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Background. Shenqi pill (SQP), a traditional Chinese prescription, has proven to be e�ective in treating nonalcoholic fatty liver
disease (NAFLD). However, its bioactive ingredients and underlying mechanisms remain elusive. Aim. We aimed to predict the
active compounds, potential targets, and molecular mechanisms of SQP anti-NAFLD by applying network pharmacology and
molecular docking methods. Methods. Active ingredients and related targets of SQP were obtained from the TCMSP database.
Potential targets of NAFLD were acquired from OMIM and GeneCards databases. �e STRING database and Cytoscape software
analyzed the protein-protein interaction (PPI) network and core targets of overlapping genes between SQP and NAFLD. GO
enrichment analysis and KEGG enrichment analysis were performed in the DAVID database. Finally, molecular docking was
employed to �nd possible binding conformations of macromolecular targets. Results. 15 anti-NAFLD bioactive ingredients and 99
anti-NAFLD potential targets of SQP were determined using Network pharmacology. Quercetin, kaempferol, stigmasterol,
diosgenin, and tetrahydroalstonine were the major active ingredients and AKT1, TNF, MAPK8, IL-6, and VEGFA were the key
target proteins against NAFLD.�e KEGG analysis suggested that the main pathways included PI3K/Akt signaling pathway, HIF-
1 signaling pathway, MAPK signaling pathway, and TNF signaling pathway. Molecular docking predicted that quercetin,
kaempferol, stigmasterol, diosgenin, and tetrahydroalstonine could bind with AKT1, TNF, and MAPK8. Conclusion. �is study
successfully predicts the active compounds, potential targets, and signaling pathways of SQP against NAFLD.Moreover, this study
contributed to the application and development of SQP.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is characterized by
excessive fat accumulation in liver cells and has been rec-
ognized as a leading cause of chronic liver disease worldwide
[1, 2]. NAFLD progress to nonalcoholic steatohepatitis
(NASH), �brosis, cirrhosis, and even hepatocellular carci-
noma [3]. NAFLD not only increases the risk of diabetes,
metabolic syndrome, and cardiovascular and cerebrovas-
cular diseases but also is closely related to the high incidence
of chronic diseases such as osteoporosis, chronic kidney

disease, colorectal cancer, and breast cancer [4–9]. �e
global prevalence of NAFLD is estimated at 25% [10].
Meanwhile, the incidence of NAFLD in children increased
dramatically in recent years [11]. However, there is still a lack
of useful drugs for NAFLD treatment, so �nding and de-
veloping new e�ective drugs is necessary.

Shenqi pill (SQP) is a famous traditional Chinese
medicine (TCM) prescription for treating various liver and
renal diseases in China. It was �rst described in the book
named JinGuiYaoLue written by Zhongjing Zhang. �e
formula consists of eight herbs: Rehmannia Glutinosa (Shu
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Di Huang: SDH), Chinese Yam (Shan Yao: SY), Cornus
Officinalis (Shan Zhu Yu: SZY), Alisma Orientalis (Fu Ling:
FL), Poria (Ze Xie: ZX), Moutan Bark (Mu Dan Pi: MDP),
Cassia Twig (Gui Zhi: GZ), and Aconite (Fu Zi: FZ). Pre-
vious studies found that SQP has a series of effects, such as
ameliorating renal fibrosis [12], regulating immunity [13],
and promoting memory function [14, 15]. Research has also
shown that SQP is a safe and effective formula for treating
NAFLD. Wu et al. showed that SQP improved the levels of
aspartate aminotransferase (AST), alanine aminotransferase
(ALT), total cholesterol (TC), and low-density lip-
oprotein(LDL) in rats with steatohepatitis by regulating Bcl-
2/Bax and Fas/FasL signaling pathways [16]. However, its
underlying mechanisms require in-depth exploration.

Network pharmacology is a promising tool to identify
the scientific basis and mechanism of TCM at the systemic
level [17–19]. We used network pharmacology to predict the
active compounds, potential targets and signaling pathways
of SQP against NAFLD. Moreover, we performed molecular
docking studies to predict possible binding conformations of
macromolecular targets.

2. Materials and Methods

2.1. Screening Active Ingredients and Target Proteins of SQP.
All bioactive compounds of eight herbs in SQP were
searched from the Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP,
http://tcmspw.com/tcmsp.php) [20]. ADME criteria, in-
cluding absorption, distribution, metabolism, and excretion,
were adopted to choose bioactive ingredients. Oral bio-
availability (OB) is one of the important pharmacokinetic
parameters in ADME, showing the ratio of the drug
absorbed by the body [21]. Drug-likeness (DL) represents
the similarity of its ingredients compared with known
chemical drugs [22]. *e higher the OB value, the better the
DL. We selected active compounds with OB≥ 30% and
DL≥ 0.18 for further research. We extracted the corre-
sponding protein targets of SQP from the TCMSP database
and transformed them into their related potential gene
symbols via UniProt KB (https://www.uniprot.org/).

2.2. PredictionGene Targets of NAFLD. *e related targets of
nonalcoholic fatty liver disease (NAFLD) were acquired from
two major databases: OMIM (https://www.omim.org/) [23]
and GeneCards Database (https://www.genecard.org/) [24].

2.3. Construction of Herb-Active Compound-Disease-Target
Interaction Network. In the beginning, we used venny2.1 to
obtain overlapping genes of SQP and NAFLD as hub genes.
Subsequently, an herb-active compound-disease-target in-
teraction network (C-D-T) of treatment with SQP against
NAFLD was built by Cytoscape 3.7.2.

2.4. PPINetworkConstruction. We imported the hub targets
into the STRING database (https://www.string-db.org/) to
construct the protein-protein interaction (PPI) network.*e

species was set to “Homo sapiens” and an interaction score
>0.7. Finally, the TSV format file was input into Cytoscape
3.7.2 for graphical visualization.

2.5. Enrichment Analysis. Based on the DAVID database
(https://david.ncifcrf.gov/), the Gene Ontology (GO) en-
richment analysis, and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis of overlapping target
proteins were obtained. GO enrichment analysis was applied
to show the functions of gene targets, including three parts:
biological process (BP), molecular function (MF), and cel-
lular component (CC). *e KEGG enrichment analysis
described the distribution of hub targets in relevant path-
ways. In this study, we set p< 0.05 as statistically significant.
We select the top 10 most enriched BP, MF, CC, and
pathways to draw bar charts and bubble plots by using the
WeChat online software.

2.6.Molecular Docking. We applied AutoDockTools-vina to
performmolecular docking to reveal the interaction between
active ingredients (ligands) and target proteins (receptors).
We downloaded the 2D structures of the compounds from
the PubChem Database and used Chem3D software to
transform them into 3D structures with minimizing energy.
*e 3D structure of proteins was downloaded from the
Protein Data Bank (PDB, http://www.rcsb.org/). *e
PyMOL software was used to dehydrate and remove ligand
residues of receptor proteins. *e receptor protein was
hydrogenated using the AutoDockTool 1.5.6 software and
saved in the pbdqt format. *e ligand was also saved in the
pdbqt format. *e active pocket site was built to cover the
entire protein. Finally, we used AutoDock Vina for docking
and looked for the optimal conformation. A total of 20
conformations were generated for each ligand-protein
docking study. *e lower the docking score, the more stable
the binding between the protein and the molecule. *e best
scoring conformer with a minimum energy of a drug
molecule and target was visualized in PyMOL.

3. Results

3.1. Active Ingredients of SQP. A total of 102 active ingre-
dients of SQP were retrieved from the TCMSP database that
satisfied the criteria of OB≥ 30% and DL≥ 0.18, including 2
kinds in Shudihuang, 16 kinds in Shanyao, 20 kinds in

NAFLD

1407
(85.9%)

99
(6%)

131
(8%)

SQP

Figure 1: Venn diagram of targets of nonalcoholic fatty liver
disease (NAFLD) and Shenqi pill (SQP).
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Shanzhuyu, 15 kinds in Fuling, 10 kinds in Zexie, 11 kinds in
Mudanpi, 7 species in Guizhi, and 21 species in Fuzi. After
eliminating 10 duplicates, there were 92 ingredients for
further study.

3.2. Potential TargetGenes of SQPandNAFLD. A total of 231
active ingredient targets of SQP were selected from the
TCMSP database. Meanwhile, a total of 1508 related targets
for NAFLD were acquired using GeneCards and OMIM
databases. Among the 231 ingredient targets and 1508
NAFLD related target genes, we acquired 99 intersection
genes through the venny2.1 software, which are the potential
target of SQP in treating NAFLD. *en, we found the
compounds corresponding to 99 intersecting genes and
deleted the repetitions. Finally, we obtained 15 interaction
target-related compounds. Degree represented the total
number of gene targets corresponding to this compound.
*e details are shown in Figure 1 and Table 1. Quercetin,
kaempferol, and stigmasterol are the top 3 degree
compounds.

3.3. Construction of Herb-Active Compound-Disease-Target
Interaction (C-D-T) Network. We imported 99 corre-
sponding targets, 15 bioactive ingredients, SQP, and NAFLD
into the Cytoscape3.7.2 software to construct the (C-D-T)
networks. As shown in Figure 2, it contains 116 nodes and
213 edges. *e blue rectangle stands for active ingredients,
the red ellipse node represents the potential targets of active
compounds, the yellow diamond represents SQP, and the
orange triangle represents NAFLD. *e connections be-
tween nodes are edges, representing the degree of associa-
tion between the active ingredients and the targets. *e
higher the degree value, the more important the nodes in the
network. Quercetin, kaempferol, and stigmasterol have the
highest degree, suggesting that they play major roles in the
effect of SQP anti-NAFLD.

3.4. Construction and Analysis of PPI Network. *e PPI
networks were constructed by importing 99 overlapping

targets into the STRING database and then visualized in the
Cytoscape software. As shown in Figure 3(a), the network
contains 98 nodes and 1489 edges. Yellow stands for the
lowest degree, and red represents the highest degree. *e
larger the node size, the higher the degree.*e top 10 targets
with the highest degree value were AKT1, TNF, MAPK8,
IL6, TP53, JUN, CASP3, CXCL8, VEGFA, and PTGS2, as
shown in Figure 3(b). *ey play a critical role in the PPI
network for the SQP with NAFLD.

3.5. Gene Ontology Enrichment Analysis. GO enrichment
analysis was constructed by the DAVID database. In total,
655 GO terms meet the demand p< 0.05, including 508
biological processes (BP), 55 cellular components (CC), and
92 molecular functions (MF). We selected the top 10 terms
from BP, CC, and MF, respectively, based on the −log10 (p
value), as shown in Figure 4. *e most significantly enriched
BP, CC, and MF were positive regulation of transcription
from RNA polymerase II promoter, cytosol, and protein
binding, respectively.

3.6. KEGG Enrichment and Pathway-Target (P-T) Network
Analysis. KEGG enrichment analysis indicated that 111
terms were related to liver disease, including cancer path-
way, PI3K/Akt signaling pathway, non-alcoholic fatty liver
disease (NAFLD), MAPK signaling pathway, HIF-1 sig-
naling pathway, and TNF signaling pathway.We selected the
top 20 entries as core pathways based on −log10 (p value), as
shown in Figure 5. *e cancer pathway and PI3K/Akt
signaling pathway are two major signaling pathways for
treating the Shenqi pill with NAFLD. *e pathway-target
networks demonstrate the interactions of overlapping tar-
gets and the top 20 pathways. As shown in Figure 6, the
diamonds represent genes, the circles stand for pathways.
Red denotes the high degree value, and yellow represents the
low degree value.

3.7. Molecular Docking Analysis. *e top five active ingre-
dients with the highest degree (quercetin, kaempferol,

Table 1: Active compounds of SQP against NAFLD.

Mol ID Ingredient Degree OB (%) DL
MOL000098 Quercetin 41 54.83 0.24
MOL000422 Kaempferol 22 65.31 0.35
MOL000449 Stigmasterol 10 43.87 0.76
MOL000546 Diosgenin 5 43.78 0.76
MOL008457 Tetrahydroalstonine 4 32.42 0.81
MOL002392 Deltoin 4 46.69 0.37
MOL000358 Beta-sitosterol 3 36.91 0.75
MOL000492 (+)-Catechin 2 42.36 0.37
MOL004576 Taxifolin 2 57.84 0.27
MOL000322 Kadsurenone 1 37.57 0.71
MOL005440 Isofucosterol 1 38.16 0.54
MOL005430 Hancinone C 1 61.47 0 38
MOL007374 5- ((5- (4-methoxyphenyl)-2furyl)methylene)Barbiturc acid 1 31.14 0.54
MOL001559 Piperlonguminine 1 60.51 0.27
MOL003137 Leucanthoside MOL005440 1 32.12 0.78
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stigmasterol, diosgenin, and tetrahydroalstonine) and three
key target genes (AKT1, TNF, and MAPK8) were selected to
perform molecular docking. *e docking energy score is
listed in Table 2, the lower the energy, the more stable the
structure. *e results have shown that the docking scores of

quercetin to AKT1, kaempferol to TNF, diosgenin to
MAPK8 were −9.4 kcal/mol, −6.4 kcal/mol, and −8.8 kcal/
mol, respectively. As shown in Figures 7(a)–7(f), quercetin is
bound to AKT1 with 4 hydrogen bonds: THR-211, ASP-292,
GLN-79, and ASN-54. Kaempferol was attracted to TNF by
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Figure 2: Compounds and corresponding target network of SQP with NAFLD. *e blue rectangle stands for active ingredients, the red
ellipse node represents the potential targets of active compounds, the yellow diamond represents SQP, and the orange triangle represents
NAFLD.
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Figure 3: Identification of potential targets of Shenqi pill on NAFLD via PPI analysis. (a) PPI network of hub genes between SQP and
NAFLD via STRING database and Cytoscape. (b) *e top 10 degree targets of overlapping targets.
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ASN-46 hydrogen. When diosgenin encountered MAPK8, it
formed only 1 hydrogen bond: LYS-250.

4. Discussion

In this study, network pharmacology and molecular docking
method were employed to clarify the active compounds and
molecular mechanism of SQP for NAFLD treatment. A total
of 99 overlapping target genes and 15 active compounds were
selected for SQP against NAFLD. *e top 5 highest degree
ingredients include quercetin, kaempferol, stigmasterol,
diosgenin, and tetrahydroalstonine, as shown in Table 1.

Yang et al. revealed that quercetin improved non-alcoholic
fatty liver by ameliorating inflammation, oxidative stress, and
lipid metabolism in db/db mice [25]. Furthermore, the
current study also shows that quercetin improves glycolipid
metabolism disorder by regulating the SIRT1 protein and
AKT signaling pathway [26]. Stigmasterol and β-sitosterol
can regulate the expression of lipid metabolism genes, thus
improving lipid metabolism and reducing the level of bile
acid in the intestine [27, 28]. *e above results suggest that
the active ingredients of the Shenqi pill can improve NAFLD.

PPI network shows AKT1, TNF, MAPK8, IL6, TP53,
JUN, CASP3, CXCL8, VEGFA, PTGS2, especially AKT1,
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Figure 4: Gene ontology enrichment analysis. *e top 10 significantly enriched biological processes (BP), cellular component (CC), and
molecular function (MF) are shown in green, orange, and purple bars, respectively.
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play a major effect on SQP anti-NAFLD. By GO and KEGG
enrichment analysis, we found that the major signaling
pathways related to NAFLD were pathways in cancer, PI3K-
Akt signaling pathway, and HIF-1 signaling pathway. A

recent study has found that the activation of the PI3K-Akt
signaling pathway could inhibit the expression of SREBP1c
and PPARα protein, finally resulting in lipid metabolism
disorders and insulin resistance, promoting the process of
NAFLD [29]. Hypoxia-inducible factor 1 (HIF-1), as an
oxygen-sensing transcription factor, is well known to take a
major participant in the control of metabolisms, such as
nonalcoholic fatty liver disease, type 2 diabetes mellitus, and
obesity [30]. A previous study has shown that activating
HIF-1 can promote liver fibrosis in the liver cell [31].

Furthermore, molecular docking was applied to simulate
the binding ability of different compounds and proteins.
Compared with other compounds, the binding energy of
quercetin to AKT1 was the lowest, which was about
−9.4 kcal/mol. *e lower the energy score, the stronger the

Figure 5: Pathway-target network of top 20 pathways. *e diamonds represent genes, the circles stand for pathways, red denotes the high
degree value, and yellow represents the low degree value.
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Figure 6: *e top 20 significantly enriched signal pathways from
KEGG analysis.

Table 2: *e binding energy and interactions of ingredients bound
to key targets.

ID Ingredient
Bind energy (kcal/mol)
AKT1 TNF MAPK8

MOL000098 Quercetin −9.4 −6.1 −7.5
MOL000422 Kaempferol −7.1 −6.4 −7.4
MOL000449 Stigmasterol −5.7 −5.3 −7.2
MOL000546 Diosgenin −7.1 −5.4 −8.8
MOL008457 Tetrahydroalstonine −6.4 −6.3 −7.0
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binding capacity. Similarly, the combined energy of
kaempferol-TNF was −6.4 kcal/mol and that of diosgenin-
MAPK8 was −8.8 kcal/mol. *ese results strongly indicate
that the active ingredients of SQP can effectively treat
NAFLD through major binding genes. Huang et al. [17] also

found that quercetin interacts with AKT1 through a hy-
drogen bond. *erefore, AKT1 may be the key target of
quercetin’s anti-colorectal cancer effect. A study by Huang
et al. reveals that quercetin well matches MAPK8 [32]. A
previous study confirmed that kaempferol is the effective

(a) (b)

(c) (d)

(e) (f )

Figure 7: (a–f) Representative results of molecular docking. (a) Quercetin-AKT1; (b) kaempferol-AKT1; (c) kaempferol-TNF; (d) tet-
rahydroalstonine-TNF; (e) diosgenin-MAPK8; (f ) quercetin-MAPK8.*e ingredient structure was shown as a green stick, the protein
structure was presented as a blue ribbon, and the hydrogen bonds were shown as a yellow chain.
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ingredient of Tripterygii Radix anti-RA-FLS and its in-
volvement in regulating AKT1, TNFR1, TNFR2, and TNF-α
expression [33].

*is study reveals the theoretical molecular mechanism
of the ingredients of SQP for the treatment of NAFLD
through network pharmacology and verified by molecular
docking. However, further pharmacological and clinical
studies are needed to validate the therapeutic mechanism of
SQP.

5. Conclusions

*e present study demonstrated the active compounds,
potential genes, and signal pathways of SQP in treating
NAFLD based on network pharmacology. We found that
quercetin, kaempferol, stigmasterol, diosgenin, and tetra-
hydroalstonine are the main active ingredients of SQP. *e
core target genes of SQP for the treatment are AKT1, TNF,
and MAPK8. SQP plays a major effect in NAFLD treatment
by regulating the PI3K-Akt signaling pathway, TNF sig-
naling pathway, and MAPK signaling pathway. Overall, this
study provides a promising and scientific basis for further
investigation of SQP for NAFLD treatment.
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