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Sarcopenia is a condition that reduces muscle mass and exercise capacity. Muscle atrophy is a common manifestation of
sarcopenia and can increase morbidity and mortality in speci�c patient populations.  e aim of this study was to identify novel
prognostic biomarkers for muscle atrophy and associated pathway analysis using bioinformatics methods.  e samples were �rst
divided into di�erent age groups and di�erent muscle type groups, respectively, and each of these samples was analyzed for
di�erences to obtain two groups of di�erentially expressed genes (DEGs).  e two groups of DEGs were intersected using Venn
diagrams to obtain 1,630 overlapping genes, and enrichment analysis was performed to observe the Gene Ontology (GO)
functional terms of overlapping genes and the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.
Subsequently, WGCNA (weighted gene coexpression network analysis) was used to �nd gene modules associated with both the
age andmuscle type to obtain the lightgreen module. e genes in the key modules were analyzed using PPI, and the top �ve genes
were obtained using the MCC (maximum correntropy criterion) algorithm. Finally, CUL3 and COPS5 were obtained by
comparing gene expression levels and analyzing the respective KEGG pathways using gene set enrichment analysis (GSEA). In
conclusion, we identi�ed that CUL3 and COPS5 may be novel prognostic biomarkers in muscle atrophy based on bioinformatics
analysis. CUL3 and COPS5 are associated with the ubiquitin-proteasome pathway.

1. Introduction

 e skeletal muscle consists of muscle �bers and bundles
that play an important role in regulating the metabolic
aspects of the body. Universally, increased exercise leads
to increased muscle mass, while decreased or restricted
rates of exercise can lead to muscle atrophy [1]. Muscle
atrophy is a response that can weaken patients with
hunger and some systemic diseases, often leading to
muscle mass loss [2], and this phenomenon is also de�ned
as sarcopenia in a broad sense. Muscular dystrophy is
usually manifested as generalized muscular atrophy and
fat in�ltration, which is associated with the incidence rate
and mortality in the context of aging and cancer [3]. For
muscle atrophy, when muscles are inactive for a long
period of time, muscle contractile function and muscle
�ber size decrease as a result of increased degradation and
decreased synthesis of muscle proteins [4]. Muscle

atrophy can occur in a variety of individuals who are
su�ering from diseases, such as diabetes, cancer, muscle
genetic disorders, and neurodegenerative diseases, or
under mechanical unloading conditions, such as pro-
longed bed rest and reduced step count [5]. Muscle at-
rophy can lead to a poorer functional status, reducing the
quality of life of patients and increasing morbidity and
mortality in speci�c patient groups [6].

Muscle atrophy is the direct manifestation of sarcopenia,
and its main cause is excessive protein degradation.  e
Forkhead box O (FOXO) family of transcription factors and
the progrowth IGF-AKT pathway are key mediators of
muscle atrophy and are important for the protein degra-
dation pathway in muscle atrophy [7]. Also, mitochondrial
dysfunction is associated with disuse muscle atrophy [8].
Mitochondrial oxidative stress (OS) can stimulate muscle
proteolysis by increasing the involvement in protein deg-
radation pathways and protein expression [9], and excessive
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oxidative stress can lead to muscle damage and, conse-
quently, muscle atrophy [10]. -e occurrence of muscle
atrophy is both “active” and “passive”; therefore, its study is
of high clinical necessity. “Active” muscle atrophy is often
caused by denervation. Nutritional factors that maintain
skeletal muscle function require the innervation of motor
neurons, and when muscle innervation deteriorates, it can
lead to inadequate nerve input, resulting in muscle weakness
or even atrophy [11]. -is loss of muscle mass and function
caused by peripheral nervous system injury or motor neuron
disease is called neurogenic muscle atrophy and, in some
cases, can reduce survival rates [12], which is also considered
to be the main cause of the progression of sarcopenia.
“Passive” muscle atrophy, on the other hand, is usually the
result of other conditions that require reduced or limited
activity. It is called disuse muscle atrophy and promotes
skeletal muscle atrophy by stimulating protein decompo-
sition [13]. Generally speaking, with the progress of aging,
reactive oxygen species produced by muscle mitochondria
will increase [14], which is another reason to promote the
occurrence of sarcopenia. In contrast, muscle atrophy as-
sociated with wasting after a musculoskeletal injury is often
difficult to overcome and can persist despite efforts at re-
habilitation [15].

Several studies have shown that the development of
muscle atrophy is associated with the regulation of proteins
or RNAs. Li et al. [6] showed that miR-29b causes several
types of muscle atrophy, while Li et al. demonstrated that
lncIRS1 indirectly controls the production of muscle atro-
phy [16]. In this study, we will use bioinformatics ap-
proaches to find potential genes associated with muscle
atrophy by grouping mice and obtaining sequencing
information.

2. Materials and Methods

2.1. Establishment of the AnimalModel. In this study, a total
of 30 6-week-old male mice were selected from Institute of
Cancer Research (ICR) (Cavens Lab, China) and divided
into different age groups andmuscle types groups. Firstly, 30
mice were reared at 25°C in light/dark cycle environment for
12 h each, without restriction of movement and feeding. At 2
months, 15 mice were sacrificed by neck removal, extensor
digitorum longus atrophy(EDLA) tissues were obtained
from 7 mice, and soleus longus atrophy (SOLA) tissues were
obtained from 8 mice, the remaining 15 mice were sacrificed
by neck removal at 29 months, and EDLA tissues were
obtained from 7 mice. SOLA tissues were obtained from 8
mice. Finally, 30 muscle atrophy samples were obtained,
including 7 2-month-old EDLA muscle atrophy samples, 8
2-month-old SOLA muscle atrophy samples, 8 29-month-
old EDLA muscle atrophy samples, and 7 29-month-old
SOLA muscle atrophy samples. -e samples were sent for
sequencing to obtain the muscle atrophy-related gene ex-
pression profile. Animal experiments were carried out in the
First Affiliated Hospital of Zhejiang University, and the
experimental program was carried out in an accredited
animal facility (no. 2017-038).

2.2. Differential Expression Analysis. Samples were grouped
according to themonthly age or muscle type, and two groups
of differentially expressed genes (DEGs) were obtained using
the R package and the limma package for differential analysis
of two-month-old and 29-month-old mice or EDLA and
SOLA muscle atrophy mice, respectively. Genes with dif-
ferential expression in the two groups were selected using |
log2FC| >1, P< 0.05, as a screening condition. -e over-
lapping genes were obtained by taking the intersection of the
two groups of DEGs using a Venn diagram.

2.3. Weighted Gene Coexpression Network Analysis
(WGCNA). WGCNAwas conducted using the R package to
analyze the co-expression of DEGs associated with muscle
atrophy in mice. A soft threshold β was calculated using the
scale-free topology criterion to generate a weighted adja-
cency matrix. Subsequently, gene modules were cut using
the dynamic tree-cutting method. Additionally, the corre-
lation between each gene module and sample phenotype was
analyzed by the WGCNA package, and the module that
correlated the most with both the monthly age and muscle
type was selected as the target gene module.

2.4. Protein-Protein Interaction (PPI) Network. -e Search
Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database was used to explore the known and
predicted interactions between proteins, including direct
and indirect relationships, construct protein expression
networks in key gene modules from the STRING database,
and link disease-causing gene-to-gene features via Cyto-
scape. -e top five extracted genes were processed using the
maximum correntropy criterion (MCC) algorithm in the
cytoHubba plugin and used as pivotal genes.

2.5. Gene Expression Validation. To understand the differ-
ences in the expression of each pivotal gene between dif-
ferent phenotypes in mice, the expression level distribution
was achieved using the R package ggplot2. -e samples were
grouped according to monthly age and muscle type, and t-
tests were used to analyze the significance of differences in
pivotal gene expression. P< 0.05 was considered statistically
significant.

2.6. Enrichment Analysis. To better understand the patho-
genic role of mRNA, overlapping genes were analyzed for
Gene Ontology (GO) function and Kyoto Encyclopedia of
Genes (KEGG) pathways using the R package ClusterPro-
filer. GO is used to annotate genes with function, and it
contains a molecular function (MF), biological process (BP),
and cellular component (CC). In contrast, KEGG can be
used to analyze the gene functions and functional infor-
mation of the related genomes and to explore the functional
pathways of pathogenic genes. In the enrichment results,
P< 0.05 or FDR< 0.05 was considered significant for the
enriched pathway. Gene set enrichment analysis (GSEA) was
used to analyze the association of hub genes with the mouse
muscle atrophy pathway. KEGG pathways in the top three of
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significance were selected for analysis using the screening
conditions of |NES| >1, NOM p val <0.05, and FDR q val
<0.25.

3. Analysis of Results

3.1. Differential Expression Analysis. -e mice were divided
into two groups according to their age and the type of muscle
atrophy, and each group was analyzed for differences. A total
of 2,721 genes were downregulated, and 1,298 genes were
upregulated in the two-month-old and 29-month-old
groups of muscle atrophy mice (Figures 1(a) and 1(b)). In
the EDLA muscle atrophy group and the SOLA muscle
atrophy group, a total of 2,651 genes were downregulated
and 1,148 genes were upregulated (Figures 1(c) and 1(d)).
For the potential causative genes of muscle atrophy in mice,
this study used Venn diagrams to take the intersection of the
months and muscle groups, and obtained 1,630 overlapping
genes associated with both the monthly age and muscle type
(Figure 1(e)).

3.2.GOFunction and theKEGGPathway. To understand the
function of overlapping genes in muscle atrophy in mice, we
used enrichment analysis to observe the main functions and
pathways of these genes. -e top 20 KEGG pathways and
GO function terms were enriched and presented using
bubble plots. -e results showed that the target genes were
associated with KEGG processes, such as Parkinson’s dis-
ease, Alzheimer’s disease, and oxidative phosphorylation
(Figure 2(a)). For GO functional terms, the target genes were
significantly enriched for energy metabolic processes, such
as purine nucleotide metabolic processes; energy production
from oxidation of organic compounds; ribonucleoside
monophosphate metabolic processes (Figure 2(b)); cellular
components, such as organelle inner membrane; mito-
chondrial inner membrane; mitochondrial protein com-
plexes (Figure 2(c)); and molecular functions, such as cell
adhesion molecule binding, electron transfer activity, and
NADH dehydrogenase activity (Figure 2(d)).

3.3. WGCNA Selection of Key Gene Modules. In WGCNA,
when the correlation coefficient is greater than 0.85, the
optimal soft threshold value β� 24 (Figures 3(a) and 3(b)).
At this time, the genes can be clustered using the average
chain hierarchy clustering method, and five color modules
can be obtained (Figure 3(c)). -e lightgreen, cyan, blue,
grey, and magenta modules contain 224, 1074, 175, 93, and
64 genes, respectively (Figure 3(d)). Among them, the
lightgreen module was significantly and positively correlated
with both mouse month age (cor� 0.59, P � 0.0003) and
muscle type (cor� 0.6, P � 0.0003).

3.4. Protein Interaction Network to Find Pivotal Genes. To
further identify pivotal genes affecting the progression of
muscle atrophy in mice, we used the STRING database to
identify the interactions between proteins in the lightgreen
module and obtained a total of 223 nodes and 196 edges

(Figure 4(a)). -e top five genes in terms of correlation
ranking such as ubiquitin-specific peptidase 7(USP7),
ubiquitin-protein ligase E3A (UBE3A), Cullin 3 (CUL3),
ubiquitin-specific peptidase 9, X-linked (USP9X), and COP9
constitutive photomorphogenic homolog subunit 5
(COPS5) were then derived using the MCC algorithm and
used as pivotal genes for subsequent analysis (Figure 4(b)).

3.5. CUL3 and COPS5 as Pivotal Genes. Correlation analysis
of pivotal genes revealed high correlation coefficients among
all five genes and significant results (Figure 5(a)). -e ex-
pression levels of the five genes were then analyzed, and the
mouse samples were divided into 29-month-old and two-
month-old to observe the difference in the expression of
pivotal genes in the EDLA muscle and the SOLA muscle,
respectively. -e results showed that only the expression
levels of CUL3 and COPS5 were significant at the same time
(Figures 5(b)–5(f)), which indicated that CUL3 and COPS5
were correlated with both months of age and muscle type
during the development of muscle atrophy in mice.

3.6. GSEA Analysis of the KEGG Pathway of Key Genes.
To further understand the functional pathways involved in
the key genes in mouse muscle atrophy, this study focused
on the KEGG pathway using GSEA. Analysis showed that
CUL3 was associated with signaling pathways, such as
Parkinson’s disease, ECM-receptor interaction, and oxida-
tive phosphorylation (Figures 6(a)–6(c)), while COPS5 was
associated with signaling pathways, such as the proteasome,
protein export, and ubiquitin-mediated protein hydrolysis
(Figures 6(d)–6(f)).

4. Discussion

Muscle reduction is the main cause of muscle strength and
muscle mass loss in the elderly. It is also an important
complication of chronic kidney disease [17], cardiac ca-
chexia [18], diabetes mellitus [19], and cancer [20]. Factors
associated with sarcopenia include neurological factors,
oxidative stress, mitochondrial dysfunction, fat accumula-
tion, mild inflammation, nutritional deficiency, hormone
changes, reduction of the number of microcells, and re-
generative capacity. Some studies have shown that moderate
exercise enhances mitochondrial adaptation and function,
which facilitates skeletal muscle recovery and myocyte re-
generation [21]. In addition, many types of drugs have the
potential to treat muscle atrophy, including anabolic drugs,
enzyme inhibitors, and anti-inflammatory drugs [22]. But so
far, no drugs have been approved for the treatment of
sarcopenia, which makes the search for appropriate inter-
vention targets become the focus of clinical research. Ad-
vances in transcriptome technology and high-throughput
analysis allow the detection of a variety of cytokines, such as
growth factors, transcription factors, cell signal pathway
activators, and noncoding RNA, which are involved in the
regulation of gene expression during skeletal muscle aging
changes and adaptation [23]. In this study, an expression
matrix containing 18234 genes was obtained by sequencing
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mouse samples. -e differential expression of these genes
was compared from two dimensions, and 1630 overlapping
genes were obtained.

Further enrichment analysis was used to clarify the role
of 1630 DEGs. KEGG enrichment analysis showed that the
differential genes were related to Parkinson’s disease, Alz-
heimer’s disease, and oxidative phosphorylation. Parkin-
son’s disease (PD) is a progressive dyskinesia. Sarcopenia is
common in patients with Parkinson’s disease and is asso-
ciated with more advanced disease stages, higher dyskinesia
and nonexercise load, falls, reduced quality of life, and
hospitalization. Sarcopenia and Parkinson’s disease have
multiple common pathways, which may affect each other’s
prognosis and patients’ quality of life [24]. In addition, GO
function analysis showed that mitochondrial changes were
also an important pathway of muscle atrophy. Previous
studies have shown that mitochondrial biosynthesis, mito-
chondrial respiratory complex subunit expression, mito-
chondrial respiration, and ATP levels are significantly
reduced in aging skeletal muscle [25, 26]. Migliavacca et al.
demonstrated for the first time that mitochondrial biological
dysfunction is the strongest molecular feature of sarcopenia.
Changes in mitochondria include decreased mitochondria,
decreased expression and activity of mitochondrial respi-
ratory complexes, and interference with NAD biosynthesis
and repair in muscle [27].

In order to further study the gene regulatory factors
related to sarcopenia, five key genes were identified by
WGCNA and PPI. -e expression of CUL3 and COPS5 was
significantly correlated with mouse month age and muscle
type. CUL3 (Cullin 3) is a key protein of the E3 ubiquitin
ligase complex and mediates the proteasomal degradation
process [28]. CUL3 regulates a variety of cellular functions,
such as antioxidant, cell cycle, protein transport, and signal
transduction [29]. CUL3 deficiency increases the expression
of cell cycle proteins E and P21, which are associated with
abnormal proliferation, DNA damage, and apoptosis [30].
Studies have shown that CUL3 is associated with vascular
smooth muscle specificity and may indirectly promote

proliferation, migration, and inflammatory response of
vascular smooth muscle cells [31]. In contrast, its deletion
promotes NO reactivity and leads to atherosclerosis and
hypertension [32]. In addition, CUL3 plays a key role in the
development and function of the transverse muscle, and it
mediates protein homeostasis, with important implications
in muscle function [33]. Additional studies have used gene
expression and structural analysis to identify CUL3 asso-
ciated with sarcopenia [34]. Another key gene is COP9
signaling vesicle complex 5 (COPS5), also known as C-Jun
activation domain-binding protein-1 (Jab1), a multifunc-
tional protein [35]. COPS5 is involved in the regulation of
cellular and developmental processes, such as signal
transduction, cell cycle processes, DNA damage response,
and tumorigenesis [36], and plays an important role in
ubiquitin-mediated protein degradation [37]. Most of the
current studies focus on the oncogenic function of COPS5,
and its dysregulated activity contributes to the development
of cancers, such as breast cancer [38], glioma [39], and
prostate cancer [40]. It has been reported that COPS5 usually
interacts with proteins or binds to miRNAs to regulate
tumor progression [41], and it has also been shown to affect
the metastatic potential of cancer cells by inhibiting SNAIL
ubiquitination [42]. Regarding the role in muscle function,
the results of Velardo et al. showed that COPS5 has an
important role in muscle development, maintenance, and
regeneration and is associated with the pathogenesis of
congenital muscular dystrophy [43].

In order to further understand the functional pathway of
the two genes involved in mouse muscle atrophy, CUL3 and
COPS5 were analyzed by GSEA. GSEA results showed that
CUL3 was related to Parkinson’s disease, ECM-receptor
interaction, and oxidative phosphorylation. COPS5 is re-
lated to the proteasome, protein output, and ubiquitin-
mediated proteolysis. Previous studies have shown that the
ubiquitin-proteasome system (UPS) is activated during se-
nile muscle atrophy [44]. CUL3 [29] and COPS5 [45] are
important members of the ubiquitin-proteasome system,
which is consistent with our study. -e ubiquitin-

months muscle

2389 1630 2169

(e)

Figure 1: Results of differential gene expression analysis in different group. (a, b) Differential gene expression results after grouping based
on different muscle types. (c, d) Differential gene expression results after grouping based on different monthly ages of mice. (e) DEGs
obtained based on monthly age grouping are named months, and DEGs obtained based on muscle type grouping are named muscle. -e
intersection of the two groups of DEGs was obtained using the Venn diagram.
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Figure 2: Results of enrichment analysis of DEGs. (a) Results of the top 20 KEGG pathways. (b–d) Results of the top 20 BP, CC, and MF
functions, respectively.

–0
.2

–0
.4

0.
0

0.
2

Sc
al

e F
re

e T
op

ol
og

y 
M

od
el

 F
it 

(s
ig

ne
d 

R*
2)

0.
4

0.
6

0.
8

0 5 10
So� �reshold (power)

15 20 25 30

1
2

3
4

5

6

7
8 9 10

12
14 16 18 20 22 26 28 3024

Scale independence

(a)

Figure 3: Continued.

12 Evidence-Based Complementary and Alternative Medicine



1

2

3

4
5

6
7

8 9 10 12 14 16 18 20 22 2624 28 30
80

0
60

0
40

0
20

0
0

M
ea

n 
C

on
ne

ct
iv

ity

0 5 10
So� �reshold (power)

15 20 25 30

Mean connectivity

(b)

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 Cluster Dendrogram

hclust (*, "average")
as.dist(dissTOM)

H
ei

gh
t

Dynamic Module

Merged Module

(c)

Eigengene adjacency heatmap

lightgreen

lightgreen

magenta

magenta

grey

grey

blue

blue

cyan

cyan

1

0.8

0.6

0.4

0.2

0

(d)

lightgreen

Module-trait relationships

magenta

grey

age muscle

blue

cyan

1

0.5

0

–0.5

–1

0.59
(3e-04)

–0.56
(8e-04)

0.62
(2e-04)

0.55
(0.001)

–0.57
(7e-04)

–0.58
(6e-04)

–0.63
(1e-04)

–0.66
(4e-05)

–0.66
(4e-05)

0.59
(3e-04)

(e)

Figure 3: Weighted mouse muscle atrophy gene coexpression. (a, b) Tscale-free fit indices and mean connectivity for various soft threshold
powers. (c) Dendrogram of overlapping genes based on different index clusters. (d) Neighbor-joining heat map of modular signature genes.
(e) Correlation heat map of modular signature genes with different phenotypes of muscle atrophy in mice.

Evidence-Based Complementary and Alternative Medicine 13



proteasome pathway is the main protein degradation
pathway, and the process is a three-step enzymatic cascade
reaction [46]. Furthermore, the E3 ligase of the Cullin family
catalyzes the last step, which attaches ubiquitin protein to
the target substrate protein [47]. Interestingly, Blondelle

et al. in their study showed that the regulation of the Cullin
activity is associated with the COP9 signaling vesicle
complex [48].-is study is similar to the results of Spearman
analysis in the present study, where CUL3 was correlated
with COPS5 (cor� 0.73) (Figure 5(a)).
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Figure 6: Continued.

16 Evidence-Based Complementary and Alternative Medicine



5. Conclusion

In conclusion, this study identified two new potential genes
(CUL3 and COPS5) of muscle atrophy. Furthermore, CUL3
and COPS5 are related to the ubiquitin-proteasome path-
way, which may provide useful ideas for the study of the
pathogenesis of muscle atrophy. In the future, we will
continue to study in vitro and in vivo.
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J. Bernhagen, “CSN5/JAB1 suppresses the WNT inhibitor
DKK1 in colorectal cancer cells,” Cellular Signalling, vol. 34,
pp. 38–46, 2017.

18 Evidence-Based Complementary and Alternative Medicine



[42] K. Watanabe, S. Yokoyama, N. Kaneto et al., “COP9 sig-
nalosome subunit 5 regulates cancer metastasis by deubi-
quitinating SNAIL,” Oncotarget, vol. 9, no. 29,
pp. 20670–20680, 2018.

[43] D. Velardo, E. Porrello, R. Tonlorenzi et al., “Jab1 in the
pathogenesis of merosin deficient congenital muscular dys-
trophy (MDC1A),” Neuromuscular Disorders, vol. 27, p. S108,
2017.

[44] K. Sakuma, W. Aoi, and A. Yamaguchi, “Molecular mecha-
nism of sarcopenia and cachexia: recent research advances,”
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