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Head and neck squamous cell carcinomas (HNSCCs) comprise a heterogeneous group of tumors. Many patients respond
di�erently to treatment and prognosis due to molecular heterogeneity. �ere is an urgent need to identify novel biomarkers to
predict the prognosis of patients with HNSCC. Glycolysis has an important in�uence on the progress of HNSCC. �erefore, we
investigated the prognostic signi�cance of glycolysis-related genes in HNSCC. Our results showed that ELF3, AURKA, and ADH7
of 20 glycolysis-related DEGs were signi�cantly related to survival and were used to construct the risk signature. �e risk score
showed high accuracy in distinguishing the overall survival (OS) of HNSCC.�e Kaplan–Meier curves demonstrated that the risk
score was associated with an unfavorable prognosis in patients with female sex, male sex, grade 3, T1/2 stage, N+ stage, N2 stage,
M0 stage, and clinical stage III/IV. Independent prognostic analysis showed that clinical stage and risk score were strongly
associated with OS.Moreover, the risk score had higher accuracy in predicting 1-, 3-, and 5-year survival.AURKA andADH7were
only signi�cantly related to M1 macrophages and neutrophils, respectively, while ELF3 was signi�cantly correlated with M2
macrophages and monocytes (all p< 0.05).�e ceRNA network demonstrated that miR-335-5p and miR-9-5p may play core roles
in the regulation of these three genes in HNSCC. �e risk score constructed based on three glycolysis-related genes showed high
accuracy in predicting the prognosis and clinicopathological characteristics of HNSCC.

1. Introduction

Head and neck cancers (HNCs) are a group of heteroge-
neous diseases with multifocal and multicellular origins,
which occur in the nasal sinuses, nasal cavity, oral cavity,
pharynx, throat, salivary glands, thyroid gland, etc. Squa-
mous cell carcinomas comprise 90% of cases and are called
head and neck squamous cell carcinoma (HNSCC) [1].
HNSCC, as the most common cancer type of the head and
neck, is the sixth most common cancer worldwide, ac-
counting for almost 5% of all malignant tumors [2].
Smoking, drinking, and human papillomavirus are risk
factors for HNC and are related to the pathogenesis of
HNSCC [3]. Although surgeries combined with

radiotherapy, chemotherapy, and targeted therapy have been
considered the main treatment methods in recent decades,
less than 50% of patients have been cured. Moreover, the
incidence of local recurrence in patients with HNSCC is
15–50% [4]. Although TNM staging is an important clinical
prognostic factor to guide treatment choice, many HNSCC
patients with the same TNM staging respond di�erently to
radiotherapy, chemotherapy, and immunotherapy due to
molecular heterogeneity, which greatly a�ects clinical e¤-
cacy and side e�ects [5].�erefore, there is an urgent need to
identify novel biomarkers to predict the prognosis of pa-
tients with HNSCC.

Aerobic glycolysis is one of the most important meta-
bolic characteristics of tumor cells. It can not only provide
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energy for tumor cells quickly (various intermediate me-
tabolites produced in the process are the necessary pre-
cursors for other metabolic pathways, which can provide
energy for tumor cells) but also provide rawmaterials for the
synthesis of various biological macromolecules. More im-
portantly, high-throughput glycolysis of tumor cells pro-
duces a high-lactate, low-glucose metabolic environment
that can help maintain an immunosuppressive tumor mi-
croenvironment. Drug therapy targeting glycolytic genes can
inhibit tumor progression and increase sensitivity to other
therapeutic agents [6]. +e expression levels of the three key
glycolytic enzymes, namely, hexokinase, 6-phosphofructo-
kinase, and pyruvate kinase, are significantly increased in
oral precancerous and oral squamous cell carcinoma tissues
[7]. Moreover, the expression of hexokinase 2/pyruvate
kinase muscle isozyme M2 (HK2/PKM2) in tongue squa-
mous cell carcinoma tissue is significantly increased and is
significantly related to tumor staging, clinical staging, and
lymph node metastasis and can be used as an independent
factor to predict disease prognosis. HK2/PKM2 knock-down
significantly inhibited the growth of tongue squamous cell
carcinoma, transplanted tumors, and lungmetastasis inmice
[8]. +ese results demonstrated the important role of gly-
colytic enzymes in the occurrence and development of oral
cancer; thus, identifying reliable prognostic factors in pa-
tients with HNSCC based on glycolysis for accurate prog-
nosis prediction and screening for high-risk cases are
important for doctors to develop individualized treatment
plans.

In recent years, the unique metabolic mode of tumor
cells has attracted great attention and is expected to be an
important drug target for targeted therapy [7]. Metabolic
changes in the tumor microenvironment affect not only the
biological characteristics of tumor cell proliferation and
migration but also cause infiltration, distribution, and
function changes in tumor immune cells [8]. Moreover, the
Treg transcription factor Foxp3 reprograms Treg meta-
bolism by inhibiting Myc signal transduction and glycolysis,
and enhancing oxidative phosphorylation (OXPHOS) and
nicotinamide adenine dinucleotide (NADH) oxidation,
thereby providing Tregs the metabolic advantage in the low-
glucose and high-lactic acid tumor microenvironment,
thereby resisting lactate-mediated Tcell function and growth
inhibition [8]. However, activated T cells require large
amounts of glucose, amino acids, and fatty acids and adjust
their metabolic pathways to increase glycolysis and gluta-
mate decomposition activities [9]. Activated neutrophils and
M1 macrophages also rely mainly on the glycolytic pathway
for energy supply [10, 11]. However, there is a lack of
systematic exploration of the relationship between glucose
metabolism and tumor immunity in HNSCC.

In the present study, three glycolysis genes (ELF3,
AURKA, and ADH7) were significantly related to survival
and were used to construct a risk signature that showed high
accuracy in predicting the overall survival (OS) of HNSCC.

+e risk score was associated with an unfavorable prognosis
in the patients with female sex, male sex, grade 3, T1/2 stage,
N+ stage, N2 stage, M0 stage, and clinical stage III/IV. +e
risk score was also an independent prognostic factor for
predicting the OS of patients with HNSCC. In addition,
AURKA and ADH7 were significantly related to M1 mac-
rophages and neutrophils, respectively, while ELF3 was
significantly correlated with M2 macrophages and mono-
cytes. +e competing endogenous RNA (ceRNA) network
demonstrated that miR-335-5p and miR-9-5p may play a
core role in the regulation of these three genes in the de-
velopment of HNSCC.

2. Materials and Methods

2.1. Data Source. +e transcriptome and corresponding
clinical data from HNSCC (500 cases) and normal (44 cases)
samples were downloaded from +e Cancer Genome Atlas
(TCGA) database. Moreover, the transcriptome and clinical
information for HNSCC and normal samples were obtained
from the GSE41613 dataset in the GEO database and were
considered an independent external validation set for the
prognostic signature. +e 288 glycolysis-related genes were
obtained from the MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb).

2.2. Identification of DEGs and Glycolysis-Related DEGs.
Based on a threshold value of |log2 fold change (FC)|> 1 and
a p value of <0.05, the DEGs were screened between the
tumor and normal samples using the “limma” R package
(v3.42.2). +e DEGs were visualized by the volcano plot, and
the top 50 DEGs were visualized as a heatmap. +e gly-
colysis-related genes were intersected with the DEGs using
Venn analysis (https://bioinformatics.psb.ugent.be/
webtools/Venn/).

2.3. Univariate and Multivariate Cox Regression Analyses.
+e 500 HNSCC samples were divided into training (350
samples) and testing (150 samples) sets in a 7 : 3 ratio. +e
clinical characteristics of the HNSCC samples in the training
and testing sets are reviewed in Table S1.+e expression data
of 20 glycolysis-related DEGs in the training set were
subjected to univariate Cox regression analysis to determine
those that were significantly associated with patient survival
based on a p value of <0.2.

+e genes identified in the univariate Cox regression
analysis were included in the multivariate Cox regression
and stepwise analyses to further filter the genes, ultimately
obtaining the three genes related to prognosis, which were
used to construct the risk signature. +e risk score was
calculated using the R package “survival” (v3.2-7) based on
the linear model and predict.coxph function [12]. +e risk
score formula was as follows:
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Risk score �
e
sum(each gene’s expression levels×correspon di ng coeff icient)

e
sum(each gene’smean expression levels×correspon di ng coefficient).

(1)

According to the median risk score, the 350 patients in
the training set were classified into high-risk (>median)
and low-risk (<median) groups. +e OS and receiver
operating characteristic (ROC) curve analyses were
plotted respectively using the R packages “survminer”
(v0.4.6) and “survivalROC” (v1.0.3) for the high- and low-
risk groups in the training set. +e expression levels of the
three genes were visualized on a heatmap using the R
package “pheatmap” (v1.0.12). +e risk score system of the
three genes was constructed in the training set and
evaluated using the testing set and the GSE41613 dataset.

+e correlations of the risk score and clinicopathological
characteristics (sex, grade, clinical stage, and TNM stage) were
evaluated by Kaplan–Meir survival curves using the R package
“survival” (v3.2-7).

+e clinicopathological characteristics were included in
the univariate and multivariate Cox regression analyses to
confirm the independent prognostic factors based on
p< 0.05. A nomogram was constructed using the R package
“rms” (v5.1-4) to predict the survival rates at 1, 3, and 5
years and to assess its effectiveness by calibration curves
[13].

2.4. Distributions of the Immune Cells and �eir Correlation
with the Genes in the Risk Signature. +e distributions of
immune cells between the high- and low-risk groups were
analyzed using the CIBERSORT algorithm (v1.0.3). +e
differential immune cells (p< 0.05) were selected and their
correlations with the three genes in the risk signature are
shown in a correlation heat map.

2.5. Construction of the ceRNA Network. +e three micro
RNAs (miRNAs) regulated by these three genes were ob-
tained from the miRTarBase database (https://mirtarbase.
cuhk.edu.cn/php/index.php). +e 175 long noncoding
RNAs (lncRNAs) interacting with the miRNAs were
downloaded from the starBase database (https://starbase.
sysu.edu.cn/). A ceRNA network was constructed and
optimized using Cytoscape software (v3.7.2) using three
genes, three miRNAs, and 175 lncRNAs.

2.6. Statistical Analyses. We used the R package “edgeR” to
identify differentially expressed lncRNAs in the HNSCC and
normal samples. Wilcoxon tests were used to compare the
fractions of immune cells between HNSCC and normal
samples in the CIBERSORT analysis. Pearson’s correlation
analysis was used to analyze the correlation between the
three genes and differential immune cells. p< 0.05 was
considered statistically significant.

3. Results

3.1. Identification of Glycolysis-Related DEGs. A total of 505
DEGs (Table S2) between the HNSCC and normal samples
were identified, including 293 upregulated genes and 212
downregulated genes. +e distributions of DEGs were vi-
sualized in a volcano plot (Figure 1(a)), and the top 50 DEGs
showed obvious differences between the HNSCC and nor-
mal samples (Figure 1(b)). Among 288 glycolysis-related
genes (Table S3), 20 overlapped with the DEGs (Figure 1(c))
and were included in the follow-up analyses.

3.2. Construction and Verification of the Prognostic Risk
Signature. To construct the glycolysis-related DEG-based
prognostic signature, we performed univariate and multi-
variate Cox regression analyses in the training set. Uni-
variate Cox regression analysis selected ELF3, AURKA, and
ADH7 from 20 genes based on p< 0.2 (Table 1), and they
were further included in the multivariate Cox regression
analysis to determine the best characterized genes. +e re-
sults are shown in Table 2, and ELF3, AURKA, and ADH7
were considered to be the optimal variables for the con-
struction of the prognostic signature. +e risk score was
calculated using the aforementioned formula. +e 350
samples in the training set were then divided into high-risk
and low-risk groups according to the median of the risk
score. +e number of patients who died increased signifi-
cantly as the risk score increased in the training set
(Figure 2(a)). In addition, the OS differed significantly
(p � 1.491e − 02) between the high- and low-risk groups.
+e high-risk cohort was also correlated with a poor
prognosis in the training set (Figure 2(b)). Subsequently,
ROC curve analysis of the prognostic risk score was per-
formed at 1, 3, and 5 years to assess the predictive efficiency
of the risk score.+e results are shown in Figure 2(c), and the
area under the curve (AUC) of the risk score in the training
set was 0.592, 0.598, and 0.557 for patients with 1, 3, and 5-
year OS, respectively. +e expressions of AURKA and ADH7
were upregulated, while ELF3 was downregulated in the
high-risk group compared to those in the low-risk group in
the training set (Figure 2(d)).

To demonstrate the general applicability of the risk score,
we performed the same analysis in both the testing set
(Figure 3) and the external validation set (Figure 4). +e
results showed that the risk score was able to significantly
differentiate the clinical outcomes of patients (all p< 0.05).
Meanwhile, relatively higher predictive accuracy was ob-
served in both the testing set and the external validation set.
In the testing set, the AUCs for the risk score were 0.630,
0.600, and 0.616 for OS at 1, 3, and 5 years, respectively, and
0.687, 0.611, and 0.639 in the external validation set,
respectively.
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Figure 1: (a) Volcano plot showing the distribution of DEGs. (b) Heatmap showing the top 50 DEGs. (c) Venn diagram of DEGs common
to the two GEO datasets. DEGs: differentially expressed genes; GEO: Gene Expression Omnibus.
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3.3. Correlation of the Risk Score and Clinicopathological
Characteristics with OS. To investigate the correlation be-
tween the risk score and clinicopathological characteristics
(sex, grade, clinical stage, and TNM stage), the risk score was
visualized as box plots for these clinicopathological char-
acteristics. +e results showed that the risk score did not
differ significantly for these characteristics (p> 0.05,
Figure S1). To further investigate the correlation between the
risk score and patient OS, Kaplan–Meier curves were plotted
in patients stratified according to clinicopathological char-
acteristics. +e results showed that the risk score was as-
sociated with an unfavorable prognosis in patients with
female sex, male sex, grade 3, T1/2 stage, N+ stage, N2 stage,
M0 stage, and clinical stage III/IV (p< 0.05, Figure 5), but
not with grade 1/2, T3/4 stage, N0 stage, N1 stage, and
clinical stage I/II (p> 0.05, Figure 5), suggesting that the risk
scores might be associated with OS and clinicopathological
characteristics.

3.4. Identification of Independent Prognostic Factors.
Univariate and multivariate Cox regression analyses were
performed using the TCGA dataset to explore the independent
prognostic factors based on the abovementioned clinico-
pathological characteristics. +e univariate analysis showed
that the clinical stage and the risk score were significantly
correlatedwith prognosis (p< 0.05, Table 3 and Figure 6(a)). In

the multivariate analysis, based on the abovementioned sig-
nificant factors, the clinical stage and risk score remained
strongly associated with OS (clinical stage, p � 0.009; risk
score, p< 0.001; Table 4 and Figure 6(b)), which were con-
sidered independent prognostic factors for HNSCC. After that,
we constructed a nomogram model based on these indepen-
dent prognostic factors that could predict the OS of patients
(Figure 6(c)). Further calibration curves showed that the no-
mogram model had the ability to predict the 3-year OS of
patients in an approximate way to the actual observed values
(Figure 6(d)), suggesting that the nomogram model may be
more suitable for predicting themidterm survival probability of
patients.

3.5. Relationships between the Genes in the Risk Signature and
Immune Cells. Glycolysis-related genes were upregulated in
samples of melanoma and lung cancer was poorly infiltrated
by Tcells. Moreover, the overexpression of glycolysis-related
molecules impaired T cell killing of tumor cells, whereas the
inhibition of glycolysis enhanced T cell-mediated antitumor
immunity in vitro and in vivo [14]. +us, collectively, im-
mune cells may participate in glycolysis regulation during
cancer occurrence and development.

+e present study investigated the relationship between the
genes in the risk signature and 21 immune cell lines using the
CIBERSORT algorithm. +e results showed significantly

Table 2: Regression coefficients for prognostic glycolysis-related DEGs.

Id Coef HR HR.95L HR.95H p value
ELF3 −0.011159384 0.988902651 0.98008198 0.997802708 0.014640204
AURKA 0.021639974 1.021875816 0.998608076 1.045685698 0.065557575
ADH7 0.005465779 1.005480744 1.000514882 1.010471254 0.030484488

Table 1: Univariate Cox regression analysis of 20 glycolysis-related DEGs in TCGA-training set.

Id HR HR.95L HR.95H p value
ADH1B 0.95880947 0.698532024 1.316067937 0.794627984
ADH1C 0.992516531 0.976875575 1.008407918 0.354002802
ADH7 1.003527529 0.998519769 1.008560403 0.167709269
AGRN 1.000417439 0.995546788 1.00531192 0.866894449
ALDH3A1 1.000187007 0.99904975 1.001325559 0.747348382
ALDH9A1 0.995777718 0.981703298 1.01005392 0.560173636
ARTN 1.004851119 0.975590593 1.034989246 0.74823725
AURKA 1.023682341 0.99982915 1.048104603 0.05168357
CAPN5 1.011790392 0.919855881 1.11291325 0.809425046
CDK1 0.993148111 0.97395806 1.012716266 0.489785082
CENPA 1.014112882 0.966000828 1.064621177 0.57199465
CHPF 1.002554489 0.997355603 1.007780476 0.336169621
CHST2 1.006487836 0.995794942 1.017295551 0.235348089
COL5A1 0.999960883 0.996736632 1.003195563 0.981060039
DDIT4 1.000084304 0.998404999 1.001766434 0.921681662
ELF3 0.991125876 0.982767465 0.999555376 0.039123533
ENO2 1.004596293 0.989552668 1.019868619 0.551376673
ENO3 1.003445564 0.997299719 1.009629283 0.27249397
EXT1 1.001927423 0.982155136 1.022097756 0.849818487
FBP2 1.006933545 0.921785842 1.099946557 0.878177364
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Figure 2: (a) Relationships between risk score and the number of deaths. (b) Overall survival of high-and low-risk patients. (c) ROC curve
analysis of the predictive efficiency of the risk signature. (d) Heatmap showing AURKA, ADH7, and ELF3 expression.
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reduced fractions of B cell memory cells, T follicular helper
cells, monocytes, and neutrophils in the high-risk group
compared to those in the low-risk group (allp< 0.05). +e
fractions of M1 and M2 macrophages in the high-risk group
were significantly higher than those in the low-risk group
(p< 0.05, Figure 7(a)). Furthermore, the correlations of the
three genes and the immune cells are shown in Figure 7(b);

ELF3 showed a significant negative correlation with M2
macrophages and a significant positive correlation with
monocytes; AURKApresented the highest positive relationship
with M1 macrophages; ADH7 displayed a significant negative
correlation with neutrophils. Taken together, the three genes
related to glycolysis regulated the malignant development of
HNSCC, probably by affecting the activity of immune cells,
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Figure 5: Continued.
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Figure 5: Kaplan–Meier curves to investigate the correlation of the risk score and patients’ overall survival according to different patient
clinicopathological characteristics.

Table 3: Univariate Cox regression analysis of clinical characteristics and risk score.

Id HR HR.95L HR.95H p value
Gender 0.830997859 0.582541512 1.18542186 0.307044026
Grade 1.114557549 0.859062076 1.446040473 0.414259463
Stage 1.26336723 1.037522833 1.538372658 0.019989211
T 1.060862183 0.894131849 1.258683016 0.498248825
M 2.580353112 0.6334397 10.51121706 0.185900335
N 1.110517954 0.939063498 1.313276609 0.220518367
Risk score 2.211923156 1.500158061 3.261392365 6.15E-05
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particularly macrophages, monocytes, and neutrophils. How-
ever, whether these three genes could be used as targets for
immunotherapy in HNSCC requires further research.

3.6. Construction of the ceRNANetwork Based on the Genes in
the Risk Signature. To investigate the coregulatory network of
the genes in the risk signature, a ceRNA network was con-
structed using the three genes, three 3 miRNAs, and 175

lncRNAs. As shown in Figure 8, the ceRNA network was
roughly divided into two clusters connected by several
lncRNAs;ADH7was directly related tomiR-335-5p, whichwas
in a central position in a cluster and was associated with
multiple lncRNAs; miR-124 was connected to both ELF3 and
AURKA, but not to any lncRNAs; miR-9-5p, directly con-
nected to ELF3 and indirectly connected to AURKA, was lo-
cated in the center of another cluster and was related to
multiple lncRNAs.+ese results revealed that miR-335-5p and
miR-9-5p may play core roles in the regulation of these three
genes in HNSCC.

4. Discussion

+e recurrence and metastasis of head and neck tumors are
the main reasons for the low OS rate of patients. +erefore,
the identification of an exact tumor marker to assist in
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Figure 6: (a) +e univariate analysis of the correlation on the clinical stage, risk score, and prognosis. (b) +e multivariate analysis of the
correlation on the clinical stage, risk score, and OS based on the abovementioned significant factors. (c) +e OS of patients predicted by the
nomogram model. (d) +e application of calibration curves in the nomogram model.

Table 4: Identification of independent prognostic factors of
HNSCC by multivariate Cox regression analysis.

Id HR HR.95L HR.95H p value
Stage 1.303573262 1.069949098 1.588209432 0.008515059
Risk
score 2.355354132 1.592227234 3.484234517 1.80E-05
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clinical diagnosis, judge patient response to treatment, and
detect local recurrence and metastasis of tumors early has
become a research hotspot. Cytokeratin 19 serum fragment
21-1 (Cyfra21-1), squamous cell carcinoma-associated an-
tigen (SCCAg), tissue polypeptide-specific antigen (TPS),
carcinoembryonic antigen (CEA), Fe protein, and circu-
lating tumor cells (CTCs) are tumor markers for the

diagnosis and prognosis of HNSCC [15]. However, their lack
of sensitivity and specificity means that they are not con-
sidered specific tumor markers for HNSCC.

In the present study, ELF3, AURKA, and ADH7 were
significantly related to the OS of HNSCC and were used to
construct a risk signature that showed high accuracy in
predicting the prognosis of HNSCC. +e risk scores of
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Figure 7: (a) CIBERSORT algorithm analyses of the relationship of the genes in the risk signature and 21 immune cells. (b) Correlation
analysis of AURKA, ADH7, and ELF3 and differential immune cells. CIBERSORT: cell-type identification by estimating relative subsets of
RNA transcripts.
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HNSCC patients with female sex, male sex, grade 3, T1/2,
N+, N2, M0, and clinical stage III/IV were associated with a
poor prognosis. Moreover, the risk score was an indepen-
dent prognostic factor for predicting the OS of patients with
HNSCC. In addition, AURKA and ADH7 were significantly
correlated with M1 macrophages and neutrophils, respec-
tively, while ELF3 was significantly correlated with M2

macrophages and monocytes. Furthermore, the ceRNA
network revealed the potential roles of miR-335-5p and
miR-9-5p in the regulation of these three genes in HNSCC
progression.

+e E26 transformation-specific (ETS) transcription
factor family is located on chromosome 1q32.1 and has a
conserved winged helix-turn-helix DNA-binding domain, the
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Figure 8: Construction of a ceRNA network based on the genes in the risk signature, ceRNA, and competitive endogenous RNA.
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ETS domain, that can bind to the typical DNA sequence 50-
GGA(A/T)-30 [16–18]. Members of this family can act as
upstream and downstream effectors of most signaling
pathways, such as MAP kinase, Erk1/2, p38, and JNK, which
play important roles in cell differentiation, development,
proliferation, apoptosis, tissue remodeling, and epithelial-
mesenchymal transition [19–24]. ELF3 (E74 is similar to the
ETS transcription factor 3), also known as ESE-1, EPR-1, ESX,
and ERT, is expressed in the nucleus and cytoplasm [25].
ELF3 is closely associated with bladder, ovarian, biliary tract,
gastric, cervical, breast, prostate, lung, liver, and colon cancer
and increases cell proliferation, invasion, and migration
[26, 27]. ELF3 is highly expressed in head and neck tumors
and upregulates the epidermal growth factor receptor (EGFR)
and human epidermal growth factor receptor 2 (HER2) to
attenuate the antiproliferative effects of EGFR/HER2 tyrosine
kinase inhibitors (lapatinib and afatinib) [28].

+eAurora protein kinase family includes serine/threonine
kinases that participate in many processes of cell mitosis, such
as cell cycle G2/M conversion, mitotic spindle assembly, and
chromosome separation [29].+eAurora protein kinase family
members include Aurora A, Aurora B, and Aurora C. +e
AURKA kinase is frequently amplified or overexpressed in
malignant tumors such as pancreatic, prostate, gastric, breast,
and colon cancers [30, 31]. Abnormal AURKA expression
promotes malignant tumor occurrence and development
through a variety of possiblemechanisms, including promoting
cell cycle processes, activating cell survival and/or antiapoptosis
signal transduction, enhancing oncogene carcinogenicity,
promoting the epithelial-mesenchymal transition, and dry cell
transformation of cancer cells [32]. In recent years, increasing
evidence has demonstrated a potential relationship between
AURKA expression and tumor immunity. +e initial under-
standing of the influence of AURKA on the immune response
comes from its application in immunotherapy, in which the
AURKA epitope initiated an anti-AURKA immune response,
thereby killing tumor cells with high AURKA expression.
Moreover, AURKA inhibition directly interfered with the
immune response by inducing cell transformation, T cell ac-
tivation, and immune cell infiltration [33]. Reiter et al. reported
that AURKA upregulation promoted the disease stage, the
occurrence of positive regional lymph nodes, and the level of
distant metastasis, reducing the disease-free survival time and
OS rate of patients [34]. Huang et al. [35] indicated that the risk
of oral cancer increased significantly among smokers with high
AURKA expression, which had a certain reference value for
screening groups at high risk for oral cancer. Yang et al. [36]
showed that MLN8237, an AURKA inhibitor, inhibited
AURKA autophosphorylation at +r288, leading to abnormal
cell division and cell cycle to stop cell aging in the G2/M phase.

Alcoholic dehydrogenase (ADH) is a key enzyme in alcohol
metabolism [37] and can be divided into five categories, in-
cluding seven genotypes: ADH1a, ADH1b, ADH1c, ADH4,
ADH5, ADH6, and ADH7 [38]. ADH plays an important role
in the metabolism of alcohol, retinol, and other substances to
oxidize ethanol to acetaldehyde.+us, abnormal or unbalanced
expression of this enzyme leads to abnormal alcohol meta-
bolism [39]. Recently, theADH family was reported to also play
a role in the prognosis of gastric cancer, breast cancer, and

nasopharyngeal carcinoma [40]. ADH7 showed promise as a
prognostic biomarker and chemotherapy target for gastric
adenocarcinoma, with low ADH7 expression and is related to
the prognosis of patients with better histological types of ad-
enocarcinoma and squamous cell carcinoma [41]. In addition,
ADH1B+3170A>G and ADH1C+13044A>G single-nucleo-
tide polymorphisms were associated with increased risks of
HNSCC [42].

In conclusion, ELF3, AURKA, and ADH7 were highly
accurate in predicting the prognosis and clinicopathological
features of patients with HNSCC, providing a new perspective
for prognosis analysis and immune target therapy for HNSCC.
However, this study selected few datasets and there were few
tools to predict miRNA target genes. +e databases used were
not updated consistently and the annotation of the gene in-
formation was not perfect, which may have led to false-positive
results. However, our research provides a preliminary basis and
new ideas for research. Follow-up research will further focus on
the functions and molecular mechanisms of these three genes
miR-335-5p and miR-9-5p in the development of HNSCC. A
large number of independent sample sets will also be used to
verify these markers.

5. Conclusions

+e risk score constructed based on three glycolysis-related
genes showed high accuracy in predicting the prognosis and
clinicopathological characteristics of HNSCC.
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