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Idiopathic oligoasthenozoospermia (iOAZS) is one of the major causes of male infertility, and the ideal therapies for iOAZS have
not been established yet. Traditional Chinese medicine (TCM), including Xianlu oral solution (XL), has been widely used as an
adjunct treatment for male infertility in the clinic. However, the underlying mechanisms of XL treatment on iOAZS are still not
known. Here, we found that XL treatment has therapeutic e�ects on ornidazole (ORN)-induced OAZS model rats through the
amelioration of testis tissues spermatogenesis and the improvement of sperm concentration andmotility. Moreover, XL treatment
ameliorated the serum hormone levels, mitochondrial membrane potential, apoptosis status, and oxidative stress status in the
testis tissues of iOAZS model rats. �ese �ndings identify a potential mechanism underlying the therapeutic e�ects of Xianlu oral
solution on iOAZS, and Xianlu oral solution may be used as a traditional Chinese medicine (TCM) therapy for male infertility
caused by iOAZS in clinical practice.

1. Introduction

Male infertility is an emerging global public health issue.
Approximately 7% of the male population is diagnosed with
some type of infertility, such as asthenozoospermia, oligo-
zoospermia, teratozoospermia, some combination of them,
or azoospermia [1, 2]. Approximately 19% and 63% of these
men with infertility were categorized as men having
asthenozoospermia (AZS), combined with oligozoospermia
(OZS), and/or teratozoospermia, respectively [3]. A multi-
tude of causes can lead to asthenozoospermia (AZS) or
oligozoospermia (OZS) including gene abnormality [4–9],
unhealthy lifestyle, prolonged duration of sexual abstinence,
infection, abnormal immunity, and urogenital diseases
[10–12]. However, no clear causes have been diagnosed in
some cases using routine clinical examinations, and these
cases have been categorized as idiopathic AZS or OZS (iAZS
or iOZS). Some therapies for AZS or OZS have been
established such as treating infection or varicocele by

antibiotics or surgery, changing lifestyle, avoiding toxic
environmental exposures, and maintaining regular inter-
course and ejaculation [13–16]. Additionally, some severe
cases of AZS or OZS caused by genetic factors bene�t from
the application of intracytoplasmic sperm injection (ICSI)
[17]. However, ideal therapies for iAZS or iOZS have not
been established.

Traditional Chinese medicine (TCM) has been widely
used as an adjunctive treatment for many kinds of infertility.
It has been reported that upregulation of CatSper1 (cation
channel of sperm) by Sheng-Jing-San, a TCM recipe
treatment, improves the sperm motility of AZS rats and that
oral administration of Wuzi Yanzong (WZYZ) formula can
restore the destroyed testicular structure of oligoastheno-
zoospermic model rats [18, 19]. Cistanche tubulosa (CT),
echinacoside (ECH), and phenylethanol glycosides from
C. tubulosa (CPhGs) could also attenuate poor sperm quality
and testicular toxicity through upregulation of steroidogenic
enzymes via the CYP450-3β-HSD pathway in Leydig cells of
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bisphenol A- or hydrocortisone-induced animal models
[20, 21]. Additionally, studies have found that newWenshen
Shengjing decoction (WSSJD) treatment could repair cy-
closporine-induced testicular damage in mice by increasing
testosterone levels in the testes and decreasing the apoptosis
of spermatogenic cells; Cuscuta chinensis Lam. and Lycium
barbarum L. treatment could regulate the expression of Bcl-
2, BAD, and BAX, thus reducing cell apoptosis and im-
proving sperm counts and the viability of Tripterygium
wilfordii Hook. (GTW) polyglycoside-treated rats [22, 23].

Xianlu oral solution (XL), consisting of several tradi-
tional Chinese medicines, has been used clinically in China
for the treatment of men with infertility with decreased
sperm count and motility induced by kidney-yin deficiency.
However, the effect and underlying mechanisms of Xianlu
oral solution for the treatment of iOAZS remain unknown.
In the present study, we first investigated whether XL
treatment exerts its action on iOAZS model rats. ,en, we
investigated the possible underlying mechanisms for its
treatment of iOAZS.

2. Materials and Methods

2.1. Animals. Sexually mature male Sprague-Dawley rats,
weighing 180–200 g at the beginning of the experiment, were
purchased from the Department of Laboratory Animal
Science, Peking University Health Science Center. All the
rats were housed in separate cages under the following
standard conditions: temperature (18–24°C), humidity
(55–65%), and dark cycle (12 h-light/12 h-dark cycle), with
ad libitum access to food and water. All experimental
protocols were approved by the animal care and use com-
mittee of Peking University (approved number: LA2021371).

2.2. Animal Model of Oligoasthenozoospermia. A rat model
of iOAZS was developed by intragastric administration of
ornidazole (ORN), as described previously [24]. In brief,
adult male rats were intragastrically administered with ORN
at a dose of 400mg/kg body weight once per day from day 1
to day 14. ,e control rats received a 0.2% carboxymeth-
ylcellulose sodium (CMC-Na) solution (vehicle of ORN)
throughout the experiment. Development of the iOAZS rat
model was determined by assessment of the epididymal
sperm motility and count as follows.

2.3. Xianlu Oral Solution Administration for Animals.
Xianlu oral solution (XL, a gift from Changchun Leiyun-
shang Pharmaceutical Company) was kept at room tem-
perature before use. ,e iOAZS model rats were
intragastrically administered low-dose XL (1.5ml/kg/d),
middle-dose XL (3.0ml/kg/d), high-dose XL (6.0ml/kg/d),
or equal amounts of normal saline (NS) once per day from
day 15 to day 35. Meanwhile, the XL- and NS-treated iOAZS
model rats were intragastrically administered with ornida-
zole (ORN, 400mg/kg/d) once per day to maintain the
pathological state of idiopathic oligoasthenozoospermia.,e
effects of XL treatment on iOAZS rats were also determined
by assessment of the epididymal sperm motility and count.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA).
Serum samples of rats were collected and kept at 4°C before
use. ELISA kits (MEIMIAN, China) were used to quantify
the levels of follicle-stimulating hormone (FSH, MM-
70867R1), luteinizing hormone (LH, MM-0624R1), testos-
terone (T, MM-0577R1), and blood urea nitrogen (BUN,
MM-20555R1), and ELISA kits (MEIBIAO, China) were
used to quantify the levels of alanine aminotransferase (ALT,
MB-6892B) and aspartate aminotransferase (AST, MB-
6891B) according to the manufacturer’s instructions.

2.5. Hematoxylin and Eosin (H&E) Staining. Under deep
anesthesia, the testes tissues of rats were removed quickly,
fixed in 4% neutral buffered formalin, dehydrated through an
ethanol series, and cleared twice in 100% xylene. For em-
bedding, the testes tissues were transferred to pure paraffin
wax for 1 h at 60°C. For H&E staining, 5 µm testicular sections
were dewaxed in xylene, rehydrated through ethanol series,
and then stained with H&E. Images were acquired using a
light microscope (OLYMPUS, Tokyo, Japan).

2.6. Computer-Assisted Sperm Analysis (CASA). Cauda ep-
ididymal sperm of rats were collected immediately after
euthanasia and prepared as described in a previous article
[25]. In brief, two caudal epididymides were placed in 2ml
preheated phosphate buffer saline (PBS), slightly cut into
three pieces and incubated for 5min at 37°C in a 5% CO2
incubator. Ten microliters of the sperm suspension were
used for the assessment of sperm motility and concentrated
by using a CASA system (WLJY-9000, Beijing Weili New
Century Science and Technology Development Co., Ltd,
Beijing, China). ,e following parameters were evaluated:
rapid progressive motility (grade A sperm, %), progressive
motility (grade A+B sperm, %), and sperm concentration
(million/ml), as well as the parameters of sperm motility
such as straight-line velocity (VSL, μm/s), curvilinear ve-
locity (VCL, μm/s), average path velocity (VAP, μm/s),
amplitude of lateral head displacement (ALH, μm), linearity
(LIN, %), and straightness (STR, %) were also evaluated.

2.7. Sperm Morphological Staining. Sperm morphological
staining was performed by the Diff–Quik method using the
sperm morphological fast staining kit (G2572, Solarbio,
Beijing, China) according to the manufacturer’s instruc-
tions. In brief, 20 μl of the sperm suspension were added to
the slides, smeared, and dried in air. ,e slides were soaked
in Diff staining buffer 1 for 20 s and then soaked in Diff
staining buffer 2 for 10 s. Images were acquired using a light
microscope (OLYMPUS, Tokyo, Japan).

2.8. Sperm DNA Staining. Sperm DNA staining was per-
formed by the AO method using the sperm nucleus DNA
staining kit (DA1210A, Leagene Biotechnology, Beijing,
China) according to the manufacturer’s instructions. In
brief, 20 μl of the sperm suspension was added to the slides,
smeared, and dried in air. ,e slides were fixed in the
stationary buffer for 15min, washed in ddH2O, and swung to
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remove the redundant water.,en, the slides were stained in
AO staining working solution for 5min. ,e slides were
observed under a confocal microscope (Zeiss LSM710), and
images were captured with ZEISS ZEN software (Carl Zeiss).

2.9. Detection of Mitochondrial Membrane Potential (MMP).
For the MMP analysis of testicular tissues in rats, the mi-
tochondrial membrane potential assay kit with JC-1 (C2006,
Beyotime Biotechnology, Jiangsu, China) was used following
the manufacturer’s instructions.

2.10. Western Blotting. A piece of testicular tissue from the
rats was immediately homogenized in ice-cold RIPA lysis
buffer containing 1mM phenylmethanesulfonyl fluoride
(P0013B, Beyotime Biotechnology, Jiangsu, China). ,e
homogenates were centrifuged at 12,000 g for 10min at 4°C
to yield the total protein extract in the supernatant. ,e
concentration of protein was measured with a bicinchoninic
acid (BCA) assay kit (Pierce/,ermo Scientific), and equal
amounts of protein samples (60 μg) were denatured and then
separated in 10% sodium dodecyl sulfate-polyacrylamide
gels and then transferred onto PVDF membranes. ,e
membranes were incubated with the following primary
antibodies overnight at 4°C: rabbit monoclonal anti-Bcl-2 (1 :
1000, Cell Signaling Technology (CST), cat# 3498), rabbit
polyclonal anti-caspase-3 (1 :1000, CST cat# 9662), rabbit
polyclonal anti-4-hydroxynonenal (4-HNE) (1 :1000,
Abcam, cat# ab48506), and mouse monoclonal anti-α-tu-
bulin (1 :1000, CST, cat# 3873).,emembranes were washed
in TBST and incubated with the indicated horseradish
peroxidase-conjugated secondary antibody including goat
anti-rabbit IgG antibody (1 : 2000, Biodragon Immuno-
technologies, Suzhou, Jiangsu, China, cat# BF03008) and
goat anti-mouse IgG antibody (1 : 2000, Biodragon Immu-
notechnologies, cat# BF03001) for 1 h at room temperature
and then washed in TBST. Immunoreactive bands were
visualized by using a Tanon 5200 chemiluminescence de-
tection system (Tanon, Shanghai, China). ,e bands were
quantified with a computer-assisted imaging analysis system
(ImageJ, NIH).

2.11. Oxidative Stress Assessments. Total antioxidant ca-
pacity (cat# S0119, total antioxidant capacity assay kit with
ABTS method), glutathione peroxidase (GPx) (cat# S0058,
total glutathione peroxidase assay kit with NADPH), and
superoxide dismutase (SOD) (cat# S0109, total superoxide
dismutase assay kit with NBT) activities as well as the levels
of hydrogen peroxide (cat# S0038, hydrogen peroxide assay
kit) and malondialdehyde (MDA) (cat# S0131M, lipid per-
oxidation MDA assay kit) in testicular tissues of rats were
measured using commercial kits purchased from Beyotime
Biotechnology according to the manufacturer’s instructions.

2.12. Statistical Analysis. All the statistical analyses were
performed with GraphPad Prism 8.0.2 (GraphPad Software,
La Jolla, CA, USA). ,e data were presented as the mean-
± standard error of the mean (mean± SEM). One-way

ANOVA followed by Sidak’s post hoc test was used for
multiple comparisons of three groups. ,e significant dif-
ferences between groups are represented as ∗P< 0.05,
∗∗P< 0.01, and ∗∗∗P< 0.001.

3. Results

3.1. Effects of XL Treatment on the Testis Index and Serum
Hormone Levels of OAZS Rats. To evaluate the effects of XL
treatment on iOAZS rats, we first examined the alterations in
body and testicular tissue weights of the rats in different
groups. ,e body and testis weights of iOAZS rats were
decreased, although the testis index (ratio of testis/body
weight) was not altered. Additionally, a high-dose XL (XL-
H) treatment improved the body and testis weights of iOAZS
rats (Figures 1(a)–1(c)). ,en, using ELISA, we found an
increase in the FSH and LH levels of high-dose XL-treated
rats, but the testosterone level was not changed
(Figures 1(d)–1(f)). Moreover, we found that ORN and XL
treatment had no side effects on the liver and kidney since
the levels of ALT, AST, and urea were not changed in ORN-
and XL-treated rats (Figures 1(g)–1(i)). ,ese results suggest
that XL treatment could improve testis spermatogenesis in
iOAZS rats.

3.2. XL Treatment Improved Testis Spermatogenesis in iOAZS
Rats. To further determine whether XL treatment had
therapeutic effects on iOAZS rats, we first evaluated testis
spermatogenesis in rats. ,e hematoxylin and eosin (H&E)
staining of the testis tissue showed that, on day 35 after
exposure of ORN to rats, the spermatogenic cells and sper-
matids in the seminiferous tubules were decreased and the
seminiferous tubules were disordered in the testis tissues in
iOAZS rats compared with vehicle-treated rats (Figure 2(a)).
Moreover, we found that XL treatment improved testis
spermatogenesis in iOAZS rats in a dose-dependent manner,
and the disruption of seminiferous tubules and decrease of
spermatogenic cells were alleviated after XL treatment in
iOAZS rats (Figure 2(b)). ,ese results suggest that XL
treatment ameliorated spermatogenesis in iOAZS rats.

3.3. XL Treatment Enhanced the Sperm Concentration and
Motility of iOAZS Rats. To further enhance our under-
standing of how XL treatment improved spermatogenesis in
iOAZS rats, we examined the alteration of sperm quality in
ORN- and XL-treated rats. Using the CASA technique, we
found a significant reduction in sperm concentration and
sperm motility, including grade A and grade A+B sperm in
iOAZS rats compared with vehicle controls (Figures 3(a)–
3(c)). Other parameters of sperm motility, including
straight-line velocity (VSL), curve-line velocity (VCL), av-
erage path velocity (VAP), amplitude of lateral head dis-
placement (ALH), linearity (LIN), and straightness (STR),
were consistently decreased in iOAZS rats (Figures 3(d)–
3(i)). Additionally, a high-dose XL treatment significantly
improved the sperm quality of iOAZS rats, as indicated by
augmented sperm concentration and sperm motility in-
cluding grade A sperm, grade A+B sperm and other
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parameters of spermmotility such as VSL, VCL, VAP, ALH,
LIN, and STR (Figures 3(a)–3(i)). Consistently, low- and
medium-dose XL treatment enhanced spermmotility (grade
A and grade A+B sperm) and some parameters of sperm
motility such as VSL, VAP, and LIN (Figures 3(a)–3(i)).
However, abnormal sperm morphology and DNA fragment
index (single-stranded DNA/double-stranded DNA) were
not altered by ORN or XL treatment in rats (Supplementary
Figure 1).,ese data suggest that XL treatment enhanced the
sperm concentration and motility of iOAZS rats.

3.4. Effects of XL Treatment on the Mitochondrial Membrane
Potential (MMP) and Apoptosis Status of iOAZS Rats. To
further clarify the underlyingmechanism contributing to the
improvement of XL treatment in iOAZS rats, we first
evaluated the mitochondrial membrane potential (MMP)
and apoptosis status of ORN- and XL-treated rats. Using a
JC-1 assay kit, we found that MMP was reduced in the testis
tissues of OAZS rats and was increased after high-dose XL
treatment of iOAZS rats (Figure 4(a)). Western blotting
results showed that XL treatment abrogated the reduced
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Figure 1: Improvement of FSH and LH levels in the serum of iOAZS rats with XL treatment. (a–c) Body weight, testis tissue weight, and the
ratio of testis tissue weight to body weight. All data were presented as mean± SEM. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. One-way
ANOVA followed by Sidak’s post hoc test, n� 8 to 10 rats per group. (d–f) ,e levels of follicle-stimulating hormone (FSH), luteinizing
hormone (LH), and testosterone (T). (g–i),e levels of aminotransferase (ALT), aspartate aminotransferase (AST), and blood urea nitrogen
(BUN). All data were presented as mean± SEM. ∗P< 0.05. One-way ANOVA followed by Sidak’s post hoc test, n� 5 to 6 rats per group.
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abundance of Bcl-2 protein in the testis tissues of OAZS rats
(Figure 4(b)) and only high-dose XL treatment attenuated
the increased level of caspase-3 protein in the testis tissues of
iOAZS rats (Figure 4(c)). ,ese data indicate that XL
treatment ameliorated the mitochondrial membrane po-
tential (MMP) and apoptosis status in the testis tissues of
iOAZS rats.

3.5. Effects of XL Treatment on the Oxidative Stress Status of
iOAZS Rats. We also found a decline in total antioxidant
capacity, total GPx, and SOD activities, as well as a rise in the
level of hydrogen peroxide, MDA, and protein expression of
4-hydroxynonenal (4-HNE) in the testis tissues of iOAZS
rats (Figures 5(a)–5(f)). Moreover, high-dose XL treatment
ameliorated the augmented oxidative stress in the testis

tissues of iOAZS rats, as manifested by enhanced total
antioxidant capacity, total GPx, and SOD activities and
attenuation of the level of MDA and protein expression of 4-
HNE (Figures 5(a)–5(f)). Taken together, we suggest that XL
treatment exerts its therapeutic actions on iOAZS rats by
ameliorating the mitochondrial membrane potential, apo-
ptosis status, and oxidative stress status in testis tissues.

4. Discussion

In this study, we demonstrated that Xianlu oral solution
treatment has a therapeutic effect on iOAZS by ameliorating
the serum hormone levels, mitochondrial membrane po-
tential, apoptosis status, and oxidative stress status in the
testis tissues. ,is study provides a novel mechanism for
Xianlu oral solution treatment on iOAZS, and Xianlu oral

Vehicle ORN NS

200 μm

100 μm

200 μm 200 μm

100 μm 100 μm

(a)

XL-L XL-HXL-M

100 μm 100 μm

200 μm 200 μm 200 μm

100 μm

(b)

Figure 2: Ameliorated testis spermatogenesis of iOAZS rats with XL treatment. (a) H&E staining of rat testis tissues of CMC-Na (vehicle)-,
ORN-, and normal saline (NS)-treated rats. (b) H&E staining of rat testis tissues of low-dose XL (XL-L), medium-dose XL (XL-M), and high-
dose XL (XL-H) treated rats. Scale bar� 100 μm or 200 μm. Arrows indicate the areas without spermatogenic cells.
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solution may be used as a traditional Chinese medicine
(TCM) therapy for male infertility caused by iOAZS in
clinical practice.

Multiple causes can lead to oligoasthenozoospermia
(OAZS), including infections and varicocele-induced re-
productive system disease, sex chromosome abnormalities
(Klinefelter’s syndrome and Y chromosome micro-
deletions), and defects in spermatozoa flagella

microstructure or function such as primary ciliary dyski-
nesia (PCD) or multiple morphological abnormalities of the
sperm flagellum (MMAF) [26, 27]. Prostatitis or varicocele
could result in augmentation of the autoimmune response
and seminal inflammatory factors, increased apoptosis, in-
creased oxidative stress, and spermatozoa DNA damage,
resulting in oligoasthenoteratozoospermia [28–31]. How-
ever, there were also some cases without clear causes,
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Figure 3: Enhanced sperm concentration and motility of iOAZS rats with XL treatment. (a–c) Sperm concentration, rapid progressive
motility (grade A sperm), and progressive motility (grade A+B sperm). (d) Straight-line velocity (VSL), (e) curve-line velocity (VCL), (f )
average path velocity (VAP), (g) amplitude of lateral head displacement (ALH), (h) linearity (LIN), and (i) straightness (STR). All data were
presented as mean± SEM. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. One-way ANOVA followed by Sidak’s post hoc test, n� 10 to 11 rats per
group.
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categorized as idiopathic oligoasthenozoospermia (iOAZS).
To date, there have been no ideal therapies for iOAZS, al-
though methods such as treating infection or varicocele by
antibiotics or surgery, changing in lifestyle, avoiding toxic
environmental exposures, and maintaining regular inter-
course and ejaculation have been established for OAZS, as
well as the application of intracytoplasmic sperm injection
(ICSI) for some severe OAZS patients caused by genetic
factors [14–17].

Traditional Chinese medicine (TCM) has been widely
used for the treatment of male infertility. Wenshen
Shengjing decoction treatment could repair testicular
damage and increase testosterone levels in the testes of
cyclosporine-induced OAZS mice [20]. ,e components of
Xianlu oral solution (XL), such as Cuscuta chinensis Lam.,
Lycium barbarum L., Fructus Ligustri Lucidi, and Panax
ginseng C. A. Meyer, could ameliorate spermatogenic dys-
function and improve the sperm quality of different model
animals by attenuating testis oxidative damage and apo-
ptosis of spermatogenic cells, as well as by augmenting sex
hormones [23, 32–35]. Our results showed that high-dose
Xianlu oral solution (XL) treatment improved the FSH and
LH but not the testosterone level in the serum, as well as
without side effects on liver and kidney function of ORN-
induced iOAZS rats. We think XL may influence the serum
hormone levels of OAZS rats through the hypothalamic-
pituitary-gonad axis (HPG). Furthermore, we found that XL
treatment also ameliorated testis spermatogenesis in iOAZS
rats by alleviating the disruption of seminiferous tubules and
increasing the spermatogenic cells in a dose-dependent
manner. Likewise, Sheng-Jing-San treatment improved the
sperm motility of AZS model rats, and Wuzi Yanzong
(WZYZ) formula administration restored the destroyed
testicular structure of oligoasthenozoospermic model rats
[18, 19]. Cistanche tubulosa (CT), echinacoside (ECH), and
phenylethanol glycosides from C. tubulosa (CPhGs)

treatment also attenuated the poor sperm quality and tes-
ticular toxicity of bisphenol A- or hydrocortisone-treated
animals [20, 21]. In line with these findings, we found that
high-dose XL treatment improved the sperm quality of
ORN-induced iOAZS rats, including the augmentation of
sperm concentration and sperm motility, including grade A
sperm, grade A+B sperm, and other parameters of sperm
motility such as VSL, VCL, VAP, ALH, LIN, and STR.
Consistently, low- and medium-dose XL treatment en-
hanced spermmotility (grade A and grade A+B sperm) and
some parameters of sperm motility, such as VSL, VAP, and
LIN. We also evaluated the abnormal sperm morphology
and DNA fragment index of XL-treated iOAZS rats since
DNA fragmentation and epigenetic abnormalities of sperm
were associated with sperm quality of men with infertility
[36–39]; however, our results showed that XL treatment had
no effect on abnormal sperm morphology and DNA frag-
ment index of iOAZS rats. We speculated that these results
may be due to the lack of alterations in abnormal sperm
morphology and DNA fragment index after ORN treatment.

During the occurrence of spermatogenesis disorder,
abnormal mitochondrial function, cell apoptosis, and oxi-
dative stress are also involved. Excessive ROS generation of
mitochondria, abnormal assembly of mitochondria, or
structural defects in mitochondrial membranes are associ-
ated with asthenozoospermia or oligozoospermia [40–44].
Consistently, we demonstrated that mitochondrial mem-
brane potential (MMP) was decreased in the testis tissues of
iOAZS rats and was increased after high-dose XL treatment
of iOAZS rats. We also showed that XL treatment mitigated
the cell apoptosis of iOAZS rats since XL treatment abro-
gated the reduced abundance of Bcl-2 protein and attenu-
ated the increased level of caspase-3 protein in the testis
tissues of iOAZS rats. Likewise, the newWenshen Shengjing
decoction, Cuscuta chinensis Lam. and Lycium barbarum
L. treatment reduced sperm cell apoptosis by regulating the
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Figure 4: Improved mitochondrial membrane potential (MMP) and apoptosis status of iOAZS rats with XL treatment. (a) ,e mito-
chondrial membrane potential of testis tissues. (b, c) Expression of Bcl-2 and caspase-3 protein in the testis tissues. All data were presented as
mean± SEM. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. One-way ANOVA followed by Sidak’s post hoc test, n� 4 to 5 rats per group.
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expression of Bcl-2, BAD, and BAX, thus improving sperm
counts of Tripterygium wilfordiiHook. polyglycoside-treated
rats [31, 43].

Oxidative stress occurs when there is an imbalance
between ROS and antioxidants, and oxidative stress in testis
tissues can be caused by varicocele and infection, abuse of
alcohol and drugs, radiation, metabolic diseases, and mental
stress [15, 45, 46]. Male infertility is associated with excessive
oxidative stress and lipid peroxidation of sperm [38, 39, 47].
It is well known that oxidative stress is a major cause of male

infertility since it can induce sperm nuclear and mito-
chondrial DNA (mtDNA) damage, telomere shortening,
epigenetic alterations, and Y chromosomal microdeletions
[48]. Spermatozoa are more susceptible to oxidative stress
and lipid peroxidation because plasma membrane of sper-
matozoa contains a large amount of polyunsaturated fatty
acids (PUFAs), and oxidative stress and lipid peroxidation
will lead to the generation of MDA and 4-HNE, causing
damage to spermatozoa [49, 50]. Y chromosomal micro-
deletions caused by oxidative stress during the
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Figure 5: Alleviated oxidative stress status in the testis tissue of iOAZS rats with XL treatment. (a–c) Total antioxidant capacity represented
by trolox-equivalent antioxidant capacity, total glutathione peroxidase (GPx), and total superoxide dismutase (SOD). (d–f) ,e level of
hydrogen peroxide, lipid peroxidation represented by malondialdehyde (MDA), and protein expression of 4-hydroxynonenal (4-HNE). All
data were presented as mean± SEM. ∗P< 0.05 and ∗∗P< 0.01. One-way ANOVA followed by Sidak’s post hoc test, n� 4 to 8 rats per group.
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differentiation and maturation processes in the male re-
productive tract may lead to male infertility, such as azo-
ospermia or severe oligozoospermia [51]. Epigenetic
abnormalities such as hypomethylation induced by oxidative
stress were also found in oligozoospermic men [36, 37]. We
also found a decline in total antioxidant capacity, total GPx,
and SOD activities, as well as a rise in the level of hydrogen
peroxide, MDA, and protein expression of 4-HNE in the
testis tissues of iOAZS rats. Moreover, the high-dose XL
treatment ameliorated the augmented oxidative stress in the
testis tissues of iOAZS rats, such as the enhanced total
antioxidant capacity, total GPx, and SOD activities and
attenuation of the level of MDA and protein expression of 4-
HNE. Likewise, Epimedium brevicornu Maxim (Yinyan-
ghuo) and Fructus Ligustri Lucidi (Nvzhenzi) may have
some therapeutic effects on OAZS by alleviating hydrogen
peroxide-induced oxidative damage [52, 53].

5. Conclusion

In conclusion, this study demonstrates that intragastric
administration of ORN to rats could produce a reduction of
sperm concentration and motility, whereas Xianlu oral
solution treatment increased the sperm concentration and
motility by increasing the serum FSH and LH hormone
levels, augmenting the mitochondrial membrane potential,
mitigating apoptosis, and ameliorating oxidative stress
status in the testis tissues of ORN-treated rats. Xianlu oral
solution may be used as a therapy for iOAZS patients in
clinical practice.
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