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ShengMai Yin (SMY) has therapeutic efects onmyocardial infarction (MI), heart failure (HF), diabetic cardiomyopathy (DCM), and
myocarditis. To study whether SMY can relieve pyroptosis and play a protective role in diabetic cardiomyopathy, amolecular docking
technique was used to predict the possible mechanism of SMY against DCM.Ten, a DCM rat model was induced by intraperitoneal
injection of streptozotocin (STZ), divided into 5 groups: the DM group (model), SMY-L group (2.7mL/kg SMY), SMY-M group
(5.4mL/kg SMY), SMY-H group (10.8mL/kg SMY), and Met group (120mg/kg metformin). Rats in the CTL group (control) and
DM group were given normal saline. After 8 weeks, the levels of blood glucose, lipids, and myocardial enzymes were detected
according to the kit instructions. Cardiac function was detected by echocardiography. HE and Masson were used to observing the
pathological changes, collagen deposition, and collagen volume fraction (CVF).Te apoptosis rate of cardiomyocytes was determined
by Tunel.Te IL-1β level was determined by ELISA and RT-PCR.Te expressions of NLRP3, caspase-1, and GSDMDweremeasured
using RT-PCR andWestern blotting.Te docking results suggested that SMYmay act onNLRP3 and its downstream signal pathway.
Te in vivo results showed that SMY could reduce blood glucose and lipid levels, improve heart function, improve histopathological
changes and myocardial enzymes, and alleviate cardiomyocyte apoptosis and myocardial fbrosis. SMY inhibited the mRNA and
protein expressions of NLRP3, ASC, Caspase-1, and GSDMD and IL-1β production. SMY can reduce DCM by regulating the
NLRP3/caspase-1 signaling pathway, providing a new research direction for the treatment of DCM.

1. Introduction

Diabetic cardiomyopathy (DCM) is a specifc cardiac man-
ifestation of diabetes patients and is the main cause of
morbidity and mortality of diabetes patients around the
world. In China, 33.9% of patients with type 2 diabetes have
cardiovascular disease [1].Te pathogenesis of DCM involves
cardiac infammation and changes in metabolic character-
istics, characterized by early left ventricular hypertrophy and
diastolic dysfunction, manifested in myocardial cell hyper-
trophy, apoptosis, and myocardial interstitial fbrosis. With
the progression of the disease, DCM gradually evolved into
systolic dysfunction with reduced ejection fraction and
eventually developed into heart failure [2, 3]. DCM is

characterized by a variety of pathophysiological variables,
including oxidative stress, apoptosis, cardiac fbrosis, im-
paired angiogenesis, and altered glycolysis metabolism, al-
though its pathogenesis is unknown. Presently, there is no
particular medicine available for the treatment of DCM, and
the majority of patients sufer from heart failure. Identifying
possible treatment targets is crucial for reducing the mor-
bidity and mortality associated with DCM.

Numerous studies have demonstrated that the
nucleotide-binding domain leucine-rich repeat (NLR) and
pyrin domain-containing receptor 3 (NLRP3) infamma-
some play a signifcant role in the pathophysiology and
research advancement of DCM and is a new pharmaco-
logical target for treating DCM and related complications
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[4, 5]. In individuals with DCM, activation of the NLRP3
infammasome has been found to generate or exacerbate
cardiac infammation, myocardial cell necrosis or apoptosis,
myocardial fbrosis, and cardiac failure [6, 7].

Sheng Mai Yin (SMY) is composed of ginseng, radix
ophiopogonis, and Schisandra chinensis. Some studies have
shown that the ShengMai compound preparation composed
of three Chinese herbs has therapeutic efects on heart
diseases such as myocardial ischemia-reperfusion, coronary
heart disease, and heart failure [8–10]. By activating AMPKα
and decreasing oxidative stress injury mediated by NADPH
oxidase, Sheng Mai San (SMS) has been reported to protect
the myocardium against diabetes [11]. Trough stimulation
of the Nrf2/Keap1 signaling pathway, Sheng Mai injection
(SMI) inhibits apoptosis, decreases CK, LDH, and MDA
levels, and increases SOD activity, therefore reducing DOX-
induced cardiotoxicity [12]. However, the mechanism of
action of SMY on DCM is yet unknown, and it has to be
determined whether SMY may play a protective function in
DCM by acting on the NLRP3/Caspase-1 pathway.

2. Materials and Methods

2.1. Molecular Docking. CB-Dock was used to predict the
binding afnity between the main ingredients of SMY and
NLRP3. Te major components of SMY were 11 chemical
components found in rat serum: ginsenoside Rg1, ginse-
noside Re, ginsenoside Rf, ginsenoside Rg2, ginsenoside
Rb1, ginsenoside Rd, ginsenoside Rc, ophiopogonin D,
schisandrin, schisandrol B, and schisandrin B [13]. Te
structures were downloaded from the PubChem website and
then the hydrogens and charge were added.Te PDB format
of NLRP3 (ID: 6npy) [14] was downloaded from RCSB
(https://www.rcsb.org/), waters and het groups were deleted,
and hydrogens were added, and then the docking procedure
was submitted [15].

2.2. Animals. Male Sprague-Dawley (SD) rats were pur-
chased from Pizhou Oriental Breeding Co., Ltd., SCXK (Su)
2017-0003. All procedures have been approved by the Center
for Scientifc Research of Anhui University of Chinese
Medicine (AHUCM-rats-2021076).

2.3. Chemicals and Materials. SMY (20260504) was pur-
chased from Beijing Tongrentang Science and Technology
Development Co., Ltd. Metformin hydrochloride
(67190501) was purchased from Shanghai Xinyi Tianping
Pharmaceutical Co., Ltd. Streptozotocin (STZ, CAT.No.
2196GR001) was purchased from BIOFROXX, Germany.
Cardiac troponin I (CTNI, Cat.#RX301624R), glycosylated
hemoglobin (GHB, Cat.#RX302312R), atrial natriuretic
peptide (ANP, Cat.#RX302231R), B-type natriuretic peptide
(BNP, Cat.#RX302959R), and interleukin-1β (IL-1β,
Cat.#RX302869R) were purchased from Quanzhou RUIXIN
Biotechnology Co., Ltd. Total cholesterol (TC, A111-1-1),
creatine kinase (CK, A032-1-1), and low-density lipoprotein
cholesterol (LDL-C, A113-1-1) were purchased from
Nanjing Jiancheng Institute of Biological Engineering.

Triglyceride (TG, C061-A) and glucose assay kits (C050-g)
were purchased from Changchun Huili Biotechnology Co.,
Ltd. High-density lipoprotein cholesterol (HDL-C, A0-
10137) was purchased from Zhejiang Dongou Diagnostic
Products Co., Ltd. Anti-NLRP3 (ab263899) and anti-
GSDMD (ab219800) were purchased from Abcam (Cam-
bridge, MA, United States). Anticleaved-Caspase 1
(AF4005), antitubulin (AF7011), and anti-ASC (DF6304)
were purchased from Afnity Biosciences (Cincinnati, OH,
USA). Anti-GAPDH (380626) was purchased from
Chengdu Zen Biotechnology Co., Ltd. Te reverse tran-
scription kit (BL699A) was purchased from BioSharp,
China. SYBR Green (G3326-05) was purchased from
Servicebio, China.

2.4. Establishment of the RatModel. After a week of adaptive
feeding, 10 male SD rats were chosen at random for the CTL
group and fed a standard diet. Other rats were fed a high-
calorie diet (composition: lard 5%, sugar 5%, yolk powder
5%, and cholesterol 1%). Each group of rats was fed routinely
for six weeks. Rats in the control group were treated in-
traperitoneally with citric acid-sodium citrate bufer
(pH 4.2) after 6weeks, whereas rats in the other groups were
injected intraperitoneally with 1% STZ at 35mg/kg. After
3 days, blood was taken by needling at the tail tips of rats in
each group, and the diabetic model was successfully pre-
pared when the blood glucose was ≥16.7mmol/L [16].

2.5. Drug Treatment. Successfully modeled SD rats were
randomly assigned to fve groups: DM (model), SMY-L
(2.7mL/kg SMY), SMY-M (5.4mL/kg SMY), SML-H
(10.8mL/kg SMY), or Met (120mg/kg metformin). Both
the CTL group and the model group received the same
amount of normal saline. All groups received the same
gavage intervention for eight weeks.

2.6. Detection of BloodGlucose and Lipid Levels. After fasting
for 12 h, rats in each group were anesthetized with pento-
barbital sodium, and blood was taken from the abdominal
aorta to the vein collection. After 30min, the supernatant
was centrifuged at 1500 r/min for 15min and stored at
−80°C. Blood glucose, GHB, TG, TC, LDL-C, and HDL-C
values were measured according to the kit’s instructions.

2.7. Detection of Cardiac Function by Echocardiography.
All rats were anesthetized with isofurane and administered
2D echocardiography for calculating ejection fraction (EF)
and fractional shortening (FS) [16].

2.8. Detection of Pathological Staining. Temyocardial tissue
was fxed in 4% paraformaldehyde at room temperature,
dehydrated, embedded in parafn, and sliced into 5 μm
sections. Diferent sections were stained with HE andMasson
and observed under a microscope, which was used to observe
the pathological changes, collagen deposition in the myo-
cardial interstitium, and collagen volume fraction (CVF).
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2.9. Detection of Myocardial Enzymes. Te contents of CK,
ANP, and BNP were detected according to the kit’s
instructions.

2.10. Detection of Apoptosis Rate. In each slice, fve visual
felds were randomly selected for microscopic examination,
and the total number of cardiomyocytes and the apoptotic
number of cardiomyocytes were counted in each feld.
Apoptosis rate� apoptotic cardiomyocytes number/all car-
diomyocytes number× 100%.

2.11. Detection of IL-1β Levels. IL-1β levels in rat myocardial
tissue were detected by a commercial test kit. Te optical
density (OD) was selected at 450 nm and read by a micro-
plate reader (BioTek, USA).

2.12. Detection of mRNA Expression by RT-PCR.
Myocardial RNA was extracted from the left ventricular
myocardium using the Trizol reagent. Using a reverse
transcription kit, an equal quantity of RNA from each
sample was reversely transcribed into cDNA. For PCR
amplifcation of the same number of reverse transcription
products, SYBR Green was used. RT-PCR was conducted
with the LightCycler® 96 PCR apparatus (Roche, Switzer-
land). Te results were analyzed using 2−ΔΔCq method to
evaluate the mRNA levels of NLRP3, ASC, Caspase-1, and
GSDMD. Te primers used in the research are shown in
Table 1.

2.13. Detection of Protein Expression by Western Blotting.
Te heart tissue was lysed in lysate, and total protein was
extracted. On a 10% to 15% polyacrylamide gel, the lysates
were separated and transferred to an NC membrane. After
blocking the NC membrane with 5% skim milk powder, the
following antibodies were incubated at 4°C overnight: anti-
NLRP3 (1 :1000), anticleaved caspase-1 (1 :1000), anti-ASC
(1 :1000), anti-GSDMD (1 :1000), anti-GAPDH (1 : 5000),
and anti-tubulin (1 : 5000). Te primary antibody was in-
cubated at 4°C for an overnight before being incubated at
room temperature with the secondary antibody for 2 h. Te
density of protein bands was detected using the ECL
chemical substrate luminescence kit, and the protein bands
were imaged in Tanon5200 imaging system (Tanon, China).

2.14. Statistical Analysis. Te data were given as mean-
± standard deviation (SD), and statistical analysis was
performed using SPSS 23.0. A one-way ANOVAwas utilized
to determine the signifcance between the groups. P< 0.05
was regarded as statistically signifcant.

3. Results

3.1. Docking Results. Te primary components of SMY
exhibited binding afnity with NLRP3.Te superior binding
afnities of Ophiopogonin D, Schisandrol B, and Ginse-
noside Rf to NLRP3 may provide active monomer com-
pounds for future investigation (Table 2 and Figure 1). Te

docking data revealed that SMY may operate on NLRP3 and
its downstream signaling pathway, which was confrmed by
in vivo tests.

3.2. SMY Reduced Blood Glucose and Lipid Levels in Model
Rats. Te abnormal blood glucose and blood lipid levels
suggested that the DCM model had been developed suc-
cessfully [17]. After 8 weeks, the levels of blood glucose,
GHB, TG, TC, and LDL-C were substantially higher in the
DM group than in the CTL group (P< 0.01), although the
level of HDL-C did not change signifcantly. After therapy
with SMY-M and SMY-H, blood glucose, GHB, TG, TC, and
LDL-C levels were reduced (P< 0.05, P< 0.01) (Figure 2).
Rat models demonstrated that SMY may successfully lower
blood glucose and blood lipid levels.

3.3. SMY Improved the Heart Function in Model Rats.
Echocardiography was performed to determine the heart
function of each group of rats, with EF and FS serving as the
primary indices. Te EF and FS of the DM group were
considerably lower than those of the CTL group (P< 0.01),
while SMY and Met reversed the FS and LVEF (P< 0.05,
P< 0.01) (Figure 3). Te results suggested that SMY has
a certain ameliorative efect on diabetic cardiac function
injury.

3.4. SMY Improved the Histopathological Changes and
Myocardial Enzymes in Model Rats. Te fndings of the HE
staining demonstrated that the CTL group possessed normal
morphology, a full myocardial structure, and an organized
arrangement of muscle fbers. Te DM group had myo-
cardial fracture, myocardial fber organization abnormality,
and infammatory cell infltration. Te myocardial fbers of
the Met group and the SMY group were arranged in a rel-
atively orderly manner with a small amount of infammatory
infltration. Creatine kinase (CK) is mainly used in the di-
agnosis of myocardial infarction, which is widely in skeletal
muscle, cardiac muscle, and brain tissue. Serum atrial na-
triuretic peptide (ANP) and B-type natriuretic peptide
(BNP) activities are used to diagnose andmonitor the course
and efcacy of heart failure [18]. CK, ANP, and BNP levels
were considerably greater in the DM group than in the CTL
group (P< 0.01); SMY andMet lowered CK, ANP, and BNP
levels (P< 0.05, P< 0.01) (Figure 4). Te results showed that
SMY could signifcantly reduce the changes in cardiac pa-
thology and myocardial enzymes in model rats.

3.5. SMYAlleviates Cardiomyocyte Apoptosis andMyocardial
Fibrosis in Model Rats. Te DM group’s nuclei were dis-
covered to be pale brown, and their apoptosis rate was
signifcantly greater than that of the CTL group (P< 0.01).
Compared to the DM group, SMY and Met treatment
signifcantly decreased the amount of pale brown nuclei and
the apoptosis rate (P< 0.05, P< 0.01) (Figure 5(a)). Masson
staining revealed that the muscle fbers of the myocardium
were red and the collagen fbers were blue. In the CTL group,
the myocardial fbers were organized and only a modest
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Table 2: Docking of the main chemical constituents of SMY with NLRP3.

Chemicals Vina score Cavity score Center (x, y, z) Size (x, y, z)
Ophiopogonin D −9.0 12730 88, 94, 81 35, 34, 35
Schisandrol B −8.4 12730 88, 94, 81 35, 34, 35
Ginsenoside Rf −6.8 12730 88, 94, 81 35, 34, 35
Ginsenoside Re −6.7 12730 88, 94, 81 35, 34, 35
Ginsenoside Rg2 −6.7 12730 88, 94, 81 35, 34, 35
Schizandrin B −6.6 12730 88, 94, 81 35, 34, 35
Ginsenoside Rg1 −6.3 12730 88, 94, 81 35, 34, 35
Ginsenoside Rd −6.2 12730 88, 94, 81 35, 34, 35
Schisandrin −6.1 12730 88, 94, 81 35, 34, 35
Ginsenoside Rb1 −5.8 12730 88, 94, 81 35, 34, 35
Ginsenoside Rc −4.9 12730 88, 94, 81 35, 34, 35

(a) (b) (c)

(d) (e) (f )

Figure 1: Te docking pictures of the main chemical constituents of SMY with NLRP3. (a) Ophiopogonin D-NLRP3. (b) Schisandrol B-
NLRP3. (c) Ginsenoside Rf-NLRP3. (d) Ophiopogonin D-amino acid residues. (e) Schisandrol B-amino acid residues. (f ) Ginsenoside Rf-
amino acid residues.

Table 1: Primers used in RT-qPCR.

Primers Sequence (5’⟶ 3′)

NLRP3 Forward 5′-GAGCTGGACCTCAGTGACAATGC-3′
Reverse 5′-AGAACCAATGCGAGATCCTGACAAC-3′

Caspase-1 Forward 5′-GCACAAGACTTCTGACAGTACCTTCC-3′
Reverse 5′-GCTTGGGCACTTCAATGTGTTCATC-3′

GSDMD Forward 5′-CAGCAGGCAGCATCCTTGAGTG-3′
Reverse 5′-CCTCCAGAGCCTTAGTAGCCAGTAG-3′

ASC Forward 5′-ATGGTTTGCTGGATGCTCTGTATGG-3′
Reverse 5′-AAGGAACAAGTTCTTGCAGGTCAGG-3′

IL-1β Forward 5′-AATCTCACAGCAGCATCTCGACAAG-3′
Reverse 5′-TCCACGGGCAAGACATAGGTAGC-3′

β-actin Forward 5′-CCCATCTATGAGGGTTACGC-3′
Reverse 5′-TTTAATGTCACGCACGATTTC-3′
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number of collagen fbers were formed, whereas the DM
group had abundant collagen fber depositions. Pre-
treatment with SMY and Met resulted in a signifcant de-
crease in the collagen content of cardiac tissue. Collagen
volume fraction (CVF) can be utilized to examine mor-
phological alterations of the left ventricular myocardium.
CVF levels were considerably greater in the DM group than
in the CTL group (P< 0.01), but SMY andMet lowered CVF
levels (P< 0.01) (Figure 5(b)).

3.6. SMY Decreased IL-1β Level in Rat Myocardial Tissue.
As shown in Figure 6, IL-1β level in rat myocardial tissue
increased signifcantly in the DM group compared with the
CTL group (P< 0.01). IL-1β level was decreased signif-
cantly in the Met and SMY groups (P< 0.05).

SMY inhibited the mRNA expressions of NLRP3, ASC,
caspase-1, GSDMD, and IL-1β.

Compared to the CTL group, the mRNA expressions of
NLRP3, ASC, caspase-1, GSDMD, and IL-1β increased
considerably in the DM group (P< 0.01). In contrast to the
DM group, SMY and Met were able to reverse the mRNA
overexpressions (P< 0.05, P< 0.01) (Figure 7).

3.7. SMY Inhibited Protein Expressions of NLRP3, ASC,
Caspase-1, and GSDMD. Protein expressions of NLRP3,
ASC, caspase-1, GSDMD, and GSDMD-N in the DM group
increased considerably compared to the CTL group (P< 0.05
, P< 0.01). SMY and Met decreased the protein expressions

of NLRP3, ASC, caspase-1, GSDMD, and GSDMD-N rel-
ative to the DM group (P< 0.01). Tese results suggest that
SMYmay play a protective role in the myocardium by acting
on the NLRP3/caspase-1/GSDMD signaling pathway
(Figure 8).

4. Discussion

DCM is a diabetes-related pathophysiological disorder
characterized by structural, functional, and metabolic ab-
normalities in the heart that can lead to HF in the absence of
coronary artery disease, hypertension, and valvular heart
disease [19]. Hyperglycemia, insulin resistance, hyper-
insulinemia, and increased free fatty acid metabolism cause
oxidative stress, infammation, formation of advanced gly-
cation end products, abnormal calcium homeostasis, and
apoptosis, resulting in myocardial cell dysfunction, injury,
and death and consequently cardiac dysfunction [20]. Te
underlying molecular mechanism of DCM is not yet fully
understood. During the development of DCM, excessive
hyperglycemia can cause an increase in reactive oxygen
species, which activate NF-κB and subsequently trigger the
activation of NLRP3, driving cellular infammation and
apoptosis [21]. NLRP3 is an immune-related infammatory
molecule, and studies have established its strong association
with the development of DCM [22]. By activating p65, ROS
stimulates the activation of NLRP3. Activated NLRP3 in-
teracts with the adaptor protein apoptosis-associated speck-
like protein (ASC) and procaspase-1 to create the NLRP3
infammasome and innate immune system protein
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Figure 2: SMY reduced blood glucose and lipid levels in model rats. (a) Blood glucose. (b) GHB. (c) TC. (d) TG. (e) LDL-C. (f ) HDL-C.Te
values were expressed as the mean± SD (n� 10), ∗∗P< 0.01 vs. CTL group, #P< 0.05, ##P< 0.01 vs. DM group.
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complexes [23]. Ten, caspase-1 is the efector protein of the
NLRP3 infammasome, cleaved by the precursor molecule
procaspase-1 [24]. Caspase-1 may result in the cleavage of
pyroptosis executioner gasdermin D (GSDMD) along the
canonical pathway. Te GSDMD-N possesses membrane
pore-forming activity by attaching to phosphoinositides in
the plasma membrane, resulting in pyroptosis [25].

As we all know, Met is the frst choice for a hypogly-
cemic drug in the treatment of type 2 diabetes. Te UK
Prospective Diabetes Study (UKPDS) confrmed that Met
can reduce the progress of cardiovascular disease (UK
Prospective Diabetes Study [26]. Previous studies have
shown that Met could improve cardiac function damage
[27] and play a cardiac protective role in diabetes [28, 29].
In this study, we found that SMY had the same efect as Met
in improving cardiac function damage, which led us to
believe that SMY can protect the heart from diabetes. SMY,
a traditional Chinese medicine, is commonly used in the
clinic to treat cardiac insufciency, coronary heart disease,
and heart failure [8, 9, 30]. SMY could restore the cardiac
function of CHF rats, reduce serum biochemical indexes,

reduce cardiac tissue damage, and reduce the expression
levels of ALOX15 and CYP1A2, which may be related to the
linoleic acid metabolic pathway [10]. SMY could reduce
aortic plaque area and MMP9 expression in animal models
of myocardial ischemia and atherosclerosis (AS) in re-
sponse to DEP exposure. In addition, SMY also could
improve left ventricular structure, morphology, function,
blood fow, infarct area, myocardial damage, and ROS
accumulation to varying degrees in ApoE-/- mice, which
had a potential protective efect in DEP-aggravated AS with
myocardial ischemia [31]. Hence, SMY demonstrates po-
tential cardiac protective actions, including antilipid per-
oxidation and antiinfammatory characteristics, scavenging
oxygen free radicals, antiischemia and hypoxia and car-
diomyocyte protection, and regulation of linoleic acid
metabolism [10, 31, 32]. Eleven components of SMY in rat
serum were determined by LC-MS/MS, which were gin-
senoside Rg1, ginsenoside Re, ginsenoside Rf, ginsenoside
Rg2, ginsenoside Rb1, ginsenoside Rd, ginsenoside Rc,
ophiopogonin D, schisandrin, schisandrol B, and schi-
zandrin B [13]. Several compounds have been discovered to

**

#
#

#
60

40

20

0

FS
 (%

)

CT
L

D
M

M
et

SM
Y-

L

SM
Y-

M

SM
Y-

H

CT
L

D
M

M
et

SM
Y-

L

SM
Y-

M

SM
Y-

H

**

# # # ##
100

80

60

40

20

0

EF
 (%

)

CTL

SMY-L

DM

SMY-M

Met

SMY-H

(a) (b)

Figure 3: SMY improved the heart function of DCM rats. (a) EF (%). (b) FS (%). Te values were expressed as the mean± SD (n� 10),
∗∗P< 0.01 vs. CTL group, #P< 0.05, ##P< 0.01 vs. DM group.

6 Evidence-Based Complementary and Alternative Medicine



have potent inhibitory efects on the NLRP3 signaling
pathway, providing an experimental foundation for the
investigation of SMY. Ginsenoside Rg1 improved cardiac
function and suppressed lipopolysaccharide (LPS)-induced
apoptosis and infammation in mice. Tese efects were due
to the regulation of the increased expression of toll-like
receptor 4 (TLR4), NF-κB, and NLRP3 [33]. Ginsenoside
Re reduced the elevated NLRP3, ASC, and caspase-1
protein expression in the hippocampus of mice with
chronic restraint stress (CRS) [34]. Ginsenoside Rb1
inhibited the production of TNF-α, IL-18, and IL-1β in the
hippocampus, reduced the protein expression of NLRP3,
and stimulated the protein expressions of Nrf2 and HO-1
[35]. Ginsenoside Rd reduced signifcantly the activation of
the NLRP3 infammasome, which is reliant on the mito-
chondrial translocation of p62 and mitophagy [36]. In
addition, we predicted the binding afnities of 11 chemicals
in SMY with NLRP3 using molecular docking and

discovered that they all exhibited excellent binding ability.
Te superior binding afnities of ophiopogonin D, schi-
sandrol B, and ginsenoside Rf to NLRP3 may provide active
monomer compounds for future investigation.

Molecular docking indicated in this work that SMY may
interact with NLRP3 and its downstream signal pathway. In
vivo studies demonstrated that SMY can alleviate the
symptoms of DCM by lowering blood glucose and choles-
terol levels, enhancing heart function, histological alter-
ations, and myocardial enzyme and decreasing
cardiomyocyte apoptosis and myocardial fbrosis. Tese
pharmacodynamic fndings imply that SMY might greatly
protect the myocardium against DCM. SMY might also
suppress the mRNA and protein expressions of targets in the
NLRP3/caspase-1 signaling pathway in DCM (Figure 9).Te
results revealed that SMY can prevent and treat DCM and
that its protective impact is connected to its NLRP3/caspase-
1 regulatory signaling pathway.
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5. Conclusion

Te efects of the SMY on the DCM in vivo have been verifed.
SMY might greatly reduce the incidence and progression of
DCM in terms of cardiac function, myocardial enzymes,
histology, apoptosis, and the signaling pathway. SMY’s efect
on DCM is mediated through the NLRP3/caspase-1 signaling
pathway. However, whether its mechanism is directly related
to the NLRP3/caspase-1 signaling pathway needs further
experimental verifcation. Te next research will focus on
in vitro cellular mechanisms, such as adding a specifc in-
hibitor of NLRP3 or using NLRP3 gene silencing in the
experiment, in an attempt to better clarify the mechanism of
SMY in the prevention and treatment of DCM and provide
a new research direction for the treatment of DCM.
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