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Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese
formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental
evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However,
precise mechanisms underlying the neuropharmacological e�ects of CP remain unclear. e study, therefore, aimed at deci-
phering the molecular basis of neuroprotective e�ects of CP phytochemicals against the pathology of dementia disorders such as
Alzheimer’s (AD) and Parkinson’s (PD) disease. e study exploited bioinformatics tools and resources, such as Cytoscape,
DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of
Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis
was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution,
metabolism, and excretion) analysis predicted a total of �ve druglike phytochemicals from CP constituents, namely, scopoletin, 4-
hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with
some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase
(NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated
receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth,
survival, and activity. Docking simulation further con�rmed interaction patterns and binding a�nity of selected CP compounds
with those molecular targets. Notably, scopoletin showed the highest binding a�nity with PTGS1, NOS3, PPARG, ACHE,
MAOA,MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1.e �ndings
indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP
which might account for its memory enhancement and neuroprotective e�ects and that target proteins such as PTGS1, PTGS2,
NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.
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1. Introduction

Dementia is a leading cause of disability and dependency
among the elderly. Dementia patients may have difficulty
remembering, thinking critically, behaving normally, and
even performing normal daily activities. Neurodegenerative
diseases (NDD) such as Alzheimer’s (AD) and Parkinson’s
(PD) disease account for 60–80% of all dementia cases. ,e
pathobiology of NDD is still unclear, however, pathogenic
events such as oxidative stress, inflammation, apoptosis, and
mitochondrial dysfunction play a critical role in the onset
and progression of NDD [1]. Targeting cellular pathways
that are associated with these pathological phenomena
constitutes a prospective therapeutic strategy in the man-
agement of NDD. Having complex pathobiology, NDD can
be adequately treated through a multitarget/multidrug
therapeutic protocol [2]. With diverse phytochemical pro-
files, medicinal herbs are the native multidrug formulation
and are utilized in many traditional therapies with no/
minimal side effects [2].

Convolvulus pluricaulis Choisy (synonym, Convolvulus
prostratus Forssk, belongs to Convolvulaceae) is a perennial
herb native to the Indian subcontinent. Commonly termed
as Shankhpushpi in Ayurveda, C. pluricaulis (CP) has been
indicated for various human ailments, including those af-
fecting the central nervous system, namely, anxiety, de-
pression, epilepsy, and dementia [3, 4]. ,e pharmacological
attributes owing to the health benefits of CP include anti-
inflammatory, antioxidant, and immunomodulatory prop-
erties [5]. CP has been endowed with several potential
phytochemicals, namely, flavonoids (kaempferol and
quercetin), coumarins (scopoletin and ayapanin), phenolic
acid (hydroxycinnamic acid), and phytosterol (β-sitosterol)
that are related to its pharmacological effects [6].

A growing body of preclinical evidence has emerged
supporting the ethnopharmacological uses of CP for neu-
rological problems [7]. In healthy rats, CP extract can
promote memory capacity by modulating synaptic plasticity
in hippocampus [8]. ,e nootropic effect of CP was also
confirmed by other studies [9, 10]. In various experimental
models, CP can protect against neuronal injury and ame-
liorate memory deficits [11–15]. CP treatment prevented
protein and mRNA expressions of tau and amyloid pre-
cursor protein (APP) in scopolamine-induced rat brain [16].
In drosophila model of AD, CP can rescue neurons from
tau-induced neurotoxicity by attenuating oxidative stress
and restoring the depleted AChE activity [17]. Scopoletin, a
coumarin of CP, attenuated oxidative stress-mediated loss of
dopaminergic neurons and increased the efficacy of dopa-
mine in PDmodel [18]. Scopoletin also ameliorated amnesia
in scopolamine-induced animals [19]. In rat model of ce-
rebral ischemic reperfusion injury, CP improved brain
pathology by antioxidant mechanism [20]. Polyherbal for-
mulation containing CP can improve streptozotocin-in-
duced memory deficits in rats by downregulating the mRNA
expression of mitochondria-targeted cytochromes [21]. CP
also improved the disease outcomes of diabetes, which are
often complicated by cognitive deficits [22]. In addition, CP

improved anxiety, depression, and epileptic seizure
[9, 23–27]. CP can also help withstand stress conditions in
experimental animals [28, 29].

,e neuropharmacological effects highlighted above are
mostly cumulative effects of CP phytochemicals. ,e
existing literature, however, can hardly explain precise
mechanisms that underlie the neuroactive functions of CP.
Understanding the underlying molecular mechanisms
through an experimental approach requires intensive en-
deavors. Alternatively, network pharmacology is a prom-
ising bioinformatics tool that can predict the active
phytochemicals and the molecular targets that are associated
with the pharmacological actions of plant extracts [30, 31].
,e results obtained from Network Pharmacology could
lead to further precise research in vivo. In this study, a
network pharmacology and docking approach was used to
explore the pharmacological mechanisms of CP phyto-
chemicals against dementia disorders.,e present study also
provides evidence that helps understand the mechanisms
underlying the reputed memory-enhancing capacity of CP
and provides some valuable insights to advance future re-
search to encourage the use of CP and its metabolites in the
management of dementia disorders.

2. Materials and Methods

2.1. Retrieval of Compounds’ Information. CP compounds
were collected from the Traditional Chinese Medicine
Systems Pharmacology (TCMSP) database [32]. We also
verified compounds’ information through PubMed data-
base. ,e chemical information of CP compounds was
obtained from PubChem and ChEMBL databases.

2.2. Compound Screening. Drug-likeness of CP compounds
were predicted by QikProp (Schrödinger Release 2019–3:
QikProp, Schrödinger, LLC, New York, NY, 2019). ,e
screening was carried out based on #stars (0–5), which
indicates the number of properties that fall outside the 95%
range of similar values for known drugs. A compound with
fewer stars is more druglike than compounds with large
stars.

2.3. Target Retrieval. Target information for the individual
compound was retrieved from TCMSP database [32]. ,e
protein data, namely, standard protein name, gene ID, and
organism were verified through UniProt (http://www.
uniprot.org/) [33].

2.4. Network Construction. First, the individual list of AD,
PD, and dementia-related genes was retrieved from Dis-
GeNET database v6.0 [34]. Targets associated with AD, PD,
and dementia are those that were common to compounds’
targets. ,e overlapping targets amongst the lists of targets
related to CP compounds, AD, PD, and dementia were
obtained by the Venny 2.1.0 online software (https://
bioinfogp.cnb.csic.es/tools/venny/index.html). An
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interaction network among compounds, targets, and dis-
eases was established by Cytoscape v3.8.2 [35]. ,e nodes
and edges in the network represent molecules (compounds
and targets), and intermolecular interactions (compounds
and targets interactions), respectively.

2.5. Gene Ontology (GO) Analysis. Functional enrichment
analysis of Gene ontology (GO) for biological process,
molecular function, and cellular components was carried out
using DAVID 6.8 Gene Functional Classification Tool [36]
(https://david.ncifcrf.gov/home.jsp). GO terms with a
Pvalue of <0.01 were considered significant. Target proteins
were categorized by the Panther classification system [37]
(http://pantherdb.org/).

2.6. Network Pathway Analysis. A protein-protein interac-
tion network was constructed by NetworkAnalyst [38]
(https://www.networkanalyst.ca/). An interactive network
connecting molecular targets and associated cellular path-
ways was also constructed by NetworkAnalyst. Signaling and
disease pathways highlighting the targets of CP compounds
were retrieved through the KEGG pathway mapper [39]
(https://www.genome.jp/kegg/tool/map_pathway2.html).

2.7. Molecular Docking and Binding Energy Analysis

2.7.1. Preparation of Ligand. For virtual screening, five
compounds of 2D structure with SDF format were retrieved
from the PubChem database (https://pubchem.ncbi.nlm.
nih.gov/) and then using ligand preparation by applying
ligand preparation in Schrodinger 2017–1 with an OPLS-3
force field [40]. Before minimization, the ionization state of
each compound was fixed at pH 7.0± 2.0 by Epik 2.2 tool
[41, 42]. During the process, a maximum of 32 possible
stereoisomers for every compound was generated, from
where we preferred only the conformer compasses with the
least energy for subsequent analysis.

2.7.2. Prediction of Molecular Docking between Active
Compound and Target Protein. ,e target proteins were
downloaded from Protein Data Bank (https://www.rcsb.org/,
Supplementary Table S1), were prepared and refined with the
assistance of a protein preparation wizard (Schrödinger
2017–1), where the bond orders, charges, and proper hy-
drogen were assigned to the crystal structure. Besides, the
protein structure was optimized at neutral pH by removing all
nonessential water molecules. A grid box was generated
automatically for Glide XP docking. Ligands and receptors
were then docked by ligand docking in maestro.

2.7.3. Prime MM-GBSA Analysis. Binding free energy cal-
culation is commonly applied to analysis for determining the
sum of energy produced during the binding or docking of
ligand compounds with a protein [43]. ,e protein-ligand
pose viewer file was used. In MM-GBSA (molecular me-
chanics with generalized born and surface area solvation)
analysis, binding free energy was calculated using OPLS_3

force field as molecular mechanics energies (EMM); for
polar solvation, the SGB solvation model GSGB was used,
and for nonpolar solvation (GNP), Vander Waals interac-
tion, and nonpolar solvent accessible surface area [44]. ,e
dielectric solvent model VSGB 2.0 was used to predict the
directionality of hydrogen bond and π-stacking interactions
[43]. A higher negative binding score denotes tremendous
binding.

2.7.4. @e Total Binding Free Energy.

ΔGbind � Gcomplex − (Gprotein + Gligand),

whereG � EMM + GSGB + GNP.
(1)

,e flowchart of the integrated network pharmacology
and in silico approach employed in this study is illustrated in
Figure 1.

3. Results

3.1. ADME Screening. Twelve phytochemicals belonging to
CP were retrieved from the TCMSP database. ADME
screening offered 11 compounds having a #stars score ≤5
(Supplementary Table S2). Of these, six compounds lacking
biological targets were omitted. Finally, five were chosen for
further bioinformatic analysis, as displayed in Table 1. Most
of the compounds are considered druglike and are more
likely to be available orally as they maximally obeyed Lip-
inski’s rule of five [45] (mol_MW< 500, QPlogPo/w< 5,
donorHB°≤ 5, accptHB≤ 10) and Jorgensen’s rule of three
[46] (QPlogS> − 5.7, QP PCaco> 22 nm/s, # Primary
Metabolites< 7), respectively. Moreover, all compounds fall
within the recommended range (− 3.0 to 1.2) of predicted
brain/blood partition coefficient (QPlogBB) (Supplementary
Table S2).

3.2. Target Fishing. A total of 174 possible targets of five
compounds were obtained from TCMSP database (Sup-
plementary Table S3) and validated using a literature scan in
the PubMed database. Of these, a total of 117, 109, and 51
targets were found to be associated with AD, PD, and de-
mentia, respectively, after comparing with DisGeNET da-
tabase (Supplementary Table S4).

3.3. Network Building. Compound-target-disease (C-T-D)
network established through Cytoscape could explain the
multitarget effects of CP, which are used to treat brain
disorders associated with cognitive deficits. C-T-D network
represents the interaction of CP compounds with the targets
that are linked with AD, PD, and dementia (Figure 2).
Focusing on the degree of connectivity, we assume that
quercetin (degree, 144) and kaempferol (degree, 58) could
potentially contribute to the management of cognitive
disorders. Of the targets, PTGS1 and PTGS2 (each with
degree, 5) had the highest degree of connectivity with the
compounds, followed by NOS3, INSR, NR1I3, NR1I2,
HMOX1, ACHE, PPARG, MAOA, and MAOB (each with
degree ≥3) suggesting the implication of these gene products
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as a prospective drug-target for CP compounds in the de-
mentia management. ,e protein-protein interaction net-
work illustrates the target proteins, some of which are direct
targets of CP compounds and others are interacting proteins
(Supplementary Figure S1).

3.4. GOAnalysis. GO analysis was carried out only with the
disease-associated genes (a total of 45) that are common to
AD, PD, and dementia as retrieved by employing Venny
2.1.0 online software (Figure 3). ,e top 15 highly enriched
GO terms under biological process (BP), molecular func-
tion (MF), and cellular components (CC) (P< 0.05, Pvalues
were adjusted using the Benjamini‒Hochberg procedure)
are shown in Figure 4(a). ,e top biological processes,
including inflammatory response, response to drug, and
aging have been linked to the pathophysiology of the
disease, assuming that CP and its metabolites may interfere
with the AD progression via modulating these biological
processes. Moreover, the functional classification of target
proteins suggests their diversity in biological functions
(Figure 4(b)).

3.5. Analysis of Cellular Pathways and Targets Involved in the
Pathobiology of Dementia Disorders. An interactive network
illustrates top cellular pathways that involved targets of CP

compounds (Figure 5). Cellular pathways were grouped into
various modular systems according to KEGG pathway
annotation.

Among the signaling pathways that were enriched
(Adjusted Pvalue <0.05) in the “signal transduction” module
(Figure 5), the highly enriched pathway was PI3K/Akt
signaling, followed by MAPK signaling, which is critically
implicated in neuronal maturation and survival. PI3K/Akt
pathway retrieved fromKEGG pathway database illustrates a
total of 12 targets that were targeted by the CP compounds
(Figure 6). ,e upstream signaling receptor to PI3K/Akt
pathway is TrkB which bound to the natural ligand, namely,
brain-derived neurotrophic factor (BDNF) conveys neuro-
trophin signals to several downstream effectors such as Bcl-2
and Bax. Based on this information, it was further verified by
docking analysis whether the CP compounds could interact
with the TrkB.

Among the endocrine system-related pathways, insulin
receptor signaling was the top overrepresented pathway.
Insulin receptors (INSR) were highly connected by CP
compounds, and their interaction was further verified by
molecular docking. Several signaling pathways related to
inflammation including TNF pathway, HIF-1 pathway, and
NF-κB pathway were enriched (Figure 5). Since cyclo-
oxygenases such as COX-1 and COX-2 (PTGS1 and PTGS2)
catalyzing the production of inflammatory mediators were

Convolvulus pluricaulis

Drug-like compounds

ADME
screening

Potential Targets

Degenerated brain

Figure 1: An outline of network pharmacology-based deciphering neuropharmacological mechanism of C pluricaulis compounds.
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Figure 2: Network analysis. (a) Overlapping target genes among CP compounds, AD, PD, and dementia. (b) Compound-target-disease (C-
T-D) network shows the interaction among CP compounds, targets, and dementia disorders. Hexagonal nodes represent CP compounds,
whereas oval nodes represent their targets. Node size is proportional to its degree. ,e nodes of the first tier represent the targets with a
higher degree of interaction with the compound.

Table 1: Druglike compounds of C. pluricaulis as screened by QikProp ADME prediction tool.

Compound name Chemical nature Structure
ADME parameters

a#stars b rule of five c rule of three

Scopoletin Coumarin

O O O

O

0 0 0

Hydroxycinnamic acid Carboxylic acid

O

O

O

H
0 0 0

Kaempferol Flavonoid
O O

O

O O

O

0 0 0

Quercetin Flavonoid
O O

O

O

O

OO

0 0 1

Ayapanin Coumarin

O O O

1 0 0

a#Stars indicates the number of property or descriptor values that fall outside the 95% range of similar values for known drugs (ranging from 0–5). A large number of
stars suggests that a molecule is less druglike than molecules with few stars. ,e following properties and descriptors are included in the determination of #stars:
MW, donorHB, accptHB, QPlogPw, QPlogPo/w, QPlogS, QPLogKhsa, QPlogBB, and #metabol. bRule of five indicates the number of violations of Lipinski’s rule of
five [3]. ,e rules are: mol_MW< 500, QPlogPo/w< 5, donor HB≤ 5, accptHB≤ 10. Compounds that satisfy these rules are considered druglike (maximum is 4).
cRule of three indicates the number of violations of Jorgensen’s rule of three. ,e three rules are QPlogS> − 5.7, QP PCaco> 22nm/s, # Primary Metabolites< 7.
Compounds with fewer (and preferably no) violations of these rules are more likely to be orally available (maximum is 3).
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targeted by CP compounds with the highest degree of
connectivity (Figure 3), their interaction was further verified
by docking simulation.

In addition, nervous system-related pathways such as
neurotrophin signaling pathway, cholinergic synapse, dopa-
minergic synapse, serotonergic synapse, and long-term po-
tentiation were enriched (Figure 5). Any abnormality in these
pathways disrupts brain function leading to the onset of NDD
and related pathology. Notably, acetylcholinesterase (ACHE)
has clinical significance in cholinergic deficits and therefore
its binding and interaction with CP compounds were further
verified with docking analysis. A number of immune system-
related pathways, namely, tolllike receptor, T cell and B cell
receptor, chemokine, and NODlike receptor signaling path-
ways were also highlighted in the network (Figure 5).

An AD-pathway (Figure 7) was retrieved from KEGG
pathway database, illustrating a total of 13 proteins in-
cluding those that are involved in amyloidogenesis (for
example, APP and PSEN), cellular survival, and growth (for
example, INSR, Akt, and Erk1/2) and inflammation (for
example, iNOS, COX2, IKK, TNF, IL-1, and IL-6), which
are potential targets of CP compounds as appeared in
network pharmacology. Considering the appearance of
INSR and COX2 in network pharmacology and in AD
pathobiology, their interactions with the selected CP
compounds were further verified by docking simulation. In
addition, monoamine oxidases (MAOA and MAOB) are
potential targets for both AD and PD, and thus their in-
teractions with the selected CP compounds were also
further verified.
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Figure 4: Continued.

Evidence-Based Complementary and Alternative Medicine 7



3.6. In Silico Analysis. We employed molecular docking
analysis to validate the interaction patterns and the efficiency
of CP phytochemicals with some of the vital target proteins
that showed a higher degree of connectivity in network
pharmacology. Accordingly, we selected PTGS2, NOS3,
PTGS1, INSR, NR1I3, NR1I2, HMOX, ACHE, PPARG,
MAOA, and MAOB for further analysis. Additionally, we
included TrkB in docking analysis since several downstream
effectors of TrkB receptor signaling, including PI3K, AKT1,
BAX, and BCL2, showed a higher degree of connectivity in
the network (Figure 2), and TrkB is a potential receptor for
neuronal growth and survival.

In any docking analysis of protein-ligand, it is ascer-
tained that if the predicted complex obtained docking scores
less than zero, indicating binding affinity of the ligand to-
ward the receptor. However, molecular docking usually used
approximated scoring functions to calculate binding ener-
gies, which are not correlated with experimental values
[47, 48]. In such a case, we used MM-GBSA binding energy
calculation to compute the free energy of binding the

complex, which uses an implicit continuum solvent ap-
proximation [49]. A total of five compounds, namely,
scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin,
and ayapanin, were subjected to molecular docking to the
corresponding proteins of 12 target genes (PTGS2, NOS3,
PTGS1, INSR, NR1I3, NR1I2, HMOX, ACHE, PPARG,
MAOA, MAOB, and TRKB), and the obtained docked
complex was further subjected for MM-GBSA analysis. As
shown in Figure 8, the quercetin-PTGS2 complex repre-
sented the highest binding energy of − 46.27 kcal/mol, while
in NOS3, the scopoletin showed maximum binding affinity
and formed a stable complex with a binding energy of
− 34.98 kcal/mol. Interestingly, scopoletin also showed
maximum binding energy to form complexes with PTGS1,
NR1I3, NR1I2, ACHE, MAOA, and TRKB with binding
energies of − 36.28, − 56.01, − 39.13, − 43.13, − 51.18, and
− 34.67 kcal/mol, respectively. On the other hand, while
bound to INSR, MAOB, and PPARG, 4-hydroxycinnamic
acid showed maximum binding energies of − 21.46, − 34.044,
and − 41.04 kcal/mol, respectively. In HMOX1, ayapanin
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Protein modifying enzyme 
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Figure 4: Bioinformatics analysis of overlapping target genes. (a) Gene ontology (GO) analysis: Top 15 GO terms for biological processes,
molecular function, and cellular components were displayed where the x-axis represented GO terms for the target genes, and the y-axis
showed target counts.,e number on the tip of each bar represents the corresponding target number. Cut off: P< 0.001 and FDR< 0.001. (b)
Panther classification categorized target proteins into nine classes. ,e figures next to the group in the pie chart indicate the number and
percentage of protein in the given functional class.
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showed higher binding energy than other compounds. ,e
details of molecular interactions of top hits from docking
analysis are shown in Figure 8.

4. Discussion

Traditional knowledge and experimental evidence suggest
that C. pluricaulis, alone or in combination, can enhance
memory and protect against cognitive impairment
[3, 4, 6, 50]. However, the underlying mechanisms sup-
porting these claims remain largely unexplored. ,e present
study, therefore, employed integrated network

pharmacology and in silico approach to provide an in-depth
insight into the neuropharmacological effects of CP phy-
tochemicals and their protective potential against dementia.
Virtual ADME screening identified a total of five active
compounds from CP, such as scopoletin, 4-hydroxycin-
namic acid, kaempferol, quercetin, and ayapanin showing
drug-likeness and blood-brain barrier permeability. Grow-
ing evidence suggest neurorestorative and memory pro-
tective potentials of these compounds. Quercetin, a natural
polyphenolic of many plants, fruits, and vegetables, is found
to be effective in protecting neurons from various injuries
and ameliorating cognitive deficits [51]. Quercetin can
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ameliorate Alzheimer’s disease pathology (such as β-amy-
loidosis, tauopathy, astrogliosis and microgliosis in the
hippocampus and the amygdala) and recover cognitive
deficits in triple transgenic Alzheimer’s disease model mice
[52, 53]. Another study has shown that quercetin can
ameliorate hippocampus-dependent learning and memory
deficits in mice fed with high fat diet through attenuating
oxidative stress by activating antioxidant signaling system
[54]. ,e flavonoid antioxidant, kaempferol, is also equally
available in fruits and vegetables showing neuroprotective
effects and memory-promoting potentials in experimental
models of AD, PD, and other neurological diseases [55, 56].
Kaempferol can attenuate Aβ25-35-induced apoptosis of
PC-12 cells via the ER/ERK/MAPK signaling pathway [57].
Other compounds, including scopoletin and 4-hydrox-
ycinnamic acid, were also shown to be protective against
neuronal damage and effective in ameliorating memory
deficits [19, 58, 59]. 4-Hydroxycinnamic acid (P-coumaric
acid) promotes hippocampal neurogenesis, improves cog-
nitive functions, and reduces anxiety in post-ischemic stroke
rats by activating BDNF/TrkB/AKT signaling pathway [60].
Scopoletin shows neuroprotective effects by inhibiting
MOA, Aβ aggregation, and lipid peroxidation [61]. Another
study shows that scopoletin can attenuate intracerebral

hemorrhage-induced brain injury and improve neurological
performance in rats [62].

,e C-T-D network illustrates that the selected CP
metabolites were linked to the target proteins of dementia-
associated cellular pathways. GO analysis revealed several
enriched biological processes such as inflammatory re-
sponse, response to drug, and aging that are implicated in
the pathobiology of NDD. Network pathway analysis also
shows that CP metabolites target several markers of the top
enriched pathways. PI3K/Akt signaling is at the top of the
enriched pathways associated with the development, sur-
vival, and activity of neurons. ,is pathway has multiple
downstream effector targets including those associated with
cell survival (Bcl-2, Bax, IKK, NF-κB, and p53). Bcl-2 is a
prosurvival protein whereas Bax is a proapoptotic protein.
IKK, NF-κB, and p53 are involved in inflammatory response
[63, 64]. Other signaling pathways, particularly the MAPK
pathway, in association with PI3K/Akt signaling take part in
the regulation of growth and survival of cells.

Several pathways that are associated with nervous sys-
tem, namely, neurotrophin signaling pathway, long-term
potentiation, and cholinergic, dopaminergic, and seroto-
nergic synapses were enriched, indicating that CP com-
pounds may have shown neuropharmacological effects by
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modulating these neuronal pathways. Neurotrophin sig-
naling pathway maintains growth, maintenance, and sur-
vival of neurons. In aging or degenerating brain, there is
inadequate neurotrophic support, causing neuronal death
[65]. Neurotrophin, in particular BDNF, mimetic could,
therefore, have clinical importance in the management of
NDD [66]. Downstream to the neurotrophin signaling is
PI3K/Akt pathway, which was highly enriched in this study,
and CP compounds were found to target the genes involved.
As BDNF mimetic, 7,8-dihydroxyflavone, a TrkB agonist,
has shown neurotrophic activities [67] and has been found
to be effective in ameliorating motor and cognitive deficits
[68]. Docking analysis further indicates that scopoletin
exhibited the highest binding affinity to TrkB, the receptor of
neurotrophin signaling pathway, and may act as a BDNF-
mimetic and take part in neuronal growth and survival by
modulating the classical neurotrophin/PI3K/Akt signaling.

In AD pathobiology, there is a cholinergic deficit due
to dysfunction of cholinergic synapse. Although symp-
tomatic, acetylcholinesterase (AChE) inhibitors such as
donepezil, rivastigmine, and galantamine are currently in
use to compensate for memory deficits due to cholinergic
dysfunction [69]. Molecular docking has predicted that
except for kaempferol and quercetin, the other three
compounds may interrupt AChE activity. ,e current
data suggest that these CP compounds would be a
promising alternative to existing AChE inhibitors for AD
patients.

Among the endocrine pathways, the dominant
pathway is the insulin signaling pathway, which plays an
essential role in ensuring neuronal survival and ho-
meostasis, promoting synaptic plasticity and thereby
supporting learning and memory function [70, 71].
Evidence shows that insulin signaling is impaired in
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degenerating brains [71]. Targeting impaired insulin
signaling, therefore, constitutes a viable strategy against
NDD. In docking analysis, 4-hydroxycinnamic acid
showed the highest binding affinity with insulin receptor
(INSR) although in network pharmacology quercetin and
kaempferol interact with this target.

,ere was an enrichment of inflammation-related
pathways, including TNF pathway, HIF-1 pathway, and NF-
κB pathway, suggesting that anti-inflammatory effects me-
diated by CP compounds would play a pivotal role in
preventing inflammatory cascade during pathobiological
progression of NDD. Cyclooxygenase enzymes, namely,
COX-1 (PTGS1) and COX-2 (PTGS2) catalyze the biosyn-
thesis of inflammatory mediators such as prostaglandins and
thromboxane. In the brain, COX-2 is activated by excitatory
synaptic activity in neurons and by inflammation in the glia.
COX-1/COX-2 pathway has pathogenic relevance in pre-
clinical stages of Alzheimer’s disease development [72].
Pathological activation of COX-2 disrupts hippocampal
synaptic function, leading to cognitive deficits [72].
Cyclooxygenase inhibitors, such as nonsteroidal anti-in-
flammatory drugs (NSAIDs), may have preventive effects
against dementia [73]. Several COX-2 inhibitors such as
celecoxib [74] and indomethacin [75] have shown promise
in the management of AD. Docking results demonstrate that
all CP compounds, including scopoletin and quercetin,
exhibited substantial binding affinity to COX-2 and COX-1,
suggesting their potential application in the development of
antineuroinflammatory agents. Previous in silico reports on
interaction of COX-2 with quercetin and kaempferol also
support our data [76].

In addition to the above cellular pathways, CP com-
pounds target some other pathways, namely, autophagy,

mitophagy, apoptosis, necroptosis, and some specific mo-
lecular markers of AD and PD pathways. Endothelial nitric
oxide synthase or eNOS (NOS3) is known for its outstanding
role in regulating cerebral blood flow and is associated with
synaptic plasticity such as long-term potentiation [77].
eNOS attenuates ischemic damage by regulating BDNF
expression [78]. Nitric oxide produced by eNOS protects
neurons from Tau pathology [79]. Another study reports
that pharmacological activation of PI3K-eNOS signaling can
ameliorate cognitive deficits in streptozotocin-induced rats
[80]. Pharmacological interruption of eNOS activity results
in an increase in inflammatory mediators, such as iNOS in
rat ischemic brains [81]. eNOS is, thereby, protective against
inflammation and other pathologic stimuli. Statins such as
atorvastatin and simvastatin may contribute to the ame-
lioration of brain tissue injury in ischemic brain by acti-
vating eNOS [82]. Together, this evidence suggests that CP
compounds that target eNOS may have pharmacological
significance against NDD pathobiology.

Other important targets are monoamine oxidases
(MAOs) that catalyze the oxidative deamination of mono-
amines and contribute to the metabolism of dopamine, a
neurotransmitter of dopaminergic neurons. Drugs that in-
hibit MAO, particularly MAOB, such as selegiline and
rasagiline are currently in clinical use in patients with PD
[83–85]. Docking findings demonstrate that CP compounds,
particularly 4-hydroxycinnamic acid and scopoletin, showed
higher binding affinity, suggesting their prospects as MAO
inhibitors to be used in PD management.

Heme oxygenase-1 or HO-1 (HMOX1) is a stress-sen-
sitive enzyme that catalyzes the breakdown of heme into
iron, carbon monoxide, and biliverdin/bilirubin and is in-
volved in the pathobiology of AD and other brain disorders.

(k)

(l) (m)

Figure 8: Molecular docking analysis of target proteins and compounds. Heatmap representing the binding energy revealed from MM-
GBSA analysis (a). Two-dimensional molecular interaction for protein-ligand complex for TRKB-Scopoletin (b), PTGS2-Quercetin (c),
NOS3-Scopoletin (d), PTGS1-Scopoletin (e), INSR-4-hydroxycinnamic acid (f ), NR1I3-Scopoletin (g), NR1I2-Scopoletin (h), HMOX1-
Ayapanin (i), AChE-Scopoletin (j), PPARG-4-Hydroxycinnamic acid (k), MAOA-Scopoletin (l), andMAOB-4-Hydroxycinnamic acid (m).
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Astroglial induction of the HMOX1 by β-amyloid and cy-
tokines leads to mitochondrial iron sequestration and may
thereby contribute to pathological iron deposition and
bioenergy failure [86]. Pharmacological intervention in glial
HO-1 activity may provide neuroprotection in AD by
limiting iron-mediated neurotoxicity [86]. All CP com-
pounds except kaempferol exhibit higher binding affinity to
HO-1, and thereby, may be neuroprotective through reg-
ulating HO-1 activity.

Peroxisome proliferator-activated receptor-gamma or
PPARc (PPARG), a ligand-activated nuclear transcription
factor, regulates the expression of multiple genes that encode
proteins involved in the regulation of lipid metabolism,
improvement of insulin sensitivity, and inhibition of in-
flammation [87]. PPARc agonists counteract oxidative
stress, neuroinflammation, and Aβ clearance [70, 88].
PPARc agonists such as fenofibrate, icariin, and naringenin
are known to be neuroprotective, supporting neuronal de-
velopment, synaptic plasticity, and ameliorating cognitive
deficits [70, 89, 90]. In docking analysis, 4-hydroxycinnamic
acid and scopoletin showed the highest binding affinity to
PPARc, suggesting that these compounds can ameliorate
cognitive deficits through activating PPARc signaling.

5. Conclusion

,e in silico analysis predicts that CP metabolites, namely,
scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin,
and ayapanin are the major bioactive leads that showed
interaction with various molecular targets and cellular
pathways crucial to neuronal growth, survival, and activity.
,e signaling pathways that CP compounds primarily target
include the PI3K/Akt signaling pathway, the neurotrophin
signaling pathway, and the insulin signaling pathway. In
addition, top targets of CP compounds including PTGS1,
PTGS2, NOS3, INSR, HMOX1, ACHE, PPARG, MAOA,
MAOB, and TRKB may be potential druggable targets for
future drug designing to address dementia disorders. To-
gether with the previous reports, the combined network
pharmacology and in-silico observations form a scientific
basis that supports the ethnomedical application of CP for
memory enhancement and against aging/pathological cog-
nitive deficits. However, further investigation of memory-
enhancing and neuroprotective effects of CP and its me-
tabolites is essential to extrapolate the findings from pre-
clinical and in silico models into clinical subjects.
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