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�e copper ion content in the body maintains homeostasis, and when dysregulated, it can produce cytotoxicity and induce cell
death through a variety of pathways. Cuproptosis refers to copper ions combining directly with acylated molecules, leading to the
accumulation of oligomerization of lipoylated protein and subsequent downregulation of iron-sulfur cluster proteins; this induces
proteotoxic stress and cell death. �is study on the relationship between cuproptosis-related lncRNAs (CRLns) and the prognosis
of primary hepatic carcinoma (PHC) has important clinical guiding signi�cance for the diagnosis and treatment of PHC.
Prognosis-related CRLRs were identi�ed via rank-sum tests, correlational analyses, and univariate Cox regression, and a CRLR
risk-scoring model (CRLRSM) was constructed using LASSO Cox regression. Patients were divided into high-risk and low-risk
groups based on the median CRLRSM scores. Variance analysis for cuproptosis-related genes, gene set enrichment analysis, and
correlational analysis for risk and immunity were performed using boxplots. Quantitative polymerase chain reactions were used to
verify the CRLR levels in PHC cell lines.�e study results showed that patients in the CRLRSM high-risk group had worse survival
rates than those in the low-risk group. �e PHC stage and risk score were independent prognostic factors for hepatocellular
carcinoma. �ere were 7 CRLRs (MIR210HG, AC099850.3, AL031985.3, AC012073.1, MKLN1-AS, KDM4A-AS1, and PLBD1-
AS1) associated with PHC prognosis, primarily through cellular metabolism, growth, proliferation, apoptosis, and immunity. In
conclusion, the overexpression of 7 CRLRs in patients with PHC indicates a poor prognosis.

1. Introduction

Copper ion is an essential metal element for bacteria, ani-
mals, and humans, and an indispensable cofactor in the
process of life activities [1]. Under normal physiological
conditions, copper ions maintain a low concentration in
organisms and maintain dynamic balance, and excessive
accumulation of copper ions induces cell death [2]. �e
mechanism is unknown, but in recent years, it has been
found that copper ions combine with anticancer drugs to
produce reactive oxygen species, form oxidative stress, in-
hibit antiapoptotic factors, activate apoptosis-related path-
ways, and thus induce apoptosis of cancer cells [3, 4]. Cu2+
complexes can be potent proteasome inhibitors, inhibiting
proteasome activity in some tumors and subsequently

inhibiting cell proliferation [5, 6]. Recently, Tsvetkov et al.
found that copper ions directly bind to the lipoacylated
component of the tricarboxylic acid cycle (TCA) in mito-
chondrial respiration, leading to the aggregation of lip-
oacylated proteins and subsequent downregulation of iron-
sulfur cluster proteins, leading to proteotoxic stress and
ultimately cell death. Copper carriers were also found to kill
speci�c drug-resistant cancer cells. �e research team
identi�ed this as a new type of cell death, termed cuproptosis
[7].

Primary hepatic carcinoma (PHC) is one of the most
common digestive system malignancies and comprises
mainly hepatocellular carcinoma (HCC) and intrahepatic
cholangiocarcinoma (ICC). �e pathogenesis of PHC is a
complex and multistage process, involving epigenetics and
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genetics, finally leading to the cancerization of hepatic cells.
Although ever-improving surgical approaches and emerging
drugs have lengthened patient survival, their overall out-
comes remain unsatisfactory. 'e five-year survival rate in
patients with PHC is merely 20% [8].

In order to prolong the survival of patients with Primary
hepatic carcinoma, we identified FDX1, LIAS, LIPT1, DLD,
DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A as
cuproptosis-related genes [7] through previous studies. Long
noncoding RNAs (lncRNAs) are nonbiased RNAs with a
length of more than 200 nucleotides [9]. Accumulating
evidence shows that lncRNA plays a complex and precise
regulatory role in the process of tumorigenesis and devel-
opment by acting as oncogenes or tumor performing factors
[10–13]. 'ey can not only regulate the proliferation, dif-
ferentiation, invasion, and metastasis of cancer cells but also
regulate the metabolic reprogramming of cancer cells
[14–16]. 'ere are currently few studies regarding the
correlation between cuproptosis-related lncRNAs and PHC.
'erefore, we built a new model of cuproptosis-related
lncRNAs to predict the prognoses of PHC patients, assess
the predictive performance of these lncRNAs, interpret
individual differences, identify targets, and improve survival,
which would be of great value in clinical practice.

2. Materials and Methods

2.1. Collection of Gene Expression and Clinical Data.
'ere were 421 sets of public RNA-sequencing tran-
scriptome data and clinical data extracted from UCSC Xena
(http://xena.ucsc.edu/); one set of clear cell adenocarci-
nomas and six sets with unavailable clinical information
were excluded. 'us, 414 sets were included: 364 sets of
cancer tissue samples and 50 sets of normal tissue samples.
HCC and HCC concomitant with ICC were the primary
pathological types. 'e collected clinical characteristics in-
cluded age, sex, pathological stage, overall cancer stage,
survival state, and overall survival (OS) of the patients. Ten
cuproptosis-related genes were identified through screening
of genome-wide CRISPR–Cas9 deletions [7].

2.2. Cuproptosis-Related lncRNAs. 'ere were 19266
mRNAs and 13431 lncRNAs that were recognized from the
cancer tissues and normal tissues using the “Perl” software,
and 10 cuproptosis-related genes were identified through
screening of genome-wide CRISPR–Cas9 deletions. To as-
sess lncRNAs associated with cuproptosis, Spearman’s rank
correlation coefficient was analyzed using the “limma” R
package. 'e lncRNAs with p< 0.001 and a correlation
coefficient of 0.4 were selected as cuproptosis-related
lncRNAs. Univariate Cox regression was used to identify 106
prognosis-related lncRNAs (p< 0.05).

2.3.Construction of thePredictionModel. 'e Least Absolute
Shrinkage and Selection Operator (LASSO) was processed
using the “glmnet” R package to sort out cuproptosis-related
lncRNAs (CRLRs), which were then plugged into a multi-
variate Cox model to construct a CRLR risk-scoring model

(CRLRSM). 'e following formula was used for the risk
scoring:

Risk score � Coef lncRNAs × ExplncRNAs. (1)

Patients were divided into high-risk and low-risk groups
based on the median CRLRSM scores.

2.4. Survival Analysis and Model Validation. A total of 364
PHC patients were assigned in a 5 : 5 ratio to a training
(n� 184) or test group (n� 180) for validation of the risk
score. Kaplan–Meier analysis was performed, and the area
under the receiver operator characteristic (ROC) curve
(AUC) was calculated using R (version 4.1.3) for the three
groups of low-risk and high-risk patients to estimate the
accuracy and sensitivity of the OS prediction. Principal
components analysis was used to evaluate differences in the
expression of CRLRs in patients with PHC. To evaluate
whether the risk score would be an independent prognostic
factor and to identify clinical characteristics that could be
regarded as independent prognostic factors, ROC univariate
analysis, and Cox multivariate analysis were performed for
clinical characteristics (age, sex, pathological stage, and
overall stage) and the risk score. 'e ROC was used to
compare the predictive performance between the clinical
characteristics and risk score.

2.5. Nomogram Predicted Survival. A predictive nomogram
for cancer risk can estimate the survival of specific cancer
patients based on individual data, and they are of great value
in clinical practice [17]. Using the “rms” and “Hmisc” R
packages, we plotted a nomogram that included stages and
risk scores. 'e AUC and calibration charts were used to
evaluate the predictive accuracy and value of the 1-year, 3-
year, and 5-year survival rates. A consistency index (C-in-
dex) was used to validate the performance of the nomogram
predictions.

2.6. Variance Analysis for Cuproptosis-Related Genes. A
boxplot is used to visualize the dispersion of data, which can
be used to compare the distribution characteristics of multiple
sets of data. 'erefore, we constructed a boxplot, using the
“limma” and “ggpubr” packages in R to evaluate whether
there was a difference in the expression of cuproptosis-related
genes between high-risk and low-risk groups.

2.7. Correlational Analysis for Risk and Immunity. 'e types
and distributions of immune cells from the 414 patients were
analyzed using the CIBERSORT algorithm, and the rela-
tionship between the risk score and the amount of immune
cell invasion was assessed using Spearman’s correlation
analysis. Statistical significance was indicated by a p

value< 0.05.

2.8. Gene Set Enrichment Analysis. 'e patients were
assigned to the low-risk or high-risk group based on the
prediction model. Gene set enrichment analysis was
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performed to identify significantly associated biological
functions and signaling pathways, which might be potential
pathways related to CRLR regulation. Statistical significance
was indicated by a false discovery rate (FDR)< 0.05.

2.9. Cell Culturing. Human cell lines of normal hepatocytes
(LO-2) and hepatomas (Huh7, Hep3B, and SK-Hep-1) were
purchased from the Cell Collection Center of the Chinese
Academy of Sciences. All cell lines were incubated in 5%
CO2 at 37°C on a medium supplemented with 10% fetal
bovine serum and 1% penicillin–streptomycin. 'e LO-2
cells were cultured using RPMI1630 medium, Huh7 cells
were cultured using DMEM high-glucose medium, and
Hep3B and SK-Hep-1 cells were cultured using MEM high-
glucose medium.

2.10. Real-Time Polymerase Chain Reaction (PCR). RNA was
extracted from 1× 106 LO-2, Huh7, Hep3B, and SK-Hep-1
cells using TRIzol reagent, followed by reverse-transcription
to synthesize cDNA using a cDNA synthesis kit according to
the manufacturer’s instructions. Based on the SYBR-Green
method (TaKaRa), the 7500 Real-Time PCR System (Applied
Biosystems) was used to measure the levels of the resulting
cDNA.'e reaction program was 30 s at 94°C, followed by 40
cycles of 5 s at 94°C and 35 s at 61°C.'e primer sequences are
shown in Table 1. Differences in the levels of targeted genes
between the test and control groups were analyzed via the
2−∆∆CTmethod, using the following calculation:△Ct�Cttarget
gene−Ctinternal reference. 'e average △Ct of the control group
was recorded as the △Ctcontrol average. Subtracting the
△Ctcontrol average from the△Ct of each group yields the△△Ct
value, that is, △△Ct�△Ctsample−△Ctcontrol average. 'e
2−∆∆CT value of each group, indicating the relative expression
of the genes in the group, was then calculated.

2.11. Data Analysis. PERL (version 5.32.1.1, https://
strawberryperl.com/) was used for gene name translation,
lncRNA identification, data-file expression, and phenotyp-
ing. All statistical analyses were performed using R software
(version 4.1.3) or GraphPad Prism5 (GraphPad Software

Inc., La Jolla, CA, USA). A p value< 0.05 indicated statistical
significance. All experiments were performed twice.

3. Results

3.1. Data Processing. 'ere were 414 cases of HCC or HCC
with ICC downloaded from UCSC Xena; of these, 50 were
pericarcinomatous tissues. A total of 13431 lncRNA were
obtained, and 10 cuproptosis-related genes were identified
through screening of genome-wide CRISPR–Cas9 deletions
(Figure 1(a)). A total of 106 prognosis-related lncRNAs were
identified using univariate Cox regression analysis. Seven
CRLRs were identified using LASSO Cox regression:
MIR210HG, AC099850.3, AL031985.3, C012073.1, MKLN1-
AS, KDM4A-AS1, and PLBD1-AS1 (Figures 2(a) and 2(b)).

3.2.ConstructionandValidationofCRLRRiskModel forPHC.
Seven CRLRs were identified via LASSO Cox regression
using the following risk-scoring formula:

Risk score � (MIR210HG × 0.068) +(AC099850.3 × 0.017)

+(AL031985.3 × 0.327)

+(AC012073.1 × 0.102)

+(MKLN1 − AS × 0.426)

+(KDM4A − AS1 × 0.152)

+(KDM4A − AS1 × 0.049).

(2)

'e patients were divided in a 5 : 5 ratio into training and
test groups, based on the median scores of the CRLRSM
(Figures 3(a), 3(f), and 3(k)). 'e whole group is the sum of
patients in the training and test groups. 'e number of
deaths increased as the risk score increased (Figures 3(b),
3(g), and 3(l)). A heat map showed that the 7 CRLR genes
were related to a poor prognosis (Figures 3(c), 3(h), and
3(m)). 'ere was a significant difference in survival between
the high- and low-risk groups in the training group; patients
in the low-risk group had longer survival times compared
with those in the high-risk group. In the test group as well,
patients in the low-risk group had longer survival times than

Table 1: PCR primer sequences.

Primer Sequence (5′–3′)
Human-MIR210HG-F CAGCGTTTGGAGCCTCCTGC
Human-MIR210HG-R AGGCAACTCGGCTTGGTTATTTC
Human-KDM4A-AS1-F CAGGTCGTGAGCGCACCCAT
Human-KDM4A-AS1-R TCAGCCATCCAGGCAAGAGCA
Human-PLBD1-AS1-F GTGGATTCCATCCTAGAGGCTGTG
Human-PLBD1-AS1-R TTCCTGCTTTCTGTCCTTCATTTCAG
Human-AC099850.3-F TCACTGCAACCTCTGCCTCCC
Human-AC099850.3-R TTCCCTGTTGTCACTGACCTATGTAATC
Human-AL031985.3-F CCACAAGATGCCAGCATTCA
Human-AL031985.3-R GCCCTTGAGCCAAACGAAAC
Human-AC012073.1-F TATGTGGAGCTGTGGTTAGTTTCC
Human-AC012073.1-R CAAAGTGGCACTGTTCGTAATAGAC
Human-GAPDH F AATCCCATCACCATCTTCCA
Human-GAPDH R AAATGAGCCCCAGCCTTCT
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Figure 1: (a) Flow chart of the study. (b) Univariate Cox results for prognosis-associated lncRNA.
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Figure 2: (a) LASSO cross-validation plot based on seven CRLRs. (b) LASSO coefficient of the seven CRLRs in PHC.
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Figure 3: Continued.
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those in the high-risk group (Figure 3(i), p � 0.004).
Likewise, among the whole group, patients in the high-risk
group had worse survival times than those in the low-risk
group (Figure 3(n), p< 0.001).

A ROC curve was plotted to predict the 1-year survival
and assess the accuracy and sensitivity of the prediction
model. 'e AUC was 0.814 in the training group, 0.677 in
the test group, and 0.766 in the whole group, indicating
excellent accuracy for the model (Figures 3(e), 3(j), and
3(o)). Principal components analysis confirmed the differ-
ential expression of CRLRs in PHC patients (Figures 4(a)–
4(d)). To compare the effects of the clinical characteristics
and risk score on prognosis, univariate Cox proportional
regression was performed.'is showed that the overall PHC
stage and risk score were correlated with the prognosis of
PHC in both the training group (Figure 5(a), p< 0.001) and
the test group (Figure 5(d), (p< 0.01). Multivariate Cox
regression analysis showed that the overall stage and risk
score in both the training and test groups were independent
factors for the prognosis of PHC (Figures 5(b) and 5(e),
p< 0.05); the risk score was the most significant. A ROC
curve was drawn according to the clinical characteristics and
risk score, and it showed that the AUC of the risk score was
maximized in the training, test, and whole groups; this
indicates that the CRLRSMhad high accuracy and sensitivity
for predicting the prognoses of PHC patients (Figures 5(c),
5(f), and 5(g)).

3.3. Predictive Nomogram. A predictive nomogram for
cancer risk can estimate the survival of specific cancer pa-
tients based on individual data Based on multivariate Cox

regression, the overall stage and risk score were included to
construct the nomogram (Figure 6(a)).'e whole group was
internally validated using the C-index (Figure 6(b)). 'e 1-
year, 3-year, and 5-year AUCs of the nomogram were 0.766,
0.716, and 0.693, respectively, suggesting that the nomogram
had excellent specificity and sensitivity for predicting the OS
time (Figure 6(c)). 'e calibrated nomogram was consistent
with the diagonal, indicating the predictive value of the
nomogram for 1-year, 3-year, and 5-year OS (Figure 6(d)).
'ese results demonstrated that the CRLRSM-based no-
mogram had good prediction performance for the prognoses
of patients with PHC.

3.4. Enrichment Analysis of Function Pathway Sets.
Boxplots were used to analyze the FDX1, CDKN2A, MTF1,
and GLS genes of the patients in the two groups. FDX1
expression levels in the low-risk group of patients were
significantly increased (Figure 7(a), p< 0.001); CDKN2A,
GLS, and MTF1 expression levels were significantly in-
creased in the high-risk group of patients (Figures 7(b)–7(d),
p< 0.001). 'is shows that PHC patients with high ex-
pression of FDX1 had better prognoses, whereas those with
high expression of CDKN2A, MTF1, and GLS had worse
prognoses. We conducted gene set enrichment analysis to
explore the potential biological functions and signaling
pathways between the two groups. 'ere were 52 active
pathways in the high-risk group (Figure 8(a), FDR< 0.05).
'e enrichment pathways were associated with cellular
metabolism, repair, growth, proliferation, apoptosis, and
immunity. 'ere were 2 active pathways were related to
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Figure 3: (a) Distribution of risk scores in the training cohort of patients with PHC, based on CRLRs. (b) Scatter plots show the association
between the OS and the risk score in the training cohort of PHC patients, according to prognostic features of CRLRs. (c) A heat map shows
seven CRLRs (MIR210HG, AC099850.3, AL031985.3, AC012073.1, MKLN1-AS, KDM4A-AS1, and PLBD1-AS1) with high expression in
high-risk patients in the training cohort. (d) KM survival curve analysis of the training cohort. (e) Area under the ROC curve for the training
cohort, based on CRLR-based prognostic features at 12 months. (f ) Distribution of risk scores in the testing cohort of patients with PHC,
based on CRLRs. (g) Scatter plots show the association between the OS and the risk score in the testing cohort of PHC patients, according to
prognostic features of CRLRs. (h) A heat map shows the same seven CRLRs with high expression in high-risk patients in the testing cohort.
(i) KM survival curve analysis of the testing cohort. (j) Area under the ROC curve for the testing cohort, based on CRLRs-based prognostic
features at 12 months. (k) Distribution of risk scores for the entire cohort of patients with PHC, based on CRLRs. (l) Scatter plots show the
association between the OS and the risk score for the entire cohort of PHC patients, according to prognostic features of CRLRs. (m) Heat
map shows the same seven CRLRs with high expression in high-risk patients among the entire cohort. (n) KM survival curve analysis of the
entire cohort. (o) Area under the ROC curve for the entire cohort, based on CRLRs-based prognostic features at 12 months.
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tricarboxylic acid metabolism in the low-risk group
(Figure 8(a), FDR< 0.05).

3.5. Correlation between Prognostic Risk Scores and Immune
Cells. 'e CIBERSORT algorithm was used to analyze 22
different immune cells for the two groups of patients. 'ere
were positive correlations between the risk score and M0
macrophages (R� 0.36, p � 8.1 × 10− 10), neutrophils
(R� 0.15, p � 0.015), and follicular helper T cells (R� 0.23,
p � 9.3 × 10− 05) (Figures 9(a)–9(c)). Negatively correlations
were found between the risk score and resting mast cells
(R� −0.23, p � 9.9 × 10− 05), monocytes (R� −0.14,
p � 0.018), activated natural killer (NK) cells (R� −0.13,
p � 0.027), CD8+ Tcells (R� −0.12, p � 0.046), gamma delta
T cells (R� −0.19, p � 0.0013), and naive B cells (R� −0.12,
p � 0.038) (Figures 9(d)–9(i)). 'is indicates that PHC
prognosis is associated with immune cell infiltration.

3.6.OverexpressionofMIR210HG,MKLN1-AS, andPLBD1-A
inPHCPatients. 'e expression levels of the seven CRLRs in
liver cancer cells and normal hepatocytes were measured
using PCR. 'e results showed that MIR210HG, MKLN1-
AS, and PLBD1-AS were overexpressed in liver cancer cells
(Figures 10(a) fig10–10(c)); the expression of the other four
CRLRs was decreased. 'is might be attributed to the
variances among the different cell lines and false-positive
results of the prediction (Figure 10(d)).

4. Discussion

Cell death is a physiological process. 'e mechanism of cell
death varies. Apoptosis [18], pyroptosis [19], necrosis [20],
and ferroptosis [21–23] are the most commonly observed.
Recently, Tsvetkov et al. found a copper-based mechanism
that was completely different from the known mechanisms
of cell death, and they named it “cuproptosis” [7]. LncRNAs
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Figure 4: 'e high-risk and low-risk groups are analyzed using (a) the whole gene set, (b) the cuproptosis gene set, (c) the cuproptosis
lncRNA set, and (d) the cuproptosis risk lncRNA set.
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Figure 5: (a) Univariate Cox regression showing that the age, stage, and risk score are associated with OS in the training cohort (p< 0.05).
(b) Multivariate Cox regression shows that the stage and risk score (p< 0.05) are independent prognostic indicators of OS in patients with
PHC in the training cohort. (c) ROC curve shows that the stage and risk score have the highest prognostic accuracy in the training cohort.
(d) Univariate Cox regression shows that the stage and risk score are associated with OS in the testing cohort (p< 0.01). (e) Multivariate Cox
regression shows that the stage and risk score (p< 0.05) are independent prognostic indicators of OS in patients with PHC in the testing
cohort. (f ) ROC curve shows that the stage and risk score have the highest prognostic accuracy in the testing cohort. (g) ROC curve shows
that the stage and risk score have the highest prognostic accuracy for the entire cohort.
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have been shown to be associated with hepatic carcinoma
[24, 25]. 'erefore, we built a cuproptosis-related lncRNA
prognostic risk model to predict the prognoses of patients
with PHC, explore its potential pathogenesis, and facilitate
individualized treatment.

Hepatoma tissue samples were divided into CRLRSM
high-risk and low-risk groups. 'e OS of patients in the
high-risk group was worse than that of patients in the low-
risk group. 'e CRLRSM was an independent prognostic
factor for PHC and had a good predictive performance for
the prognoses of patients with PHC. Correlation analyses
between the CRLRSM and cuproptosis-related genes showed
that patients with high FDX1 expression had better prog-
noses, indicating that high expression of FDX1 might
promote cancer cell death. patients with high expression of
CDKN2A, MTF1, and GLS had worse prognoses, suggesting
that CDKN2A, MTF1, and GLS might promote the pro-
liferation of cancer cells. 'is is consistent with the findings
of Tsvetkov et al. [7], who identified FDX1 as a key regulator
of cuproptosis and an upstream regulator of protein lip-
oacylation, and the abundance of FDX1 and lipoacylated

proteins is highly correlated with a variety of human tumors.
'e results also suggest that CDKN2A, MTF1, and GLS are
negative feedback genes that inhibit apoptosis and promote
cell survival. At the same time, the enrichment pathway of
the CRLRSM high-risk group was related to tumor cell
genesis and proliferation. 'e enrichment pathway of the
CRLRSM low-risk group was mainly related to the tricar-
boxylic acid cycle, and was mainly in the upstream pathway
entering the tricarboxylic acid cycle, indicating that the
progress of the tricarboxylic acid cycle was blocked.
'erefore, these seven CRLns may be potential targets for
the treatment of PHC.

We validated the expression of the seven CRLRs in
hepatic cancer cells and normal hepatocytes and found that
MIR210HG, MKLN1-AS, and PLBD1-AS were highly
overexpressed in hepatic cancer cells. Recent studies have
shown that overexpression of MKLN1-AS is associated with
a lower OS rate and shorter disease-free survival. 'e
downregulation of MKLN1-AS reduces the proliferation,
migration, and invasion of cancer cells and induces apo-
ptosis. In vivo inhibition can also suppress the proliferation
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Figure 6: (a) Survival nomogram on risk score and stage. (b) Concordance index on risk score and stage. (c) ROC curve comparing the
prognostic power of the nomogram at 1, 3, and 5 years for the entire cohort. (d) Calibration curves were corrected for predicting liver cancer
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of hepatic cancer cells. MKLN1-AS has been shown to serve
as a molecular sponge for miR-654-3p, upregulate the ex-
pression of HCC-derived growth factor (HDGF), and
promote cancer growth [26]. 'e upregulation of MKLN1-
AS also leads to poor prognoses in patients with PHC.
MKLN1-AS positively regulates the expression of YAP1 via
targeting and stabilizing YAP1 mRNA, and it enhances the
proliferation, migration, and invasion of hepatic cancer cells
through YAP1. It can also induce the expression of YAP1 in
vivo to cause hepatic carcinogenesis [27].

MIR210H was first found to be overexpressed in oste-
osarcoma and glioma. Wang et al. discovered that hepatic
cancer cells overexpressing MIR210H contributed to poor
prognoses in patients, whereas silencing MIR210H inhibited
proliferation, migration, and invasion of cancer cells [28].
AC099850.3 and KDM4A-AS1 are newly identified
lncRNAs, and their overexpression indicates an adverse
prognosis in PHC patients. Knockout of AC099850.3 might
significantly inhibit the proliferative and migratory potential
of hepatic cancer cells and promoted their death. A previous
study proposed that AC099850.3 served as an oncogene
through the PRR11/PI3K/AKT pathway [29]. KDM4A-AS1
promotes the proliferation, migration, and invasion of

hepatic cancer cells in vitro and promotes the growth of
hepatic cancer cells and lung metastasis in vivo. It is sug-
gested that KDM4A-AS1 is regulated retrograde by miR-
411-5p at the post-transcriptional level and promotes the
expression of KPNA2 by competitively binding to miR-411-
5p to activate the AKT pathway. KPN2 silencing, miR-411-
5p overexpression, and AKT inhibitors (e.g., MK2206) can
reverse KDM4A-AS1-enhanced hepatoma cell proliferation,
migration, and epithelial-mesenchymal transformation.
KDM4A-AS1 is considered to be a new hypoxia response
gene that promotes the growth and metastasis of hepatic
cancer [30] through KDM4A-AS1/KPNA2/HIF-1α
signaling.

Gene set enrichment analysis showed that the mTOR,
p53, ErbB, and insulin signaling pathways, ubiquitin-me-
diated proteolysis, inositol phosphate metabolism, and the
phosphatidylinositol signaling system were associated with
the metabolism, growth, proliferation, and apoptosis of
cancer cells. 'e ubiquitin-proteasome system (UPS) had
the strongest correlation. 'e UPS is a multicomponent
system for protein degradation in cells and is involved in
multiple cellular biological activities such as cell growth and
differentiation, DNA replication and repair, cellular
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Figure 7: Different expression of (a) FDX1, (b) CDKN2A, (c) GLS, and (d) MTF1 in the high- and low-risk groups.
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metabolism, and the immune response, affecting the deg-
radation of most proteins in eukaryotic cells [31].UPS
dysfunction has been found to be closely related to multiple
diseases, including neurodegenerative diseases, cancer,
cardiovascular diseases, and respiratory diseases [32].

UPS dysfunctions can be divided into two categories
based on specific mechanisms. 'e first involves genetic
mutation of the enzymes or substrates of the UPS system, in
which normal UPS targets are no longer subject to being
ubiquitinated and degraded; subsequently, they constantly
accumulate in the cells. 'e second category is abnormal

activation of the UPS, which accelerates the degradation of
intracellular proteins. 'ere are also UPS inhibitors, such as
bortezomib, which inhibit the catalytic activity of the
proteasome subunits, resulting in mitochondrial membrane
depolarization and cell apoptosis. Apoptosis is induced
mainly by an increase in intracellular p27 and p53 levels [33].
Second-generation proteasome inhibitors, including kafi-
zomib and oral isazomib, are used for the treatment of
multiple myeloma. TP53 encodes a transcription factor, and
the tumor suppressor p53 is activated and stabilized si-
multaneously in response to cellular stress and DNA
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Figure 8: CRLRs set enrichment analysis for the (a) high-risk group and (b) low-risk group.
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damage; this is the basis for its central role as a tumor
suppressor [34, 35].

It has been found that the MDM2 gene is expressed in
the UPS and p53 signal pathways. MDM2 inhibits p53-in-
duced apoptosis and is the most connected functional target
of p53. Its N-terminal domain binds to the transcriptional
activation domain of p53, hinders the binding of p53 to its
cotranscriptional activators, and subsequently inhibits the
activation of p53 target genes [36]. 'e RING domain in the
C-terminus of MDM2 has E3 ubiquitin ligase activity and
can ubiquitinate and degrade p53 [37]. In some human
tumors, MDM2 has been demonstrated to be upregulated

abnormally due to gene magnification, increased tran-
scription, and enhanced translation; these would induce
increased degradation and decreased activity of p53 [38].
Based on the strategy of blocking the protein interaction
between p53 and MDM2, some small molecules have been
developed, including BI-907828 [39], milademetan [40], and
APG-115 [41]. Among these agents, APG-115 and mila-
demetan have been approved for clinical trials and have
yielded preliminary clinical data [42, 43]. Upregulation of
the phosphocreatine kinase signal pathway, insulin signal
pathway, and ErbB signal pathway can activate the PI3K/
AKT pathway and mTOR, which plays a critical role in the
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Figure 9: Relationships between the CRLRs and infiltration abundances of nine types of immune cells, as analyzed using Spearmen’s
correlation analysis. (a) M0 macrophages; (b) neutrophils; (c) follicular helper Tcells; (d) resting mast cells; (e) monocytes; (f ) activated NK
cells; (g) CD8+ T cells; (h) gamma delta T cells; (i) naive B cells.
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regulation of autophagy [44]. 'e mTOR signal is highly
activated in most cancers, especially in the process of cell
transformation, growth, and survival [45].

'e correlations between risk scores and immune cells
showed that immune cell infiltration is associated with the
prognosis of PHC. Several enriched pathways were asso-
ciated with the immune response. For example, the ErbB
pathway downregulates the chemokine ligand CXCL10
through PI3K–AKT signaling and interferon regulatory
factor IRF1, which results in the reduction of effector CD8+
T cells and recruitment of Treg cells into the tumor mi-
croenvironment; this leads to immune escape and cancer
growth [46]. PI3K–AKT–mTOR regulates many charac-
teristics of the immunosuppressive microenvironment.'e
latest data from clinical trials and preclinical mouse models
suggest that the therapeutic inhibition of the
PI3K–AKT–mTOR signaling network might have dual
benefits: preventing tumor progression by suppressing
proliferation, migration, and survival of cancer cells, and
enhancing the tumor immune surveillance pathway and
intrinsic antitumor immune characteristics by inhibiting
the activation of immunosuppressants [47]. Shishir et al.
believed that the tumor microenvironment of HCC still

remains a major challenge to therapeutic success. To ex-
plore a new strategy of combined immunotherapy will
hopefully lead to major improvements in survival for pa-
tients [48].

In conclusion, hepatic carcinogenesis is a complicated
process that involves multiple biological functions and
pathways. 'is often results in unsatisfactory therapeutic
outcomes and poor survival rates in patients with PHC. 'e
seven CRLns in the high-risk group were found to be in-
volved in multiple pathways to promote the growth, pro-
liferation, invasion, and migration of PHC. 'e low-risk
group was involved in multiple pathways related to the
tricarboxylic acid cycle, therefore, silencing the seven CRLns
may promote tumor cell death, which is a potential target for
the treatment of PHC, and further research is needed to
verify its mechanism and efficacy in the future. 'is study
has several limitations. First, the data were obtained from the
UCSC Xena public database, which has a limited sample size.
Second, we did not explore further functional genomics and
pathways, although we assessed the expression of CRLR in
hepatoma cells and normal hepatocytes. Lastly, our study
lacks further validation from cohort, prospective, multi-
center, and real data.
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Figure 10:'e results of RT-qPCR for (a) MIR210HG, (b) MKLN1-AS, and (c) PLBD1-AS in the hepatoma cell lines. (d)'e results of RT-
qPCR for the seven CRLRs in the hepatoma cell lines. ∗∗p< 0.01.
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