calculated using the
network analyzer tool within Cytoscape 3.7.2 and also were
used to seek the main active ingredients and related targets
of XXXT against NSCLC.

2.5. Screening of Core Targets of XXXT against NSCLC.
.e Gene Expression Profiling Interactive Analysis (GEPIA,
http://gepia.cancer-pku.cn/detail.php) [23] is an interactive
RNA-Seq database for gene analysis and cancer type anal-
ysis. .e targets in compound-target-pathway network were
selected in the GEPIA server by “overall survival,” and the
cutoff values were chosen by “median” group. P< 0.05 and P
(HR)< 0.05 were set as the significance threshold in “LUAD”
datasets to filter core targets of XXXT against NSCLC.

2.6.Cell LinesandDrugs. .e lung cancer cell lines A549 and
H460 were obtained from the National Collection of Au-
thenticated Cell Cultures (Shanghai, China) and grown in a
humidified incubator with 5% CO2 at 37°C. All cells were
cultured in RPMI 1640 medium supplemented with 10% v/v
fetal bovine serum (AusGeneX) and penicillin-streptomycin
antibiotic (100 ug/mL). XXXT is composed of Huanglain
(Coptidis Rhizoma), Banxia (Arum Ternatum .unb.), and
Gualou (Trichosanthes Kirilowii Maxim). .e above herbs
were purchased from the Huayu Pharmacy Company
(Shanghai, China) and XXXT stock was performed as de-
scribed previously [24]. .e vacuum-dried XXXT powder
was dissolved in DMSO as stock with a concentration of
500mg/mL and kept at 4 °C.

2.7. Cell Counting Kit-8 Assay Assessed Cell Proliferation.
.e Cell Counting Kit-8 (CCK8) assay (Sangon Biotech,
Shanghai, China) was applied to assess cell viability followed
by the manufacturer’s instructions. A549 and H460 cells
were cultured in a 96-well plate at a density of 2×103 cells/
well with RPMI-1640 medium with various concentrations
(0.0625mg/ml, 0.125mg/ml, 0.25mg/ml, 0.5mg/ml, 1mg/
ml) of XXXTfor 72 h. CCK-8 solution were added directly to
the 96-well plate (10 ul/well) and kept in the incubator for
2 h. Optical density (OD) 450 values were measured using a
spectrophotometer (.ermo Fisher Scientific, Vantaa, Fin-
land). Inhibition ratio (%) � (1−ODsample/ODcontrol) × 100%.
.e IC50 value was calculated by using the sigmoidal dose-
response function in GraphPad Prism 8.0 software.

2.8. Real-Time qPCR Array. RT-qPCR array was performed
to analyze gene expression profiles in the light of the
manufacturer’s instructions (Wcgene Biotech, Shanghai,
China). Total RNA was obtained from A549 and H460 cells
using trizol reagent (Sangon, Shanghai, China). Reverse
transcription reaction into cDNA was performed using
miRNA First-Strand cDNA Synthesis kit (Invitrogen;
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Figure 1: .e overall structure flowchart of the study based on pharmacological analysis and experimental validation for deciphering the
mechanism of XXXT on NSCLC.
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.ermo Fisher Scientific Inc.). SYBR Green I Master Mix kit
(Invitrogen; .ermo Fisher Scientific Inc.) was used to
perform RT-qPCR on the thermocycler (Applied Biosystems
7300; .ermo Fisher Scientific Inc.). .e mRNA expression
levels were measured by the 2-ΔΔCq calculation method,
and β-actin was utilized as an internal control. All primer
sets are shown in the supplementary file (Supplementary
Table 1).

2.9. Western Blot. A549 and H460cells were treated with XXXT
at IC50 for 72h. Total proteinwas extracted from the cells using ice-
cold RIPA lysis buffer, and the bicinchoninic acid protein (BCA)
assay kit (.ermoFisher, IL, USA) was used to quantitate protein
concentration. Primary antibodies against FOSL2 (cat. #: 15832-1-
AP), α-tubulin (cat. #: 11224-1-AP), and GAPDH (cat. #: 10494-1-
AP) were from Proteintech, and CCNA2 (cat. #: 4656) was from
Cell Signaling Technology.

2.10. Statistical Analysis. GraphPad Prism 8.0 software was
used for statistical analyses and graphs. .e data in the in
vitro were shown as means± standard deviation (SD). One-
way ANOVA followed by Bonferroni test was performed to
investigate the differences between groups. In all compari-
sons, differences were considered statistically significant
when P< 0.05.

3. Results

3.1.ActiveCompoundsandTarget ScreeningandPPINetworks
Construction. .rough retrieving the TCMSP database and
literature, a total of 72 effective components of XXXT were
obtained, including 48 species of Coptidis Rhizoma, 13
species of Arum Ternatum %unb, and 11 species of Tri-
chosanthes Kirilowii Maxim. After ADME screening with the
filtering criteria of OB ≥30% and DL ≥0.18, 33 candidate
ingredients were considered as active components of XXXT
(Table 1) and 210 putative targets were predicted (Supple-
mentary Table 2). .e disease targets related to NSCLC were
predicted by searching for GeneCards, DrugBank, TTD, and
DisGeNET databases, and 4385 targets were obtained after
removing duplicated targets (Supplementary Table 3). .e
210 targets of XXXT were mapped to 4385 disease targets
related to NSCLC. .e 156 common targets related to
NSCLC and XXXT were obtained and treated as potential
targets of XXXTagainst NSCLC (Figure 2(a), Supplementary
Table 4). .e protein-protein interaction was constructed by
importing 156 common targets related to NSCLC and
identified as XXXT into the STRING database. .e Cyto-
scape was used to carry out the visual composition. .e
network includes 137 round nodes and 573 edges, which
represented the interaction between potential protein targets
and function (Figure 2(b)).

3.2.GOandKEGGPathwayEnrichmentAnalyses. .e above
156 targets were imported into the DAVID online server
for GO and KEGG pathway analysis. In molecular function,
enrichment information includes protein binding, enzyme

binding, and chromatin binding (Figure 3(a)). Only 10
terms were selected with FDR <0.05 in cellular components
and the GO terms ranked according to their counts, in-
cluding the nucleus, cytoplasm, cytosol, and nucleoplasm
(Figure 3(b)). In biological processes, the targets were
enriched in the inflammatory response, apoptotic process,
response to hypoxia, angiogenesis, and cell proliferation
(Figure 3(c)). KEGG pathway enrichment information
indicated that the 156 common targets contributed to 60
pathways (FDR <0.05). Specifically, these pathways were
mainly correlated with cancer, such as pathways in cancer,
PI3K-AKT, MAPK, HIF-1, and TNF signaling pathway. As
shown in Figure 3(d), the top 20 pathways ranked by count
were closely related to the etiopathogenesis of NSCLC.

3.3. Topological Network Construction of XXXT against
NSCLC. .e drug-disease-target network was constructed
which contained 344 edges and 188 nodes (Figure 4). .e
network revealed the relationship between 32 active in-
gredients and related 156 common targets (HL10, one of 33
active ingredients, was eliminated due to lack of a common
target with NSCLC). An active compound could target
different gene targets, and a gene target could be relevant to
different active compounds, reflecting the multicomponent
and multitarget characteristics of XXXT. .e Cytoscape
version 3.7.2 was used to establish a drug-target-pathway
network of XXXT against NSCLC based on the KEGG
pathway enrichment analyses. .e network diagram
revealed that the 20 active ingredients in XXXT acted on 95
targets and regulated 20 pathways to treat NSCLC. And, the
interaction network comprised 135 nodes and 668 edges
(Figure 5).

3.4. Core Target Screening. .e core targets of XXXTagainst
NSCLC were acquired through retrieving the GEPIA da-
tabase. Specifically, 95 targets were searched in the GEPIA
database, and 20 core targets were filtered through “overall
survival” (Table 2). We drew the herb-compound-target-
pathway relationship diagram to picture the mechanism of
XXXT against NSCLC (Figure 6). .e 20 compounds in
XXXT regulate 19 pathways through 20 core targets, in-
cluding PTGS2, PIK3CG, RELA, BCL2, PRKCB, CYCS,
HIF1A, NFATC1, IL2, BIRC5, SERPINE1, FOSL1, EGLN1,
CHEK1, MMP3, SPP1, CD40LG, HK2, FOSL2, and CCNA2.

3.5. %e Cytotoxic Effects of XXXT on Lung Cancer Cells.
To verify the findings from the network pharmacological
analysis, we investigated the cytotoxicity of XXXT to de-
crease the survival of the lung cancer cell lines. Various
concentrations of XXXT (0-1mg/ml) were used to treat two
NSCLC cancer cell lines for 72 h, and cell viability was
detected by CCK8 assay. As shown in Figure 7(a), XXXT
treatment significantly reduced the cell viability of A549 and
H460 cells compared with control, and the decrease in cell
viability was dependent on the concentrations of XXXT..e
IC50 values were about 408 ug/ml in H460 cells, and 188 ug/
ml in A549 cells.
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Table 1: Compounds information sheet.

Herb Symbol MolID Compounds Structure OB DL

Coptidis rhizoma

HL1 MOL001458 Coptisine
O

O

O

O

N
30.67 0.86

HL2 MOL002894 Berberrubine
O

O

OH

O

N
35.74 0.73

HL3 MOL002904 Berlambine
O

O

O

O

ON

36.68 0.82

HL4 MOL001454 Berberine
O

NO

O

O

36.86 0.78

HL5 MOL002897 Epiberberine O

O

O

N

O

43.09 0.78

HL6 MOL002668 Worenine
O

O

O

O
N

45.83 0.87

HL7 MOL000098 Quercetin
O

O O

O

O

H

H

H

O H

H
O

46.43 0.28

HL8 MOL002903 (R)-canadine
O

O

O

O

N

55.37 0.77

HL9 MOL000622 Magnograndiolide
H

H

O
H

H

H
O

O

H

O

63.71 0.19

HL10 MOL000785 Palmatine

O

O

O

O

N+

64.60 0.65

HL11 MOL002907 Corchoroside- A_qt O

O OH

OH

OHO

104.95 0.78

Arum ternatum thunb

BX1 MOL001755 24-Ethylcholest-4-en-3-one
O

H

H

H

H

36.08 0.76

BX2 MOL002670 Cavidine
O

O

O

O

N 35.64 0.81

BX3 MOL002714 Baicalein
H

H

O

O

O O
H

O

33.52 0.21

BX4 MOL002776 Baicalin
H

H

H
H

H

H

O

O O

OO

O
O

O

OO

O

40.12 0.75

BX5 MOL000358 Beta-sitosterol H

HO

36.91 0.75

BX6 MOL000449 Stigmasterol
H

H
H

H

H

H

O

43.83 0.76

BX7 MOL005030 Gondoic acid
O

OH
H

H
30.70 0.20

BX8 MOL000519 Coniferin
H

O

O

O

H
O

31.11 0.32

BX9 MOL006936 10,13-Eicosadienoic O
OH

39.99 0.20

BX10 MOL006957 (3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone

H
O

O

O H

H

H
H 46.89 0.27

BX11 MOL003578 Cycloartenol
OH

38.69 0.78

BX12 MOL006967 Beta-D-Ribofuranoside, xanthine-9

O

O

O

O

O

O

N

NN

N

H H

H

H

H

44.72 0.21
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Table 1: Continued.

Herb Symbol MolID Compounds Structure OB DL

Trichosanthes kirilowii maxim

GL1 MOL007171 5-Dehydrokarounidiol

HO

OH

30.23 0.77

GL2 MOL002881 Diosmetin

H
O

O

O

O

H

O

H
O 31.14 0.27

GL3 MOL007180 Vitamin-e
HN

N

O

O

O

H

H

SO
ON

N

32.29 0.70

GL4 MOL005530 Hydroxygenkwanin
O

O

O O

O O H

H

H

36.47 0.27

GL5 MOL007172 7-Oxo-dihydrokaro-unidiol

HO

O OH

36.85 0.75

GL6 MOL006756 Schottenol

O
H

H

H

H

H 37.42 0.75

GL7 MOL001494 Mandenol

H

H H

H

O

O

42.00 0.19

GL8 MOL004355 Spinasterol
H

H

H

H

O

H

H

H

42.98 0.76

GL9 MOL007165 10α-Cucurbita-5,24-diene-3β-ol
OH

44.02 0.74

GL10 MOL007179 Linolenic acid ethyl ester

O

O

H

H H

H

H

H 46.10 0.20

54 156 4229

XXXT NSCLC

(a)

Figure 2: Continued.
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Figure 2: Potential therapeutic targets of XXXTagainst NSCLC and PPI network construction. (a).e Venn diagram of XXXTand NSCLC
intersection targets. (b) PPI network of common targets between XXXT and NSCLC. .e greater the degree, the bigger the node.
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Figure 3: Continued.
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3.6. %e Verification of XXXTon mRNA and Protein Levels of
CoreTargets. To evaluate the effects of XXXTon the mRNA
levels of 20 core targets identified from network phar-
macology, RT-qPCR array was used after 72 h incubation
with IC50 dose. XXXT significantly inhibited mRNA ex-
pression of CCNA2 and FOSL2 in both H460 and
A549 cells. Higher mRNA expression levels of HIF1A,
NFATC1, PRKCB, RELA, CYCS, SERPINE1, and FOSL1,
and lower mRNA expression levels of CCNA2 and FOSL2
were observed in H460 cells. XXXT treatment tended to
decrease the levels of BIRC5 mRNA in H460 cells, though
there was no statistically significant difference (Supple-
mentary Table 5). In A549 cells, the mRNA levels of MMP3,
RELA, and SERPINE1were upregulated, and the mRNA
level of BIRC5, CCNA2, CYCS, FOSL2, NFATC1, and
SPP1 was downregulated (Supplementary Table 6). We
further detected the protein expressions of CCNA2 and
FOSL2, and XXXT also significantly downregulated the
protein levels of CCNA2 and FOSL2 in H460 and
A549 cells (Figures 7(b)–7(e)).

4. Discussion

Due to the complexity and difficulty, the mechanism of the
researches on Traditional Chinese Medicine formula has
been limited. .e network pharmacology is a useful bi-
ological information tool for method to analyze the un-
derlying active compounds and give clues for potential
mechanism of Traditional Chinese Medicine formula.
Firstly, through ADME screening, 33 active compounds
were identified from the three herbs in the XXXT, 11 in

Coptidis Rhizoma, 12 in Arum Ternatum%unb, and 10 in
Trichosanthes Kirilowii Maxim. Previous studies have
confirmed that the most of the 33 compounds of XXXT
could induce apoptosis and block the cell cycle in several
cancer cells. Berberine (HL4, MOL001454, OB � 36.86%,
DL � 0.78) is a small molecule derived from Coptidis
rhizome, and Berberine could induce mitochondrial ap-
optosis and G0/G1 cell cycle arrest mediated by the PI3K-
AKTsignaling pathway in the thyroid carcinoma cell lines
[25]. Berberine increased the expression of caspase-3 and
impaired mitochondrial membrane potential to induce
cell apoptosis in human gastric cancer cells [26]. Another
study has revealed that Berberine induced cell cycle arrest
and inhibited migration and invasion of lung cancer cells
[27]. Baicalein (BX3, MOL002714, OB � 33.52%,
DL � 0.21), a flavone present in another ingredient from
Arum Ternatum %unb induced mitochondrial-depen-
dent apoptosis, and blocked S-phase cell cycle in human
cisplatin-resistant pancreatic carcinoma cell line CAPAN-
2 [28]. Baicalin was known as the important component in
several herbs, unleashing significant antiproliferative
action in a range of cancer cell lines by modulating ap-
optosis and cell cycle [29]. .e natural flavonoid dio-
smetin (GL2, MOL002881, OB � 31.14%, DL � 0.27)
present in Trichosanthes Kirilowii Maxim exerts anti-
cancer effects through apoptosis induction and G2/M cell
cycle arrest in HepG2 cells [30]. Diosmetin also has
proapoptotic activities against breast cancer cells via
activating the mitochondria-mediated apoptotic pathway
and inducing cell cycle arrest [31]. As mentioned above,
33 potential bioactive compounds in XXXT against
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Figure 3: GO and KEGG enrichment analysis of common target for XXXTagainst NSCLC.Molecular function (a), cellular components (b),
and biological process (c) are shown in bubble plots. (d) Top 20 pathway enrichment of XXXT associate with NSCLC. .e color scales
indicate different thresholds of −log10 p values, and the sizes of the dots represent the gene count of each term.
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NSCLC were screened out by TCMSP-based systems
pharmacology.

Based on the above active compounds in XXXT, the
further analysis of related core targets was conducted and
confirmed. As XXXT has been reported to be effective on
lung cancer, the potential targets of XXXT based on the
above active compounds were overlapped with NSCLC-
related targets. .en, combined with the KEGG and
survival analysis results, 20 of candidate targets were
selected and proceed to be proved. It was confirmed that
XXXT could inhibit the mRNA and protein levels of
CCNA2 and FOSL2 in vitro. CCNA2 is a regulator of the
G1/S and G2/M transition, which targeted by coniferin
(BX8). CCNA2 is highly expressed in several cancer cells
and contributes to epithelial-mesenchymal transition
through dual activation of WNT and PLC pathways
[32, 33]. FOSL2 targeted by baicalein, is a regulator of cell
proliferation, differentiation, and transformation. Several
studies have reported that the phosphorylation and
upregulation of FOSL2 enhance tumor growth and in-
vasion in A549 cells through miR-638 [34–37]. In

A549 cells, the mRNA level of BIRC5 was downregulated,
and XXXT treatment tended to decrease the levels of
BIRC5 mRNA in H460 cells, though there was no sta-
tistically significant difference. BIRC5, an inhibitor of the
apoptotic gene family, was targeted by quercetin (HL7).
.e recent study noted that the high-expression BIRC5
was correlated with low overall survival in lung adeno-
carcinoma patients, and the overexpression of BIRC5 is a
risk factor for a worse prognosis [38]. Apoptosis repeat
protein domain was inhabited by BIRC5 to militate
against apoptosis inhibition [39], and siBIRC5 could
overcome the antiapoptosis protection of cisplatin-re-
sistant cells [40]. As a necessary protein of CPC, BIRC5 is
also required for the mitotic exit and plays a major role in
the cell cycle [41].

Finally, the potential mechanisms of XXXT on NSCLC
treatment were mapped by the herb-compound-target-
pathway relationship diagram. Network pharmacological
analysis uncovered that the 20 compounds XXXTameliorate
NSCLC therapy by regulating 19 pathways, such as PI3K-
AKT, TNF, and MAPK signaling pathways. Further
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Table 2: Information on 20 core targets.

Target name Betweenness centrality Closeness centrality Degree Overall survival
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Table 2: Continued.

Target name Betweenness centrality Closeness centrality Degree Overall survival

PIK3CG 0.02201518 0.49264706 19

RELA 0.01545686 0.48550725 18

BCL2 0.00792956 0.46527778 12

PRKCB 0.00414970 0.44966443 9

CYCS 0.00182322 0.39181287 7
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Table 2: Continued.

Target name Betweenness centrality Closeness centrality Degree Overall survival

HIF1A 0.00161744 0.4379085 5

NFATC1 0.00092885 0.36216216 5

IL2 0.00106660 0.42675159 4

BIRC5 0.00043119 0.42675159 3

SERPINE1 0.00046992 0.41358025 3
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Table 2: Continued.

Target name Betweenness centrality Closeness centrality Degree Overall survival

FOSL1 0.00031530 0.33333333 3

EGLN1 0.00036757 0.36813187 3

CHEK1 0.00063767 0.31018519 2

MMP3 0.00016505 0.40606061 2

SPP1 0.00019974 0.41104294 2
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experiments in vitro revealed that the potential targets of
XXXT for NSCLC treatment are closely related to the PI3K-
AKT pathway. As a master regulator, PI3K-AKT signaling
pathway influences cancer cell proliferation, metastasis, and
metabolism [42–44]. .e suppression of PI3K-AKT sig-
naling pathway is an attractive strategy for NSCLC man-
agement via promoting apoptosis and inhibiting cell growth
and invasion [45]. Apoptosis and cell cycle are two vital

biological processes, by which the PI3K signaling pathway
regulates tumor cell proliferation and viability [46–48].
Apoptosis and cell cycle arrest can be induced by several
physiological regulations and chemical stimulation, the
induction of which is recognized as effective steps for the
treatment of cancer [49–51]. .erefore, we suggest that
XXXT can inhibit the PI3K-AKT signaling pathway in
NSCLC by targeting CCNA2, FOSL2, and BIRC5 (Figure 8).

Table 2: Continued.

Target name Betweenness centrality Closeness centrality Degree Overall survival

CD40LG 0.00022360 0.41104294 2

HK2 0.00019953 0.41104294 2

FOSL2 0.00009376 0.31162791 2

CCNA2 0.00048920 0.32524272 2
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5. Conclusion

For the study, network pharmacology was employed to
investigate the drug-component-target-disease interac-
tion of XXXT in the treatment of NSCLC. XXXT may
induce lung cancer cell apoptosis and cell cycle arrest by

regulating the PI3K-AKT signaling pathway. .e results
from this study provide insight into anticancer action and
potential mechanism of XXXTagainst NSCLC and lay the
foundation for further development of XXXTor its active
ingredients as the complementary therapy for NSCLC
treatment.
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Figure 7: .e cytotoxic effects of XXXTon lung cancer cells, RT-qPCR array, and western blot for core targets. (a) .e inhibition rates of
H460 and A549 cells treated with XXXT (0–1000 μg/mL) for 72 h were determined using CCK8 assay. A549 or H460 treated with XXXTat
IC50 for 72 h were harvested for analysis (b–e). (b) Heatmap of 20 core targets mRNA expression in the control group and XXXT treatment
group. .e significant difference of core targets in A549 and H460 cells (c) was observed, including expression of CCNA2 and FOSL2
mRNA. .e protein levels of CCNA2 and FOSL2 were determined by western blot (d). Statistical analysis of CCNA2 and FOSL2 proteins
expression intensity (e). .e above data are presented as mean± SD for three independent experiments. NS, not significant, ∗P< 0.05 and
∗∗P< 0.01 showed significant difference vs. the control group.
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