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�e development of arti�cial intelligence devices in the complementary medicine �eld is rapid and the surface microbial diversity
pollution was foundwith periodic low-dose ultraviolet radiation (LDUVR). Since arti�cial intelligence devices do not have enough
di�erent types of substrates for microbial communities, it is unclear how the great microbial diversity can emerge and persist, as
this clearly de�es the competitive exclusion principle of ecology. In this study, the 5 most common genera in the arti�cial
intelligence devices, Escherichia, Pseudomonas, Streptococcus, Staphylococcus andAeromonas have been sampled without and with
periodic LDUVR, respectively. A new hypothesis was put up to clarify the construction and maintenance process of high
microbiological diversity in arti�cial intelligence devices by comparing and evaluating the variations between the dynamic
response characteristics of their relative abundances in the two scenarios as follows: the periodic LDUVR can be regarded as an
adverse factor with intermediate disturbance, causing stronger microbial stochastic growth responses (SGR) which would in-
evitably give rise to stronger random variation of the other important processes tightly correlated with SGR, such as intra- and
interspeci�c competition process, and substrates production and consumption process, which could e�ectively diminish the auto-
and cross-correlation of stochastic processes of microbial populations, alleviating the intra- and inter-speci�c competitions. In
arti�cial intelligence devices with LDUVR, these crucial succession processes can propel the microbial communities to generate
and sustain a high species diversity. Finally, thorough Monte Carlo simulations were used to thoroughly con�rm the idea. �is
research can build the theoretical groundwork, o�er fresh viewpoints, and suggest potential microbial prevention strategies for the
succession of microbial communities in LDUVR.

1. Introduction

Microbial diversity in the medical treatment environment,
such as operating room, sickroom, treatment room, and
injection , is often at a lower level, and all sections of the
environment need to be properly cleaned, disinfected, and
maintained. However, microbial diversity with high richness
and evenness has been currently found in the arti�cial in-
telligence devices where periodic ultraviolet (UV) ray dis-
infection was used extensively, because various kinds of

microbial species had been sampled and identi�ed from the
parts which were uneasily cleaned in the devices, such as
screw, pulley, and backboard, where the microbial diversity
is signi�cantly higher than other parts of arti�cial intelli-
gence devices.�emicroorganisms on the signi�cant surface
are killed by direct exposure to periodic high-dose UV ra-
diation, nevertheless, those microorganisms colonized on
the positions with a relatively long distance the from UV
source can only receive periodic low-dose UV radiation
(LDUVR) due to energy degradation [1, 2].
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(e indoor microorganisms are often combined with
dust particles and exist in the form of aerosol suspending in
the air and precipitating in artificial intelligence devices with
periodic LDUVR [3]. (e dust particles usually contain a
small amount of macromolecular organic matters, which
could be decomposed by the microbial community into
monosaccharides, oligosaccharides, oligopeptides, amino
acids, glycerol, fatty acids, and so on, which could be directly
used as substrates for microbial growth and proliferation [4].
However, statistics show that the number of substrate types
accessible for the microbial community in the medical
treatment environment is about 10 at most, far less than the
number of microbial species discovered in artificial intelli-
gence systems with periodic LDUVR. Although only a few
dominant species can coexist through substrate niche dif-
ferentiation, the well-known competitive exclusion principle
in ecology predicts that microbial species will compete
fiercely over fewer varieties of substrates, making it im-
possible to create and maintain microbial diversity [5].
Although these phenomena were seen in artificial intelli-
gence systems with periodic LDUVR, it is now unclear how
the dynamic forces underpinning the microbial community
succession work. (e reason the microbiological variety can
develop and persist in the artificial intelligence devices with
periodic LDUVR is therefore still a mystery.

A negative disturbance for the microbial community
succession in artificial intelligence devices could be the
periodic LDUVR. (e intermediate disturbance hypothesis
has been put forth to suggest that species diversity will be
higher in communities withmoderate levels of perturbations
than in communities with no perturbations or communities
with rare or very frequent perturbations [6]. As is well
known, ecosystem disturbance is defined as a relatively
discrete event in time with frequency, intensity, and severity
outside of a predictable range [7]. In a relatively simple
environment with fluctuating temperature, for instance,
many more species of phytoplankton have been observed to
coexist, a phenomenon known as the “plankton paradox”.
As an intermediate disturbance, fluctuating temperature
may promote species diversity by reducing the pressure of
dominant species on other species and allowing the latter to
develop [8].

(e periodic LDUVR can be viewed as an unfavorable
factor with intermediate disturbance, causing microbial
stochastic growth response (SGR) along with random var-
iation of the crucial processes tightly correlated with SGR,
such as intra- and inter-specific competition [8, 9]. (is new
dynamic mechanism is based on existing ecological inves-
tigations and drives microbial community succession with
higher species diversity in artificial intelligence device with
periodic LDUVR. In order to create and preserve high
microbial diversity in artificial intelligence devices with
periodic LDUVR, the periodic LDUVR may efficiently re-
duce the auto- and cross-correlation of stochastic processes
of microbial populations.

In order to test the preceding hypothesis, in the research,
the five most common genera, Escherichia, Pseudomonas,
Streptococcus, Staphylococcus, and Aeromonas in artificial
intelligence devices were periodically sampled and analyzed.

To describe the dynamic mechanisms causing microbial
community successions in artificial intelligence devices with
periodic LDUVR, highly valid kinetic models expressed by
differential equations with kinetic parameters obeying dif-
ferent normal distributions were established based on the
proposed assumptions, experimental phenomena, and data
[9]. Additionally, a large number of microbial species and
substrates were computer-generated. By using a significant
amount ofMonte Carlo simulations along with experimental
data, the hypothesis was properly validated and proven. (e
findings of this study could create the theoretical ground-
work for understanding the ecological impact of LDUVR on
the succession of microbial communities and offer a prac-
tical advice on microbial prevention and control in the
presence of LDUVR.

2. Materials and Methods

2.1. Source of the Samples. (e selected artificial intelligence
devices were located in the medical treatment environment,
which was clearly divided into two functional areas, UV
disinfection room and controlled room, with good venti-
lation, and annual keeping temperature and humidity, re-
spectively, at 19–24°C and 40%–50% through the central air-
conditioning system.

As an experimental group, the microorganisms were
sampled by cotton swabs from the screw, pulley, and
backboard of the UV disinfection room in the artificial
intelligence devices, the effective sampling area was
10 cm× 20 cm. A germicidal lamp (Ushio Inc. Tokyo, Japan)
emitting primarily 254 nm ultraviolet radiation (UV) was
routinely utilized for sterilization with the disinfection time
from 8 am to 8 pm every day. (e sampling place was 6.18m
away from the germicidal lamp, and exposed to periodic
LDUVR. As a control group, the microorganisms were
sampled from the same area without UV disinfection in the
artificial intelligence devices, the effective sampling area was
also 10 cm× 20 cm.

(e sampling time is 1 day which is relatively a short
period to capture transient dynamic characteristics of mi-
crobial abundances, and the last is 100 days. Ecologically, the
dynamic processes of microbial populations in the artificial
intelligence devices must be stochastic processes, since they
are mainly dependent on intrinsic growth rates of microbial
species, intra- and inter-specific competitions, and random
environmental disturbances. Based on the stochastic process
theory, if a long-time observation and record for microbial
populations have been carried out, the accurate statistical
characteristics of their stochastic processes, such as the
mean, variance, auto- and cross-correlation function, and
power spectral density (PSD), can be obtained from time-
series data [10]. (erefore, 100 days are long enough for
stochastic processes of microbial populations to go through
all possible states. According to the classic Lotka–Volterra
competition model, however, the dynamic characteristics of
a species population are totally dependent on the intrinsic
growth rate, and intra- and inter-specific competition;
hence, the auto- and the cross-correlation function can fully
reflect the intra- and inter-specific relationships and
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interactions, and disclose the dynamic mechanisms to drive
microbial community succession in the artificial intelligence
devices with periodic LDUVR.(erefore, only the auto- and
the cross-correlation functions were calculated and used to
analyze the stochastic process of microbial abundances
[11, 12].

2.2. Analysis of Microbial Abundance and Diversity. (e
abundance of microbial samples was analyzed as the fol-
lowing steps:

(1) Extracting microbial total DNA from the sample by
using a powerful microbial DNA extraction kit
(Power microbial® DNA Isolation Kit, MoBio)

(2) High-throughput sequencing by means of an Illu-
mina HiSeq platform using double-end sequencing

(3) Performing quality control on preprocessed se-
quencing results using the DADA2 method

(4) Dividing operational taxonomic units (OTUs) to
assess the richness of the microbial community
through the Chao1 Index

(5) Annotating species for each sample and analyzing
the composition of the microbial community
abundance at the genus level

(6) Calculating the microbial diversity based on the
Simpson index and performing the overall α diversity
analysis in conjunction with step (4)

(e purified pooled sample was subjected to high-
throughput sequencing analysis of bacterial rRNA genes
utilizing the Illumina Hiseq 2500 platform (2250 paired ends)
at Biomarker Technologies Corporation, Shanghai, China.
(eseOTU sequences were classified taxonomically at various
taxonomic levels using the RDP classifier and an 80 percent
confidence criterion against the SILVA andUNITE databases.

2.3. Mathematical Modeling and Digital Simulations.
Using the hypothesized theory, system dynamics, and ex-
perimental data, kinetic models of microbial community
succession were created in this study [13]. (rough digitally
created Monte Carlo experiments, the microbial species and
substrates were represented by model parameter vectors
[14]. In order to simulate the scenario of microbial com-
munity succession in the controlled room and UV disin-
fection room with periodic LDUVR, respectively, the
corresponding simulation models were established by
MATLAB/Simulink based on these kinetic models. (ese
stochastic parameters generated from the normal distribu-
tion would cause the stochastic processes of microbial
populations to have different PSDs [15]. Digital simulations
along with experimental data and phenomena were used to
sufficiently validate and confirm the presented concept.

3. Results and Discussion

3.1. Dynamic Characteristics of Microbial Abundances.
(e microbial relative abundances of Escherichia, Pseudo-
monas, Streptococcus, Staphylococcus and Aeromonas, and

the corresponding Simpson Diversity Index of the microbial
community were analyzed and quantified (Figure 1), after
periodical sampling from UV the disinfection room and
controlled room of the artificial intelligence devices,
respectively.

Based on stochastic processes of relative abundances of
the five most common genera, calculate the autocorrelation
function of the relative abundances stochastic process of
each microbial genus sampled from the controlled room
(Figure 2) and UV disinfection room (Figure 3), respectively.

Furthermore, the cross-correlation function between
twomicrobial genus-relative abundance stochastic processes
was also calculated and illustrated in Figures 4 and 5,
respectively.

From Figures 1, 2, and 4, the auto- and cross-correlation
function of microbial abundances stochastic processes as
well as the Simpson Index of microbial community sampled
from the controlled room are relatively large. Based on the
classic Lotka–Volterra competition model and stochastic
process theory, the auto- and cross-correlation function can
indicate the influence of intra- and inter-specific competi-
tion strength on species population. (e larger auto- and
cross-correlation functions would indicate that intra- and
inter-specific competition strongly correlated to dynamic
characteristics of the species population [16]. Microbes
would compete fiercely over a limited range of substrates
through intra- and inter-specific competition; as a result,
only a small number of species could coexist, and the
majority of microbial species would go extinct due to
competitive exclusion. Hence the Simpson Index also indi-
cated low species diversity in the microbial community
sampled from the controlled room (Figure 1).

From Figures 1, 3, and 5, however, the situation is exactly
reversed, which suggested both the intra- and inter-specific
competition were alleviated and the dynamic characteristics
were fundamentally independent on themicrobial intra- and
inter-specific competition [17], and the Simpson Index also
signified high species diversity in the microbial community
sampled from the UV disinfection room.

3.2. Hypothesis of Microbial Diversity in Artificial Intelligence
Devices with Periodic LDUVR. Even though experimental
phenomena and data can be directly observed andmeasured,
the underlying dynamic mechanisms created by relation-
ships and interactions between microbial species and their
biotic/abiotic environments cannot be directly identified
and recognized; instead, they can only be understood by
hypotheses that have been developed based on microbial
ecology, experimental phenomena, and data, and sufficiently
investigated by mathematical modeling and digital simu-
lations [18].

(e competitive exclusion scenario in the controlled
room of the artificial intelligence device without LDUV
could be imagined based on the following: microbial ecol-
ogy, experimental data, and theoretical analyses. At the start
of microbial community succession in the artificial intelli-
gence devices, all populations grow exponentially. However,
since substrate niches are regularly filled due to the quantity
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and kind of substrates being limited, their development rates
must inevitably slow down. Due to inter-speci�c variations
in intrinsic growth rates, competitive abilities, carrying
capacities, and other factors, a turning point will manifest
sooner or later. Some species will eventually stop developing
while others will continue to do so, eventually excluding the
former and driving it to extinction [19]. In order to un-
derstand the succession of the microbial population in UV
disinfection, a new dynamic mechanism must be proposed.
�e following new hypothesis of dynamic mechanisms
driving microbial community succession in arti�cial intel-
ligence devices with periodic LDUVR was put forth to in-
terpret new relationships and interactions between
microbial species and their biotic/abiotic environments
based on microbial ecology, easily observed experimental
phenomena, and data.

As an adverse factor, the periodic LDUV could generate
intermediate disturbance to cause stronger microbial SGR
determining the microbial population size directly, and
inevitably gives rise to stronger random variations of other
processes, such as the intra- and inter-speci�c competition
process and the substrates production and consumption
process. �e stronger stochastic �uctuation of microbial
populations could e�ectively weaken the auto- and cross-
correlation of stochastic processes of microbial populations,
greatly alleviating intra- and inter-speci�c competition and
increasing the possibility of a wide spectrum of the microbial

species, according to the classic Lotka–Volterra competition
model, which states that the intensity of microbial intra- and
inter-speci�c competition only depends on the product of
the species population size. As a result, a greater number of
species can e�ectively cohabit under the intermediate dis-
turbance induced by periodic LDUVR than that permitted
under the competitive exclusion principle.

Instead, because of the relatively weak microbial pop-
ulations’ stochastic �uctuation caused by environmental
background disturbances, which could lead to increased
inter-speci�c competition and exclusion during microbial
community succession in a controlled environment, the
microbial diversity could not be formed or maintained at all.

3.3. Kinetic Model Derivation of Microbial Community Suc-
cession in Arti�cial Intelligence Device. �e following rate
equations were created to characterize the relationships and
interactions between microbial species and their biotic/
abiotic habitats in arti�cial intelligence devices based on the
aforementioned premises and system dynamics.

3.3.1. Rate Equations of Microbial Population Growth.
Consider the scenario where M types of microbial species
were colonized in the arti�cial intelligence device and m
types of substrates were produced for direct utilization,
satisfying M >m to mimic the scenario where M types of
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Figure 1: Stochastic processes of 5 genera abundances and the Simpson Index of microbial community respectively sampled from the
controlled room and UV disinfection room.
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microbial species were much more numerous than m types
of substrates in the arti�cial intelligence devices. �e i-th
microbial population (xi) and the k-th substrate amount (Sk)
produced by microbial breakdown were thus the state
variables in the kinetic model. �e i-thmicrobial population
growth rate (vbi) was formulated by Monod equations as
follows:

vbi � μi + ε1(t)[ ]xi(t)∑
m

k�1

Sk(t)
Kik + Sk(t)

, (1)

where Kik is the half-saturation constant of the i-thmicrobial
population growth on the k-th substrate, μi is the speci�c
growth rate of the i-thmicrobial population, ε1(t) is normally
distributed random numbers, and μi represents the envi-
ronmental disturbance .

3.3.2. Rate Equations of Microbial Intra- and Inter-speci�c
Competition. �e traditional Lotka–Volterra competition
model was used to develop the rate equations for intra-
speci�c and inter-speci�c competition. �e rates of intra-
speci�c competition within the i-th microbial species (vai)
were expressed as follows:

vai � αi + ε2(t)[ ]x2i , (2)

where αi is the intraspeci�c competition inhibition coe¢-
cient of the i-th microbial species and ε2(t) is a set of ran-
domly generated values with normal distribution and is a
proxy for αi environmental disturbance.

�e following could be stated as the rates of inter-speci�c
competition between the i-th and j-thmicrobial species (vei):

vei � ∑
M

i≠ j
βij + ε3(t)[ ]xi(t)xj(t), (3)

where βij stands for the inter-speci�c competition inhibition
coe¢cient of the j-th microbial population on the growth
rate of the i-th microbial population and ε3(t) is a random
number with a normal distribution and re�ects βij
environment.

3.3.3. Metabolism Rate of Microbial Population. �e fol-
lowing could be used to express the metabolic rate of the i-th
microbial population (vdi):

vdi � dixi, (4)
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Figure 2: Autocorrelation function of the relative abundances stochastic process of eachmicrobial genus sampled from the controlled room.
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where di is the metabolism coe¢cient of the i-th microbial
population.

3.3.4. Substrates Production and Consumption Rate.
Furthermore, the production rate of the k-th substrate by the
i-th microbial species through microbial decomposition
(vpki) could be speci�ed as follows [20]:

vpki � rk∑
M

i�1
ci + ε4(t)[ ]

xi
Zi + xi

, (5)

where rk is the proportion of the k-th substrate to the total
substrates produced by microbial decomposition, ci is the
maximum rate of substrate production of the i-th microbial
species with the half-saturation constant Zi, and ε4(t) is
normally distributed random numbers and represents the
environmental disturbance to ci.

Similarly, the consumption rate of the k-th substrate
during the i-th microbial population growth (vcki) could be
speci�ed as follows:

vcki � hk∑
M

i�1
ci + ε5(t)[ ]vbi, (6)

where hk is the ratio of the k-th substrate to the total
number of substrates consumed by the microbial com-
munity, ci is the substrates consumption coe¢cient of the i-
th microbial population, ε5(t) is normally distributed
random numbers, and ci represents the environmental
disturbance.

3.3.5. General Kinetic Model Obtained from Rate Equations.
A top-down state-space model with M+m �rst-order
nonlinear ODEs of microbial community succession in the
arti�cial intelligence devices was built based on the prior
analysis and establishing rate equations [21].

�e �rst-order kinetic equation of the i-th microbial
population can be stated as follows, with reference to (1)–(4):
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dxi(t)

dt
� vbi − vai − vei − vdi

� μi + ε1(t) xi(t) 
m

k�1

Sk(t)

Kik + Sk(t)
− αi + ε2(t) x

2
i

− 
M

i≠ j

βij + ε3(t) xi(t)xj(t) − dixi.

(7)

(e first-order kinetic equation of the k-th substrate can
be expressed as follows with reference to (1), (5), and (6):

dSk(t)

dt
� vpki − vcki � rk 

M

i�1
ci + ε4(t) 

xi

Zi + xi

− hk 

M

i�1
ci + ε5(t)  μi + ε1(t) xi(t) 

m

k�1

Sk(t)

Kik + Sk(t)
.

(8)

3.4.Microbial Species and Substrates Computer-Generated for
Simulation. (e i-th microbial species could be represented
by a parameter vector (μi, αi, βij, Kik, di, ci, ci, Zi), and the k-th
substrate could be denoted by a parameter vector (rk, hk), as
the parameters in kinetic models (equations (7) and (8)) of
microbial community succession can embody specific bio-
logical and ecological characteristics tightly dependent on
specific microbial genomes. (ese parameters could be
acquired using parameter estimation uniformly and inde-
pendently by random selection from defined parametric
intervals [22] (Table 1).

In this study, the 5∼15 different types of substrates and
20∼50 different microbial species were produced stochas-
tically by computers and inserted into kinetic models
(equations (7) and (8)). (is method allowed for the for-
mulation of kinetic models with various dimensions for
theoretical investigation of the succession of microbial
communities in artificial intelligence devices and the vali-
dation of the hypothesis regarding the emergence and
preservation of microbial diversity as a result of intermediate
disturbance brought on by periodic LDUVR.

A large scale of Monte Carlo simulations was then
carried out to confirm the proposed hypothesis on the
formation and maintenance of microbial biodiversity in the
artificial intelligence device with periodic LDUVR. Before
digital simulation, simulation methods and other options
were properly set [21], according to the complexity of kinetic
models, accuracy, convergence speed, and computational
cost.

3.5. Monte Carlo Simulations for Microbial Community
Successions. (e simulation model was correspondingly
established on the Matlab/Simulink platform to conduct
Monte Carlo simulations to support the proposed hypothesis
on microbial community succession in artificial intelligence
devices based on kinetic models (equation (7) and (8)) of
microbial community succession in artificial intelligence
devices (Figure 6) [23].

Figure 6 shows how the random number blocks were
used to simulate environmental disturbances whose PSD
was applied for assessments of the strength of disturbances.
(e PSD was set at reasonably mild values generated at
random from the value range. (e simulation results fully

Table 1: Parametric intervals in the kinetic models.

Parameter Unit
Parametric interval

Significance
Without LDUVR With LDUVR

μi h−1 (0.24, 1.36) (e i-th microbial species’ particular growth rate.

αi (log10 CFU−1)ml·h−1 (0.05, 1) (e i-th microbial species’ intraspecific
competition coefficient.

βij (log10 CFU−1)ml·h−1 (0.16, 1)
(e j-th microbial species’ inter-specific

competition coefficient
on the i-th microbial species’ growth rate.

ci mg·h−1 (136.23, 518.76) (e i-th microbial species’ highest rate of substrate production

ci mg (log10 CFU)−1ml (3.32, 12.55) (e consumption coefficient of substrates by
the i-th microbial species

ε1 W·Hz−1 (0, 2) [2, 10] Environmental disturbance to μi
ε2 W·Hz−1 (0, 2) [2, 10] Environmental disturbance to αi
ε3 W·Hz−1 (0, 2) [2, 10] Environmental disturbance to βij
ε4 W·Hz−1 (0, 2) [2, 10] Environmental disturbance to ci
ε5 W·Hz−1 (0, 2) [2, 10] Environmental disturbance to ci

Kik mg (1.23·105, 1.82·105) (e i-th microbial species’ half-saturation constant while
growing on the k-th substrate.

di h−1 (0.03, 0.58) (e i-th microbial species’ metabolic coefficient.

Zi (log10 CFU)ml−1 (42, 177) (e substrates produced by the i-th microbial
species’ half-saturation constant.

rk % (0, 80) (e percentage of all substrates generated by the microbial
population to the k-th substrate.

hk % (0, 80) (e proportion of the k-th substrate to total substrates
consumed by microbial community.
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demonstrated that the number of coexisting microbial
species was far greater than the types of substrates produced
by microbial decomposition, and the microbial populations
generate almost independent stochastic processes via

desultorily transient responses (Figure 7). �ese dynamic
behaviors could signi�cantly reduce intra- and inter-speci�c
competition [24, 25]. It will be advantageous for a large
number of microbial species to dwell in arti�cial intelligence
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Figure 6: Part of the simulation model of microbial community succession in arti�cial intelligence devices.
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Figure 7: Microbial community succession pattern in arti�cial intelligence devices with periodic LDUVR.
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devices with periodic LDUVR to concurrently boost the
richness and evenness of the microbial community.

It is important to note that the digital simulation results
of the microbial community succession patterns that
emerged in the arti�cial intelligence device with periodic
LDUVR, as shown in Figure 7, are quite universal and
general since these simulation results only depend on the
structure of kinetic models, speci�cally the interactions and
relationships between microbial populations and their
biotic/abiotic environments in the arti�cial intelligence
devices with periodic LDUVR.

Due to the PSD’s modest setting, however, values chosen at
random from the value range of the simulation results sug-
gested that, subjected to competitive exclusion, the majority of
microbial species would eventually go extinct, with only a few
species whose number is no more than the substrate types
produced by microbial decomposition being able to coexist
(Figure 8), due to drastic intra- and inter-speci�c competition
re�ected in strong auto- and cross-correlation of stochastic
without LDUVR to simulate the scenarios with weak distur-
bance caused by environmental background disturbances.

4. Conclusions

We theoretically provide a hypothesis on the production and
preservation of microbial diversity in the arti�cial intelligence
devices with intermediate disturbance brought on by periodic
LDUVR based on microbial ecology, experimental phenom-
ena, and data. �e periodic LDUVR could produce interme-
diate disturbance that would lead to stronger microbial SGR

along with stronger random process variations of substrate
production and consumption. �is would signi�cantly reduce
the auto- and cross-correlation of microbial populations sto-
chastic processes and e�ectively alleviate intra- and inter-
speci�c competition to form and maintain a microbial com-
munity with higher richness. �e hypothesized hypothesis was
then quanti�ed using a collection of kinetic models written by
di�erential equations with parameters obeying various normal
distributions. Finally, a signi�cant number of Monte Carlo
simulations were performed to su¢ciently validate and con-
�rm the proposed theory. �e �ndings of this study could
create the theoretical groundwork for understanding the
ecological impact of LDUV on the succession of microbial
communities and o�er practical advice on microbial preven-
tion and control in the context of LDUVR.
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�e data used to support the �ndings of this study are
available from the corresponding author upon request.
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