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Objective. Te purpose of this study was to explore the potential mechanisms of the lipid-regulating efects and the efect on
modulating the gut microbiota of hawthorn leaf favonoids (HLF) in the high-fat diet-induced hyperlipidemic rats.Methods. Te
hypolipidemic efect of HLF was investigated in the high-fat diet-induced hyperlipidemic rats. Te action targets of HLF in the
treatment of hyperlipidemia were predicted by network pharmacology and KEGG enrichment bubble diagram, which were
verifed by the test of western blotting. Meanwhile, we used 16S rRNA sequencing to evaluate the efects of HLF on the microbes.
Results. Te results of animal experiments showed that HLF could reduce the body weight and regulate the levels of serum lipid in
high-fat diet (HFD) rats. Meanwhile, for the related targets of cholesterol metabolism, HLF could signifcantly upregulate the
expression of LDLR, NR1H3, and ABCG5/ABCG8; reduce the expression of PCSK9; and increase the level of CYP7A1 in the
intestinal tissue, whereas cholesterol biosynthetic protein expressions including HMGCR and SCAP were lowered by HLF. In
addition, HLF increased the activities of plasma SOD, CAT, and GSH-Px and decreased the levels of Casp 1, NLRP3, IL-1β, IL-18,
and TNF-α, improving the degree of hepatocyte steatosis and infammatory infltration of rats. Notably, HLF signifcantly
regulated the relative abundance of major bacteria such as g_Lactobacillus, g_Anaerostipes, g_[Eubacterium]_hallii_group,
g_Fusicatenibacter, g_Akkermansia, and g_Collinsella. Synchronously, we found that HLF could regulate the disorder of plasma
HEPC and TFR levels caused by HFD. Conclusion. Tis study demonstrates that HLF can regulate metabolic hyperlipidemia
syndromes and modulate the relative abundance of major bacteria, which illustrated that it might be associated with the
modulation of gut microbiota composition and metabolites.

1. Introduction

Hyperlipidemia, also known as dyslipidemia, refers to the
increase of total cholesterol (TC), triglyceride (TG), and low-
density lipoprotein cholesterol (LDL-C) and the decrease of
high-density lipoprotein cholesterol (HDL-C) [1]. Te

pathological process of hyperlipidemia is closely related to
the physiological and pathological processes of many tissues
and cells, such as metabolism [2], infammation [3], im-
munity, stress, and so on [4]. It is also an important risk
factor for cardiovascular and metabolic diseases, such as
atherosclerosis, fatty liver disease, obesity, hypertension,
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diabetes mellitus, coronary heart disease, and stroke [5, 6].
At present, the drug therapy for hyperlipidemia in clinic are
mainly statins, fbrates, and niacins, among which statins are
the frst choice and are considered the cornerstone of
preventing atherosclerotic and cardiovascular disease
(ASCVD). In spite of the statins therapy-mediated positive
efects on cardiovascular diseases, patient compliance is
often poor due to their adverse efects [7]. It is worth
mentioning that traditional Chinese medicine (TCM) has
unique advantages that are low cost, efectiveness, and fewer
side efects in the treatment of hyperlipidemia [8, 9].

Hawthorn (Crataegi folium) leaves are the dried leaves of
Crataegus pinnatifda Bge. of the Rosaceae plant, which have
the efects of lipid lowering [10], antiatherosclerosis [11],
antiliver damage [12], anti-infammation, and antioxidative
stress [13]. A variety of hawthorn leaf preparations, such as
Yixintong and Shanmei capsule, is clinically used to treat
cardiovascular diseases such as hyperlipidemia, coronary
heart disease, angina pectoris, and arrhythmia [14, 15]. At
present, a great many types of chemical constituents have
been extracted from hawthorn leaves, including favonoids,
favane and its polymers, pentacyclic triterpenes, mono-
terpenes, sesquiterpenes, lignans, organic acids, volatile oil,
and so on [10, 16, 17], among which favonoids are con-
sidered being the main active ingredients of hawthorn leaves
and important ingredients for the herb to exert its drug
activity [18, 19]. Our previous study [20] found that haw-
thorn leaf favonoids (HLF) can reduce the levels of blood
lipid and improve the liver function in hyperlipidemic mice.
Meanwhile, the protein expression profles of HMGCR in
the liver were downregulated by HLF. However, the specifc
mechanism by which HLF regulate lipid metabolism re-
mains unclear.

Network pharmacology integrates multidisciplinary and
multiomics databases, and systematically and integrally
connects drugs and diseases through network construction
tools, which can provide scientifc, technological, and the-
oretical support for the study of the action mechanism of
TCM [21–23]. For instance, baicalin could regulate the gene
expression of SLC2A1, TNF, NFKB1, SREBF1, and CASP3
to ameliorate obesity and hyperlipidemia through a network
pharmacology approach [24]. Furthermore, the cholesterol
metabolism, fat digestion and absorption, and PPAR sig-
naling pathways were identifed as the potential mechanism
of sea buckthorn favonoids extract, among which iso-
rhamnetin could activate the PPAR-c/NR1H3/CYP7A1
pathway against HLP by network pharmacology analysis and
experimental validation [25]. In this study, network phar-
macology analysis was used to screen the active components
of HLF to further predict the action targets of the active
compounds. Te mechanism of HLF in the treatment of
hyperlipidemia was further analyzed by constructing a net-
work diagram and KEGG enrichment bubble diagram.

Gut microbiota is a key environmental factor that reg-
ulates body metabolism [26]. A balanced gut microbiota can
maintain lipid homeostasis through pathways such as reg-
ulating hepatic cholesterol metabolism, promoting muscle
lipid oxidation and adipose tissue energy storage, and
maintaining the integrity of the gut barrier [27, 28].

Imbalances in the gut microbiota can lead to proliferation of
potential pathogenic bacteria, afect immune homeostasis,
and induce the production of infammatory cytokines and
adipokines. It is closely associated with the development and
progression of chronic diseases such as hyperlipidemia,
obesity, diabetes, and atherosclerosis [29–31]. Meanwhile,
gut mucosal barrier damage induced by a high-fat diet
exacerbates this condition [32, 33]. It is demonstrated that
the relative abundances of the benefcial genuses such as
Lactobacillus and Oscillibacter were inhibited by the high-fat
diet. Furthermore, Auricularia auricula and its poly-
saccharides could improve the intestinal microbial envi-
ronment by enriching SCFA-producing bacteria to relieve
liver damage and treat hyperlipidemia [34]. However, the
microbiota-modulating efects of hawthorn leaf favonoids
on diet-induced hyperlipidemia rats have not been
revealed yet.

Terefore, the hypolipidemic efect of HLF was in-
vestigated in high-fat diet-induced hyperlipidemic rats. Te
action targets of HLF in the treatment of hyperlipidemia
were predicted by network pharmacology and KEGG en-
richment bubble diagram, which were verifed by molecular
docking and the test of western blotting. Meanwhile, the
composition and richness of gut microbiota were tested by
16S rRNA sequencing, and the correlations with HLF in-
tervention were analyzed accordingly.

2. Materials and Methods

2.1.Materials andDrugs. Total cholesterol (TC) assay kit (lot
no. 2020021001), triglyceride (TG) assay kit (lot no.
2020051901), high-density lipoprotein cholesterol (HDL-C)
assay kit (lot no. 2020041001), and low-density lipoprotein
cholesterol (LDL-C) assay kit (lot no. 2020061102) were
ofered by Epnkan Biological Technology CO., China. Rat
sIgA ELISA kit (lot: 20210804. 60140R), rat cholesterol 7α-
hydroxylase (CYP7A1) ELISA kit (lot no. 20210804.
60324R), rat caspase-1 (Casp1) ELISA kit (lot: 20210804.
60626R), rat NOD-like receptor protein 3 (NLRP3) ELISA
kit (lot no. 20210804. 60629R), rat 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase (HMGCR) ELISA kit (lot no.
20210804. 60597R), rat interleukin-1β (rat IL-1β) ELISA kit
(lot no. 20210804. 60013R), rat interleukin-6 (rat IL-6)
ELISA kit (lot no. 20210804. 60023R), rat interleukin-18 (rat
IL-18) ELISA kit (lot no. 20210804. 60033R), rat tumor
necrosis factor-alpha (TNF-α) ELISA kit (lot no. 20210804.
60080R), rat transferrin (TRF) ELISA kit (lot no. 20220425.
60655R), and rat hepcidin (HEPC) ELISA kit (lot no.
20220425. 60657R) were obtained from Beijing Rigorbio
Science Development Co., Ltd., China. Total superoxide
dismutase (SOD) assay kit (lot no. 20210802), catalase
(CAT) assay kit (lot no. 20210805), and glutathione per-
oxidase (GSH-Px) assay kit (lot no. 20210803) were pur-
chased from Nanjing Jiancheng Bioengineering Institute,
China. Rabbit anti-SCAP antibody (bs-3862R), rabbit anti-
HMGCR antibody (bsm-52822R), rabbit anti-LDL receptor
antibody (bs-0705R), rabbit anti-PCSK9 antibody (bs-
6060R), rabbit anti-NR1H3 antibody (bs-2342R), rabbit
anti-ABCG5 (bs-5013R) antibody, and rabbit anti-ABCG8
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(bs-10149R) antibody were purchased from Bioss, China.
SREBF2 antibody (DF7601) was purchased from Internal
Afnity Biosciences, USA. Anti-NLRP3 antibody (BA3677)
was purchased from Boster Biological Technology Co., Ltd.,
USA. β-actin (4D3) polyclonal antibody (AP6007M) was
obtained from Bioworld Technology, Inc, USA. Hawthorn
leaf favonoids (HLF) (no: ZLSC2020071501, content ≥90%)
were purchased from Nanjing Zelang Biotechnology Co.,
Ltd., China.

2.2. Animals and Diets. Sprague–Dawley (SD) male rats
(200± 20 g, 8 weeks, no. 1107272011005517) were purchased
from Hunan SJA Laboratory Animal Co., Ltd (Hunan,
China). Rats were kept at room temperature (24–26°C,
65%± 10% humidity, and 12/12 h light/darkness cycle) with
a commercial rat normal standard chow (Hunan SJA Lab-
oratory Animal Co., Ltd., Hunan, China) and water ad
libitum. After allowing 1 week for adaptation, all rats were
assigned randomly into six groups (n= 8). Te rats in the
normal control group (NC) were fed with a standard basal
diet, while rats in the other 5 groups were fed with the high-
fat diet (52.6% regular diet, 20.0% sucrose, 15.0% lard, 1.2%
cholesterol, 0.2% bile salts, 10% casein, 0.6% calcium
hydrophosphate, and 0.4% mountain four) to obtain the
hyperlipidemic model [35]. After 2 weeks, rats in the NC and
high-fat diet group (HFD) were intragastrically given
10ml· kg−1 body weight (BW) of distilled water once a day.
Rats in group 3∼5 were administered high-fat diet with HLF-
L (100mg/kg·day), HLF-M (200mg/kg·day), and HLF-H
(400mg/kg day) [36], respectively. Rats in group 6 were
administered high-fat diet with atorvastatin (AVT, 7mg/kg
day) [37]. All samples were dissolved in distilled water and
intragastrically given at a dose of 10ml·kg−1 once a day for
4 weeks.

2.3. Biochemical Analysis. Blood samples were taken from
the orbit vein and subsequently centrifuged. Te serum or
plasma obtained was stored at −80°C until biochemical
analysis. Te serum lipid levels (TC, TG, LDL-C, and HDL-
C) were determined by a Beckman Coulter AU480 Auto-
matic Biochemical Analyzer (USA).

2.4. ELISA Analysis. Te levels of rat IL-1β, IL-6, IL-18,
TNF-α, and HMGCR in plasma and CYP7A1, NLRP3, sIgA,
and Casp1 in the intestinal tissue were measured using
commercial analysis kits by Termo Multiskan MK3
Microplate Reader (Finland). Te levels of rat SOD, CAT,
GSH-Px, TRF, and HEPC in plasma were determined by
a Beckman Coulter UniCel DxC 600 Synchron Automatic
Biochemical Analyzer (USA).

2.5. Histological Analysis. To make parafn sections, liver
tissue specimens were fxed in 10% formalin, parafn-
embedded, and sectioned at 4 μm. Hematoxylin and eosin
(H & E) staining was according to the standard method by
Dako CoverStainer.

2.6. Gut Microbiota Analysis

2.6.1. Microbial DNA Extraction and 16S rRNA Sequencing
of Feces. Before taking materials, clean the anus of rats with
75% ethanol cotton ball, take the natural excreted feces of
rats with sterilized EP tubes, put them into liquid nitrogen
immediately, and then transfer them to the refrigerator at
−80°C for freezing storage. One week later, they were sent to
Shanghai Majorbio Pharm Technology Co., Ltd, together
with dry ice for sequencing. Te integrity, purity, and
concentration of DNA are detected by 1% agarose gel.
Subsequently, primers with labels are designed and syn-
thesized based on the v3–v4 region of 16S rRNA and am-
plifed by PCR. All samples are conducted according to the
formal experimental conditions. Each sample were repli-
cated 3 times. Te PCR products of the same sample were
mixed and then detected by 2% agarose gel electrophoresis.
Te PCR products are recovered by gel extraction using
AxyPrepDNA Gel Recovery Kit (AXYGEN company). Fi-
nally, referring to the preliminary quantitative results of
electrophoresis, the PCR products are quantifed with
QuantiFluor™-ST blue fuorescence quantitative system
(Promega company), and then the corresponding pro-
portion is mixed according to the sequencing volume re-
quirements of each sample. Use the library construction kit
(TruSeqTM DNA Sample Prep Kit) of Illumina company to
construct the library according to the standard process of
MiSeq platform. After quantifcation and quality control, the
obtained library is sequenced on the Illumina MiSeq PE300
sequencing platform (Shanghai Majorbio Pharm Technol-
ogy Co., Ltd).

2.6.2. Gut Microbiota Analysis. Te PE reads obtained by
MiSeq sequencing are frst spliced according to the over-
lapping relationship to obtain the original sequence, which
was fltered and quality controlled. Based on the Uparse
software (v7.0.1090), we set the classifcation confdence to
70%. OTU clustering is performed for nonrepetitive se-
quences (excluding single sequences) according to 97%
similarity and remove the chimera in this process. Ten,
compared with the Silva 128/16S bacteria database, annotate
the optimized sequence to obtain taxonomic information
and fatten the sample sequence according to the minimum
number of sample sequences (E1: 34099) before the data
analysis.

Te alpha diversity index of the samples was evaluated by
the Mothur software (version v.1.30.2), and the diference
between the groups is analyzed. Use the R language tool to
make the rank abundance curve explain the diversity, draw
the pan/core species curve to judge whether the sample size
is enough, evaluate the total species richness and the number
of core species in the feces, and make the Venn chart and
community bar chart to show the species’ composition and
similarity. Based on two distance algorithms (unweight-
ed_unifrac and weighted_unifrac), principal coordinate
analysis (PCoA), statistical analysis, and nonmetric multi-
dimensional scaling analysis (NMDS) were carried out by
using Qiime (version v. 1.9.1) as well as R language tools to
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calculate the distance between the samples and obtain the
distance matrix. LEfSe software is used to analyze the dif-
ference of species’ relative abundance between the groups. In
this study, all-against-all (more-strict) comparison strategies
and bacteria with linear discriminant analysis (LDA) score
>3 and p< 0.05 were selected as diferential bacteria.

In terms of alpha diversity, Student’s test is used to test
the diference of index values among the groups. In terms of
beta diversity, ANOSIM is used to detect the diference of
community composition among diferent groups. One-way
ANOVA test and post hoc Tukey–Kramer test are used to
compare the abundance of gut microbiota in each group. In
LEfSe analysis, the nonparametric Kruskal–Wallis (KW)
sum rank test is mainly used to detect the species’ abundance
diferences among diferent groups and signifcantly dif-
ferent species are obtained. Ten, Wilcoxon rank sum test is
used to test the diference consistency of diferent species in
diferent subgroups; fnally, LDA (linear discriminant
analysis) is used to estimate the impact of these diferent
species on the diference between the groups.

2.7. Network Pharmacology Analysis

2.7.1. Compound Collection and Target Prediction for HLF.
Te active ingredients of HLF are extracted from the Tradi-
tional Chinese Medicine Database and Analysis Platform
(TCMSP) [38], the chemical database, and supplemented with
references to the related literature. Te acquired active sub-
stances are imported into the PubChem [39] for InChi and
canonical smiles. Te acquired InChi and canonical smiles are
input into the Comparative Toxicogenomics Database (CTD)
[40], STITCH [41] according to the method of compound
similarity search, the species are defned as Homo sapiens, the
potential targets of the active ingredients are predicted, and all
target information is normalized using UniProt [42].

2.7.2. Hyperlipidemia-Related Targets Collection and
Screening. “Hyperlipidemia” has been retrieved from
GeneCards [43], and the top 200 as potential targets for
hyperlipidemia have been tested by top-down score. After all
target names are corrected, merged, and removed duplicates
and TCM targets are imported into the Jvenn [44] to draw
a Venn diagram, and its intersection is taken to obtain 83
HLF antihyperlipidemia possible targets.

2.7.3. PPI Network Construction. Proteins rarely function as
a single substance, but as members in a dynamic network.
Te accumulation of evidence suggests that protein-protein
interactions (PPI) are critical to many biological processes in
living cells [45]. For clarity of the interaction relationship
between HLF-related targets and hyperlipidemia targets, we
submitted the 83 intersection targets to STRING [46] with
the species set as “Homo sapiens”.

2.7.4. Analysis of GO Function and KEGG Pathway
Enrichment. Intersection targets are entered into the
Metascape [47], setting the species to “H. sapiens,” min

overlap � 3, p value cutof � 0.01, min. enrichment � 1.5,
and p< 0.01. Mainly analyze GO molecular functions
(MF), GO components (CC), GO biological processes
(BP), and KEGG pathway; save the data results; and
import the Origin 2021 software to draw the
bubble chart.

2.7.5. Construction of the “Active Ingredient-Target-
Biological Processes” Network Diagram. Te −log p top 25
biological processes and related components and targets are
imported into the model using Cytoscape 3.8.2. Nodes are
used to represent active ingredients and predicted targets,
and nodes are connected to the edges to represent sub-
ordination. Network analysis is used to analyze network
topological properties.

2.8. Western Blotting Assay. Total proteins were obtained
from the rat hepatic tissue and intestinal tissue homogenates
with RIPA bufer supplemented with phenylmethylsul-fonyl
fuoride and protease inhibitor cocktail. Protein samples
were separated on 10% separation gel and then transferred to
polyvinylidene fuoride membranes. After blocking with 5%
fetal bovine serum for 1 h, we then incubated separately with
primary rabbit polyclonal antibodies against SCAP (1 :1500),
SREBF2 (1 : 2000), HMGCR (1 :1500), LDLR (1 :1500),
PCSK9 (1 :1500), NR1H3 (1 :1500), NLRP3 (1 : 2000),
ABCG5 (1 :1500), ABCG8 (1 :1500), and mouse polyclonal
antibodies against β-actin (1 :10000) overnight at 4°C. After
washing, the membranes were incubated at room temper-
ature for 45 minutes with appropriate secondary antibodies.
Finally, the membranes were treated according to the
protocol of the enhanced chemiluminescence detection kit
and protein bands were observed by Tanon 4200. Te in-
tensities of protein bands were quantifed with the Image J
software and the values normalized to β-actin.

2.9. Statistical Analysis. All results were presented as
mean± SD. Te statistical analysis was performed using
SPSS (version 26.0). Diferences between the groups were
statistically analyzed using one-way analysis of variance
(ANOVA). A value of p< 0.05 was considered statistically
signifcant. Diagrams are performed by GraphPad Prism
version 9.1.

3. Results

3.1. Changes in Body Weight. To evaluate the efect on
regulating the levels of blood lipid by HLF, we analyzed the
body weight gain of rats for 6 weeks (Figure 1). When
compared with the NC group, the body weight of rats in the
HFD group had considerably increased by 11.87% after
6 weeks (p< 0.05). However, after receiving HLF treatment
for four weeks, compared with the HFD group, the body
weight of rats in the HLF-M and HLF-H treatment groups
was signifcantly reduced by 11.71% (p< 0.05) and 10.04%
(p< 0.05), respectively.
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3.2. Serum Lipid Levels in Rats. We used an automatic
biochemical analyzer to determine the serum lipid levels in
rats. As shown in Figures 2(a)–2(d), the TC, TG, and LDL-C
concentrations of the HFD group were signifcantly in-
creased, and HDL-C levels were signifcantly decreased
compared with the NC group (TC, LDL-C, and HDL-C:
p< 0.001, TG, p< 0.01), indicating the successful estab-
lishment of the hyperlipidemia rat model. Compared with
the HFD group, the TC and LDL-C levels in the HLF-L,
HLF-M, and HLF-H treatment groups were signifcantly
reduced, with TC levels falling by 37.52% (p< 0.001), 37.20%
(p< 0.001), and 49.10% (p< 0.001), respectively, LDL-C
levels falling by 41.11% (p< 0.001), 43.10% (p< 0.001),
and 53.14% (p< 0.001), respectively. Meanwhile, the TG in
the HLF-M and HLF-H groups were dramatically decreased
by 42.52% (p< 0.001) and 25.66% (p< 0.05), respectively,
and the HDL-C in the HLF-L and HLF-H groups were
signifcantly increased by 44.19% (p< 0.01) and 54.26%
(p< 0.05), respectively, when compared with the HFD
group. Tese fndings suggested that HLF can signifcantly
improve the levels of serum lipid in hyperlipidemic rats.

Atherosclerosis is the chronic accumulation of
cholesterol-rich plaques within the arteries, which is asso-
ciated with a range of cardiovascular diseases including
peripheral vascular disease, aortic aneurysm, myocardial
infarction, and stroke [48]. Atherogenic index (AI,
AI� (TC−HDL-C)/HDL-C) is considered as a strong
marker to predict the risk of atherosclerosis and coronary
heart disease [49]. As shown in Figure 2(e), the AI levels in
the HFD group were dramatically raised (p< 0.001), com-
pared with the NC group. However, the AI levels in the HLF-
L, HLF-M, and HLF-H treatment groups were signifcantly
lowered by 58.68% (p< 0.001), 42.00% (p< 0.001), and
69.18% (p< 0.001), respectively, compared with the HFD
group. It is suggested that HLF has potential to inhibit the

progression of atherosclerosis in hyperlipidemia rats, which
needs further study.

3.3. Antioxidant Profles in Plasma. Tere are multiple
mechanisms which can be completed through key antiox-
idants such as SOD, CAT, and GSH-PX in the human body
to prevent oxidative stress caused by free radicals [50]. As
shown in Figures 3(a)–3(c), compared with the NC group,
the activities of plasma SOD, CAT, and GSH-PX in the HFD
group were signifcantly decreased (p< 0.05 or p< 0.01),
illustrating that the oxidative stress response of rats fed the
high-fat diet were aggravated. While the activities of SOD,
CAT, and GSH-PX in the HLF-L, HLF-M, and HLF-H
treatment groups were signifcantly enhanced, with SOD
being increased by 7.18% (p< 0.05), 9.30% (p< 0.01), and
7.80% (p< 0.05), respectively; CAT being raised by 8.92%
(p< 0.05), 9.24% (p< 0.05), and 9.07% (p< 0.05), re-
spectively; and GSH-PX being increased by 14.83%
(p< 0.05), 31.96% (p< 0.01), and 18.75% (p< 0.05), re-
spectively, compared with the HFD group, which man-
ifested that HLF could signifcantly inhibit the oxidative
stress response in hyperlipidemic rats.

3.4. Anti-Infammatory in Plasma and Intestinal Tissue.
We measured the levels of proinfammatory cytokines, such
as plasma IL-1β, IL-6, IL-18, TNF-α, Casp1, and NLRP3 in
the intestinal tissue of rats to better understand the anti-
infammatory efects of HLF. As shown in Figures 4(a)–4(f),
the levels of NLRP3, Casp1, IL-1β, IL-6, IL-18, and TNF-α in
the HFD group were signifcantly increased (p< 0.05 or
p< 0.01 or p< 0.001), compared with the NC group, which
demonstrated that the infammatory response of rats fed the
high-fat diet were exacerbated.

In addition, compared with the HFD group, the NLRP3
in the HLF-L, HLF-M, and HLF-H treatment groups were
signifcantly reduced by 16.97% (p< 0.001), 46.02%
(p< 0.001), and 26.13% (p< 0.05), respectively; the Casp1 in
the HLF-L, HLF-M, and HLF-H treatment groups were
signifcantly lowered by 5.03% (p< 0.05), 42.56% (p< 0.001),
and 18.52% (p< 0.05), respectively; the IL-1β in the HLF-L,
HLF-M, and HLF-H treatment groups were signifcantly
decreased by 21.72% (p< 0.01), 17.63% (p< 0.05), and
17.30% (p< 0.05), respectively; and the IL-18 in the HLF-L,
HLF-M, and HLF-H treatment groups were signifcantly
reduced by 25.98% (p< 0.01), 25.75% (p< 0.01), and 23.10%
(p< 0.01), respectively. Meanwhile, the TNF-α in the HLF-L,
HLF-M, and HLF-H treatment groups were signifcantly
decreased by 24.33% (p< 0.001), 18.46% (p< 0.01), and
14.79% (p< 0.05), respectively, and the IL-6 in the HLF-H
treatment group were signifcantly lowered by 11.38%
(p< 0.05), when compared with the HFD group.Tese results
suggested that HLF may be able to somewhat inhibit the
infammatory state of hyperlipidemic rats.

3.5. Hepatic Morphology (HE Staining). We used HE
staining to analyze the pathological changes of the liver
tissue. As shown in Figure 5, the NC group appeared with
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the normal hepatic lobular structure, normal hepatocytes, no
fatty vacuoles in the cytoplasm, and no steatosis or necrosis.
While the HFD group showed various degrees of steatosis
and a great quantity of lipid vacuoles, the hepatocyte de-
generation was mostly round, enlarged in size, and partially
was infltrated by infammatory cells, which indicated that
the high-fat diet induced hepatic steatosis in rats. Te three
dosages of HLF signifcantly decreased lipid droplets and
lessened the infltration of infammatory cells in the liver to
diferent degrees, especially in the HLF-M group, which

manifested that HLF could ameliorate the accumulation of
lipid droplets and inhibit infammation in hepatic of rats fed
high-fat diet.

3.6. Intestinal sIgA. As shown in Figure 6, the levels of
intestinal sIgA in the HFD group were signifcantly declined
(p< 0.05), compared with the NC group, suggesting that the
intestinal immune functions of rats fed high-fat diet were
seriously impaired. Compared with the HFD group, the
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levels of intestinal sIgA in the HLF-H treatment group were
signifcantly increased by 58.38% (p< 0.01), which indicated
that HLF could improve the immune function of the gas-
trointestinal tract by regulating the levels of sIgA.

3.7. Plasma TRF and HEPC. Our study showed that the
levels of plasma TRF and HEPC in the HFD group of rats
were signifcantly reduced (p< 0.05 or p< 0.001) compared
with the NC group (Figure 7), suggesting that the high-fat
diet could lower the levels of plasma iron and increase iron
accumulation and deposition in the liver, leading to dys-
regulation of iron metabolism. Notably, the levels of plasma
TRF and HEPC in the HLF-M and HLF-H treatment group
were signifcantly raised, with TRF being increased by
27.17% (p< 0.01) and 52.44% (p< 0.001), respectively, and
HEPC being grown by 23.99% (p< 0.05) and 26.95%
(p< 0.01), respectively, which demonstrated that HLF could
modulate the disorder of body iron metabolism.

3.8. Species Annotation and Assessment. Annotations and
species assessments include primarily OTU (operational
classifcation unit) analysis, alpha diversity analysis, and
rarefaction curve analysis. In this study, we conducted 16S
rRNA sequences of 48 fecal microbiota samples for
2,425,668 high-quality sequences following quality control.

Te mean sequence length was 410. Te sequence length
was mainly distributed in 420∼440 bp, followed by
400∼420 bp. Te NC group showed signifcant diferences
(p< 0.05) in the number of OTUs compared to the rest of
HFD. While compared with the number of OTUs in the
HFD, only the HLF-M showed a signifcant diference
(p< 0.05) (Figure 8(a)). In addition, pan/core analysis
showed the total number of species in each increased
gradually with increasing sample size, and the number of
core species in each tended to remain stable with increasing
sample size, indicating an adequate sample size for this
experiment (Figures 8(b) and 8(c)).

Based on the OTU levels, the results of α-diversity
analysis showed that the indices of Sobs (Figure 8(d)),
Shannon (Figure 8(e)), Shannoneven (Figure 8f ) in the
HFD group were signifcantly lower compared with the
NC (p< 0.01, or p< 0.001). Te HLF-M had signifcantly
higher Sobs, Shannon, and Shannoneven indices than the
HFD (p< 0.05). Te rarefaction curve based on OTU
levels can be observed, accompanied by a gradual in-
crease in sequence depth, and the curve gradually leveled
of, indicating that in terms of community richness
(Figure 8(g)), community evenness (Figure 8(h)), com-
munity diversity (Figure 8(i)), the sequence depth had
substantially covered the bacterial species in the fecal
samples and the amount of sequence data was sufcient
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and stable. Tis indicated that HFD causes a disturbance
in the composition of the gut microbiota and HLF could
reverse this situation.

3.9. Sample Comparison Analysis. To further investigate the
similarities or diferences between gut microbial composi-
tions, we assessed β-diversity at the OTU level using non-
metric multidimensional scaling (NMDS) and principal
coordinate analysis (PCoA), with ANOSIM—tests for dif-
ferences between(Figures 9(a)–9(d), Table 1). Te results of

PCoA based on unweighted and weighted, as well as NMDS,
indicated the microbial composition of NC difered from
that of HFD (p< 0.01), suggesting the formation of hy-
perlipidemia altered the composition of the whole gut mi-
crobial composition. According to the unweighted analysis,
results showed the gut microbial composition of the HLF-H
was completely diferent from that of the HFD (p< 0.01),
a small portion of the intestinal microbiota of the other
treatment groups overlapped with the HFD and only the
microbiota of HLF-M showed obvious convergence towards
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NC. However, the weighted analysis showed that there was
increased overlap in the gut microbiota between each
treatment and the HFD, and the HLF-H presented a more
conspicuous convergence towards NC. Moreover, further
analysis using the ANOSIM test revealed that although HLF

and AVT showed signifcant diferences in the microbiota
compared with HFD (p< 0.05), HLF-H had the strongest
explanation for the diference from the HFD (R= 0.8114).

3.10. Species Diference Analysis. In this study, we normal-
ized each sample to equal sequencing depth and clustering
according to the minimum sample sequence number. Data
analysis obtained 906 OTUs with 97% similarity and 149
OTUs in common, detecting 15 phyla, 26 classes, 41 orders,
76 families, 197 genera, and 365 species (Figure 10(a)).
Subsequently, we calculated the species richness of each
sample at diferent taxonomic levels, classifed the species
with an abundance ratio below 0.01 among all samples as
others, and averaged the values to calculate within group
samples. Five phyla, 15 families, and thirty genera were
identifed, representing over 0.01% of all samples
(Figures 10(b)–10(d)).

By visually displaying the species abundance of each
group at diferent taxonomic levels, we could intuitively
show which dominant species each sample contains at the
taxonomic level and the relative abundance of the dominant
species. At the phylum level, p_Firmicutes prevailed in all
subjects’ gut microbiota, and smaller populations include

NC

HLF-L HLF-M

HLF-H AVT

HFD

Figure 5: HE staining of the hepatic tissue (200x).Te black rectangle denotes infammatory cell infltration and the black arrow denotes the
lipid vacuole.
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p_Bacteroidetes, p_Proteobacteria, p_Actinobacteria, and
p_Verrucomicrobia. Compared with NC, HFD showed
a relatively increased abundance of p_Firmicutes, p_Pro-
teobacteria, and p_Actinobacteria and a relatively decreased
abundance of p_Bacteroidetes and p_Verrucomicrobia, in-
dicating the imbalance of gut microbiota dysbiosis in hy-
perlipidemia. To a certain extent, HLF intervention
attenuated the dysbiosis of the gut microbiota. Compared
with HFD, the three doses of HLF could increase the relative
abundance of p_Verrucobacteria and p_Bacteroidetes, and
reduce the relative abundance of p_Actinobacteria. While
HLF-L and HLF-H can decrease the relative abundance of
p_Firmicutes, and HLF-M could decrease the relative
abundance of p_Proteobacteria. At the family level,
f_Lachnospiraceae prevailed in all subjects’ gut microbiota,
and the composition of gut microbiota in each group was
partially diferent. Compared with the NC group, f_Lach-
nospiraceae, f_Erysipelotrichaceae, and f_Enterobacteriaceae
in the HFD group increased signifcantly and f_Lactoba-
cillus, f_Verrucomicrobiaceae, and f_Ruminococcaceae de-
creased signifcantly, while HLF could signifcantly improve
the relative abundance of these species. At the genus level
(Figures 10(e)–10(h)), one could clearly see that the struc-
ture and relative abundance of the principal microbiota of
each group have clearly been altered. We used the signifcant
diference test between the groups to analyze the species with
a relative abundance ratio ≥0.01 and evaluate the signif-
cance level of the diference in species abundance. Compared
with the NC group, the number of g_Blautia, g_Anaeros-
tipes, and g_Allobaculum in the HFD group signifcantly
increased, while the number of g_Lactobacillus, g_Akker-
mansia, and g_Alloprevotella signifcantly decreased. It is
worth noting that HLF treatment could improve the dys-
biosis, among which HLF-H could signifcantly reduce the
relative abundance of g_Anaerostipes, g_Collinsella,
g_Fusicatenibacter, and g_ [Eubacterium]_hallii_group
(p< 0.05).

Besides, to further explore diferences in the specifc gut
microbiota among all subjects, we used the linear dis-
criminant analysis efect size (LEfSe) method to recognize

the specifc altered bacterial phenotypes at each phylogenetic
level (from phylum to genus), with linear discriminant
analysis (LDA)> 3, ,p< 0.05 and multigroup comparison
strategy of all-against-all (Figures 10(i)–10(n)). By com-
paring the signifcantly diferent species of NC and HFD, it
could be seen that HFD caused a serious imbalance in the
composition and relative abundance of intestinal microor-
ganisms. After HLF treatment, the main species of gut
microbiota (the proportion of species ≥0.01), such as
p_Verrucomicrobia, f_Lactobacillaceae, g_Akkermansia, and
g_Lactobacillus, changed signifcantly. Although the results
of the LEfSe test were quite diferent from those of the
Tukey–Kramer test, it still showed that HLF could signif-
cantly regulate the relative abundance of these species, in-
dicating that these bacteria were associated with the HLF
treatment of hyperlipidemia.

3.11. Active Ingredients and Targets for HLF. A total of 75
favonoids compounds in hawthorn leaves were obtained by
searching TCMSP, chemistry database, and related litera-
ture, as shown in Table 2. By predicting the potential targets
of active compounds based on the STITCH and CTD
platforms, the 83 targets were fnally screened for their
possible association with the prevention and treatment of
hyperlipidemia in HLF.

3.12. Construction and Analysis of PPI Network. We in-
troduced the abovementioned 83 intersection targets into
the string platform, resulting in a column of protein-
protein interaction data and a PPI network map. After
the minimum interaction threshold was set to “highest
confdence” (0.900) and disconnected nodes were hidden,
68 closely linked targets were fnally obtained. Te PPI
network diagram of this study included 68 nodes, 143
edges, and the average node degree was 3.45. Te local
clustering coefcient was 0.46. Te PPI analysis consid-
ered that this network to be far more interactive than
expected, meaning more protein-protein interactions
than would be expected from a set of proteins randomly
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drawn from the genome with the same size and degree
distribution, as shown in Figure 11.

3.13. GO Enrichment and KEGGPathway Analysis. We used
the Metascape data platform to perform GO enrichment
analysis on HLF antihyperlipidemia-related targets;
screened out the top 20 KEGG pathways MF, BP, and CC
based on the p value; and visualized the results (each bubble
chart) using Origin Lab 2021. KEGG pathway analysis
revealed 99 pathways related to HSA term, including
AGE-RAGE signaling pathway in diabetic complications,
insulin resistance, and AMPK signaling pathway. MF
analysis yielded 92 results, mainly enriched in cholesterol

transfer activity, sterol transfer activity, and lipoprotein
particle binding. Te result of CC enrichment is 55, mainly
including vesicle lumen, plasma lipoprotein particle, lipo-
protein particle, and so on; BP enrichment results obtained
579, mainly related to lipid localization, regulation of lipid
localization, lipid storage, and other biological processes, as
shown in Figures 12(a)–12(d).

3.14. Network of HLFActive Ingredients—Antihyperlipidemic
Targets-Biological Processes. In this study, the compound,
target, and biological processes’ information obtained above
were imported to Cytoscape 3.8.2 software to construct the
“HLF active ingredient antihyperlipidemia target pathway
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Figure 8: (a) Te number of OTUs in each group. (b) Pan species analysis: observations increase in the number of total species with
increasing number of samples. (c) Core species analysis: for observing a decrease in the number of shared OTUs as the number of samples
increases. (d)–(f ) Te Sobs, Shannon, and Shannoneven indices of gut microbes in each group. (g)–(i) Te rarefaction curve of each
dimension. Te value is presented as an average± S.E. (n� 8). Diferences were assessed by Student’s test and denoted as follows: #p< 0.05,
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Figure 9: (a) PCoA analysis of unweighted_unifrac (R� 0.6844, p � 0.001000); (b) PCoA analysis of weighted_unifrac (R� 0.3512, p �

0.001000); (c) NMDS analysis of unweighted_unifrac (stress: 0.083, R� 0.6844, p � 0.001000); (d) NMDS analysis of weighted_unifrac
(stress: 0.071, R� 0.3512, p � 0.001000). Points of the same color or shape represent samples in diferent groups. Te closer the two sample
points are, the more similar the species composition of the two samples is, ANOSIM was used to test the diference between the groups.

Table 1: Result of the analysis of similarities (ANOSIM, n� 8).

Groups
Unweighted_unifra Weighted_unifra

R statistic p value R statistic p value
NC vs. HFD 1 0.001 0.9911 0.001
HFD vs. HLF-L 0.3242 0.012 -0.0413 0.608
HFD vs. HLF-M 0.2444 0.021 0.0603 0.194
HFD vs. HLF-H 0.8114 0.001 0.0497 0.195
HFD vs. AVT 0.4715 0.003 0.1099 0.097
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Figure 10: Continued.
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Figure 10: Continued.
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network” (Figure 13).Te network contained 131 nodes, 843
edges, and the network concentration was 0.396. It was
predicted that quercetin was the main component of anti-
hyperlipidemia in HLF, followed by (+)-catechin, epi-
catechin, and so on. Taken together the KEGG analysis and
the degree values, we supposed that the targets of HLF
against hyperlipidemia might be related to the biosynthesis,
transport, and homeostasis regulation system of several
lipids, including cholesterol, steroids, and fatty acids, and the
targets were mainly enriched in APOE, LDLR, PPARG, and
so on.

3.15. Te Potential Drug Targets for Antihyperlipidemia by
HLF. Based on the network pharmacology, literature query,
and results of our previous study, we validated the ex-
pression of CYP7A1, HMGCR, SCAP, and other targets in

HFD rats and the efect of HLF on them. Te ELISA test
results showed that compared with the NC group
(Figures 14(a) and 14(b)), the level of CYP7A1 in HFD rats
was decreased signifcantly (p< 0.01), and the HMGCR level
was increased signifcantly (p< 0.01). Compared with the
HFD group, the levels of CYP7A1 in the HLF-L, HLF-M,
and HLF-H treatment group were signifcantly increased
(p< 0.05), while the HMGCR levels in the three dosages of
HLF were signifcantly reduced (p< 0.01).

As shown in Figures 14(c) and 14(d), the protein ex-
pression profles of SCAP, PCSK9, HMGCR, SREBF2, and
NLRP3 (p< 0.05 or p< 0.01) in the liver or intestine of HFD
rats were signifcantly upregulated, while the expressions of
LDLR, NR1H3, ABCG5, and ABCG8 were signifcantly
downregulated (p< 0.05 or p< 0.01) compared with the NC
group. Compared with the HFD group, the protein ex-
pression profles of SCAP, HMGCR, and NLRP3 were
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Figure 10: (a) Venn diagram of the OTU number in each group. Te number of overlapping parts represents the number of species
common to multiple groups, and the number of nonoverlapping parts represents the number of species unique to the corresponding group.
(b)–(d) Relative abundance of the gut microbiota at the phylum level and genus level. Te ordinate/abscissa is the proportion of species in
the sample. Te columns of diferent colors represent diferent species, and the length of the columns represents the proportion of the
species. (e)–(h) Relative abundance of intestinal microbial community members at the genus level in each group. Diferences are assessed by
the one-way ANOVA test and post hoc using the Tukey–Kramer test which is denoted as follows: #p< 0.05, ##p< 0.01, and ###p< 0.001 (vs.
NC); ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001 (vs. HFD). (i)–(j) Classifcation branch diagram of LEfSe. Diferent color nodes represent
microbial groups that are signifcantly enriched in the corresponding groups and have a signifcant impact on the diferences between the
groups. Te diameter of each circle is directly proportional to the abundance of taxons. (k)–(n) Te value is presented as an average± S.E
(n� 8).
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Table 2: HLF for compound information.

Molecule name Rename Formula MW (g/mol)
(+)-Catechin HLF_1 C15H14O6 290.27
(+)-Taxifolin HLF_2 C15H12O7 304.25
(+)-Taxifolin 3-O-xylopyranoside HLF_3 C20H20O11 436.37
(+)-Taxifolin3-O-arabinopyranoside 3-O-arabinopyranoside HLF_4 C20H20O11 436.37
2″-O-acetylvitexin HLF_5 C23H22O11 474.41
3‴, 4‴-di-O-acetyl-2″-O-α-rhamnosylvitexin HLF_6 C31H38O16 666.62
3″-O-acetylvitexin HLF_7 C23H22O11 474.41
3-O-β-D-6″-acetylglucopyranoside quercetin HLF_8 C23H22O13 506.41
4‴-O rhamnosylrutin HLF_9 C33H40O20 756.66
5-hydroxyauranetin HLF_10 C20H20O8 388.37
6-C-glucoside-8-C-xylsoyl apigenin HLF_11 C26H28O14 564.49
7-O-rhamnogalactoside quercetin HLF_12 C27H30O16 610.52
8-C-β-D-(2″-O-acetyl)-glucofuranosyl apigenin HLF_13 C23H22O11 474.41
8-Methoxykaempferol3-neohesperidoside HLF_14 C28H32O16 624.54
Acetylvitexin 2″-O-rhamnoside HLF_15 C29H32O15 620.56
Apigenin HLF_16 C15H10O5 270.24
Bioquercetin HLF_17 C27H30O16 610.52
Catiguanin B HLF_18 C25H22O10 482.44
Cinchonain ib HLF_19 C24H20O9 452.41
Cinchonain IIb HLF_20 C39H32O15 740.66
Crataegunin A HLF_21 C25H22O9 466.44
Crataegunin B HLF_22 C24H20O9 452.41
Crataegunin C HLF_23 C25H24O10 484.45
Crataegunin D HLF_24 C24H20O9 452.41
Crataequinone B HLF_25 C12H6O6 246.17
Cratenacin HLF_26 C29H32O15 620.56
Crateside HLF_27 C20H20O11 436.37
Ent-epicatechin HLF_28 C15H14O6 290.27
Epicatechin HLF_29 C15H14O6 290.27
Epicatechin-(4β⟶6)-epicatechin-(4β⟶8)-epicatechin HLF_30 C45H38O18 866.77
Epicatechin-(4β⟶8)-epicatechin-(4β⟶6)-epicatechin HLF_31 C45H38O18 866.77
Eriodectyol HLF_32 C15H12O6 288.25
Eriodictyol-5,3′-di-glucoside HLF_33 C27H32O16 612.53
Herbacetin HLF_34 C15H10O7 302.24
Hyperin HLF_35 C21H20O12 464.38
Isoorientin HLF_36 C21H20O11 448.38
Isoquercitrin HLF_37 C21H20O12 464.38
Isorhamnetin HLF_38 C16H12O7 316.26
Isoschaftoside HLF_39 C26H28O14 564.49
Apigenin-C-hexoside HLF_40 C21H20O10 432.38
Kaempferol HLF_41 C15H10O6 286.24
Kaempferol 3-neohesperidoside HLF_42 C27H30O15 594.52
Leucodelphinidin HLF_43 C15H14O8 322.27
Luteolin HLF_44 C15H10O6 286.24
Methoxykaempferol-O-glucoside HLF_45 C21H20O11 448.38
Myricetin HLF_46 C15H10O8 318.24
Naringenin HLF_47 C15H12O5 272.25
Naringenin-5,7-di-glucoside HLF_48 C27H32O15 596.53
Neoisoschaftoside HLF_49 C26H28O14 564.49
Neoschaftoside HLF_50 C26H28O14 564.49
Orientin HLF_51 C21H20O11 448.38
Pinnatifnoside A HLF_53 C23H20O10 456.4
Pinnatifnoside B HLF_54 C23H20O10 456.4
Pinnatifda C HLF_55 C21H18O9 414.36
Pinnatifda D HLF_52 C23H20O10 456.4
Pinnatifnoside I HLF_56 C23H20O10 456.4
Proanthocyanidin A2 HLF_57 C30H24O12 576.5
Procyanidin B1 HLF_58 C30H26O12 578.52
Procyanidin dimer B2 HLF_59 C30H26O12 578.52
Procyanidin B4 HLF_60 C30H26O12 578.52
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downregulated by HLF (p< 0.05 or p< 0.01). Meanwhile,
the expression profles of PCSK9 in the three dosages of the
HLF group were signifcantly decreased (p< 0.05). However,
the protein expression profles of ABCG5, ABCG8, LDLR,
and NR1H3 were upregulated by HLF (p< 0.05 or p< 0.01).
Although HLF did not signifcantly inhibit the expression of
SREBF2 compared with the HFD group, a very clear de-
creasing trend was still seen. Tese results indicated that the
mechanism of HLF treatment for hyperlipidemia may be
related to the regulation of cholesterol biosynthesis, meta-
bolism, and transport.

3.16. Correlation Analysis of Intestinal Microbes. Based on
the bacteria at the genus level, we used Spearman’s test to
analyze the relationship between bacteria and each indicator
in plasma and serum (Figure 15). In blood lipid levels, the
abundance of g_Lactobacillus and g_Akkermansia were
signifcantly negatively correlated with the levels of LDL-C
and TC, but signifcantly positively correlated with the levels
of HDL-C. Te abundances of g_Anaerostipes, g_[Eubac-
terium]_hallii_group, g_Collinsella, and g_Fusicatenibacter
were signifcantly positively correlated with the levels of
LDL-C and TC, and negatively correlated with the levels of

Table 2: Continued.

Molecule name Rename Formula MW (g/mol)
Procyanidin B5 HLF_61 C30H26O12 578.52
Procyanidin C1 HLF_62 C45H38O18 866.77
Procyanidin E1 HLF_63 C75H62O30 1443.3
Procyanidin tetramer HLF_64 C60H50O24 1155.02
Propelargonidin dimer HLF_65 C30H26O11 562.52
Quercetin HLF_66 C15H10O7 302.24
Quercetin-3-O-(2,6-di-α-l-rhamnopyranosyl)-β-d-galactopyranoside HLF_67 C33H40O20 756.66
Rutin HLF_68 C27H30O16 610.52
Santin HLF_69 C18H16O7 344.32
Schaftoside HLF_70 C26H28O14 564.49
Vitexin HLF_71 C21H20O10 432.38
Vitexin-2-O-rhamnoside HLF_72 C27H30O14 578.52
Vitexin-2″-O-glucoside HLF_73 C27H30O15 594.52
4″-O-glucosylvitexin HLF_74 C27H30O15 594.52
Vitexin-6″-O-acetyl HLF_75 C23H22O11 474.41
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Figure 11: PPI network of HLF. Nodes in the fgure represent proteins, and each edge represents a protein-protein interaction relationship,
and the more lines represent a greater association. Te sky-blue line in the fgure represents protein-protein interactions obtained from the
created database and the purple line represents experimentally determined protein-protein interactions.
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HDL-C. In terms of cholesterol metabolism, CYP7A1 was
a signifcant target with a signifcant correlation to bacterial
production and a signifcant positive correlation to the
abundance of g_Lactobacillus and a signifcant negative
correlation to the abundance of g_[Eubacterium]_hal-
lii_group, g_Collinsella, and g_Fusicatenibacter. In terms of
antiinfammation, the abundance of g_Anaerostipes was
signifcantly positively correlated with the level of NLRP3,
but the abundance of g_Lactobacillus was signifcantly
negatively correlated with the level of NLRP3. In terms of
immunity, Casp1 and sIgA were important indicators that
are signifcantly related to bacteria. Te abundances of g_
[Eubacterium]_hallii_group, g_Anaerostipes, g_Collinsella,
and g_Fusicatenibacter were signifcantly positively corre-
lated with the level of Casp1 and negatively correlated with
the level of sIgA. However, the correlation of g_Lactobacillus
was just the opposite of these bacteria. In terms of anti-
oxidants, the abundance of g_Collinsella, g_[Eubacterium]
_hallii_group, and g_Anaerostipes was signifcantly nega-
tively correlated with the level of CAT, while the abundance
of g_Lactobacilluswas signifcantly positively correlated with
the level of SOD. In terms of iron metabolism, g_Anae-
rostipes and g_Fusicatenibacter were negatively correlated
with the level of HEPC, while g_Fusicatenibacter and g_
[Eubacterium]_hallii_group were negatively correlated with
the level of TFR and g_Akkermansia was positively corre-
lated with the level of TFR.

4. Discussion

Hyperlipidemia, whose pathogenesis is very complex, is
accompanied by the ascent of serum TC, TG, and LDL-C
and the decrease of HDL-C levels, which is inseparable from
the physiopathological processes, and cholesterol accumu-
lation caused by any factor can lead to hyperlipidemia and
aggravate the occurrence as well as development of car-
diovascular disease [51, 52]. Increased intestinal cholesterol
absorption or increased liver cholesterol biosynthesis can
easily cause the accumulation of cholesterol in the body,
promoting the activation of NLRP3 infammasome and
triggering the expression of infammatory factors such as
interleukin-1 beta (IL-1β), interleukin-18 (IL-18), and tu-
mor necrosis factor-α (TNF-α) [53, 54]. Te high concen-
trations of cholesterol or cholesterol crystals can promote
the activation of NLRP3 infammasome to start in-
fammation associated with hyperlipidemia or atheroscle-
rosis [55, 56]. In this study, HLF reduced the serum TC, TG,
and LDL-C levels and increased HDL-C levels in hyper-
lipidemia model rats, improving lipid profles. It is also
shown that HLF could attenuate the liver tissue swelling and
improve infammatory cell infltration or fatty lesions.
Moreover, HLF could signifcantly reduce the levels of
NLRP3, caspase-1, IL-1β, IL-6, IL-18, and TNF-α and in-
crease the activities of plasma SOD, CAT, and GSH-PX,
which suggested that HLF could efectively relieve the
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infammatory response and oxidative stress induced by
hyperlipidemia.

Cholesterol synthesis and metabolism require a large
number of enzymes to catalyze, among which 3-hydroxy-3-
methylglutaryl-coenzyme A reductase (HMGCR), a key
enzyme in cholesterol biosynthesis, is regulated by SCAP/
SREBF2 (sterol regulatory element-binding protein
cleavage-activating protein/sterol regulatory element-
binding protein 2) regulation [57, 58]. When cholesterol
is low in the cell, SCAP activates the cleavage of S1P protease
and the release of the active fragment, which will activate the
expression of the downstream target gene HMGCR, and
ultimately contributes to increase cellular cholesterol uptake
instead of endogenous synthesis [59–61]. When cells are
high in cholesterol, SCAP inhibits this cleavage reaction,
which leads to decrease the expression of the downstream
target genes HMGCR [62, 63]. Finally, compared with the
endogenous synthesis, it leads to a decrease in cellular
cholesterol uptake to maintain cholesterol homeostasis. In
this study, HLF could lower the level of HMGCR in plasma
and decrease the protein expression profles of HMGCR and
SCAP in HFD rats, which demonstrated that HLF could

inhibit cholesterol biosynthesis and improve the lipid-
lowering activity.

Low-density lipoprotein receptor (LDLR) is the liver
surface receptor of LDL, responsible for removing LDL-C
from human blood. After binding to LDL particles, LDLR is
internalized into clathrin-coated pits and then transports
LDL from the cytoplasm to the lysosome for degradation
[64]. Proprotein convertase subtilisin/kexin type 9 (PCSK9)
is a soluble protein and a ligand for LDLR. Extracellular
PCSK9 binds to LDLR through protein-protein interactions
and directly enters the lysosome as a PCSK9-LDLR complex
for destruction, inhibiting LDLR recirculation and lowering
plasma LDL-C levels [65, 66]. Te conversion of cholesterol
into bile acid (BA) in the liver is its main metabolic pathway.
Cholesterol 7α-hydroxylase (CYP7A1) is the rate limiting
enzyme in the conversion of cholesterol to Bas [67]. Te
expression of CYP7A1 is regulated by the liver X receptor
alpha (NR1H3), and its activity determines the rate of BA
synthesis [68]. In addition, ATP-binding cassette subfamily
G member 5 and 8 (ABCG5/G8) are a heterodimeric
complex, mainly on the tubule membrane of hepatocytes
and the apical membrane of intestinal cells, which can
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regulate cholesterol metabolism by promoting the excretion
of liver cholesterol into bile and reducing the absorption of
cholesterol by the intestine [69, 70]. Te expression of
ABCG5/G8 can prevent liver fat accumulation by reducing
cholesterol concentration and fatty acid intake [71]. In the
liver, the main regulator of ABCG5 and ABCG8 mRNA
expression is NR1H3, and NR1H3 promotes cholesterol
excretion by regulating ABCG5/G8 transporters [72, 73]. In
this study, HLF could signifcantly downregulate the ex-
pression of PCSK9; increase the level of CYP7A1 in the
intestinal tissue; and upregulate the expression of LDLR,
NR1H3, ABCG5, and ABCG8 in HFD rats to decrease the
intestinal absorption of cholesterol, promoting cholesterol
excretion.

HEPC is the most master regulator of the body iron
metabolism, and increased uptake of iron by the liver leads
to increased production and secretion of hepcidin, which
regulates iron metabolism by inhibiting ferroportin located
in intestinal enterocytes and macrophages. Contrary to the
expected results, plasma HEPC and TRF levels were both
decreased in the studies in which we used high-fat fed
animals, a situation consistent with the experimental results
of Ye [74]. Tis may be caused by dysregulation of iron
metabolism due to hepatic impairment, as a manifestation of
decreased hepcidin is also seen in patients with chronic liver
disease [75]. In addition, in previous studies, patients with
dyslipidemia and atherosclerosis also presented signifcant
reductions in TRF levels [76, 77]. In this study, HLF was able
to signifcantly increase plasma TRF and HEPC levels, which
suggested that HLF could regulate the disorder of the body
iron metabolism.

Structural variations in the gut microbiome are associ-
ated with the health of the host, and studies on the com-
position of the gut microbes are helpful for the diagnosis and
treatment of hyperlipidemia [78, 79]. According to the re-
sults of the diference and LEfSe test for each group, the
species in the HLF group with signifcant diferences were
mostly concentrated in p_Firmicute, 、p_Actinobacteria,
and p_Verrucomicrobia. Te p_Firmicutes were mainly
enriched in f_Lachnospiraceae. F_Lachnospiraceae produce
high amounts of short-chain fatty acids, which is the largest
butyrate producing group of Firmicutes [80, 81]. It has
turned out to be important to maintain the metabolic health
of the gut microbiota and the stability of the internal en-
vironment [82, 83]. Tis microbial imbalance may be related
to the changes in fatty acid levels in the gut [84, 85]. Its
abundance is closely related to glycolipid metabolism
[86, 87], host immune activation [88], and infammatory
response [89], which in turn afects the level of bile acid [90].
Specifcally, HLF had signifcant efects on g_Lactobacillus,
g_Anaerostipes, g_[Eubacterium]_hallii_group, and g_Fusi-
catenibacter belonging to f_Lachnospiraceae in the gut mi-
crobes of hyperlipidemia rats, indicating that HLFmay afect
the levels of short-chain fatty acids to realize the treatment of
hyperlipidemia by regulating the relative abundance of these
gut microbe.

g_Akkermansia is an important part of p_Verrucomi-
crobia, which can use mucin as the sole carbon and nitrogen
source and release free forms of sulfate from mucin fer-
mentation, resulting in improved host metabolism [91, 92].
In the metabolic syndrome, obesity and hyper-
triglyceridemia were most strongly associated with
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g_Akkermansia; followed by reduced HDL cholesterol, hy-
pertension, and hyperglycemia; and increasing g_Akker-
mansia abundance can reverse the efects of a high-fat, high-
cholesterol diet [93, 94]. Studies have shown that the
mechanism of adjusting the relative abundance of
g_Akkermansia in the treatment of metabolic diseases may
be related to its ability to stimulate GLP-1 secretion [95, 96],
promote 5-HT biosynthesis, and intestinal stem cell-
mediated epithelial development [97, 98]. g_Collinsella be-
longs to f_Coriobacteriaceae and p_Actinobacteria, which
produces lactate, formate, and butyrate [99] can modify host
bile acids and infuence metabolism by altering intestinal
cholesterol absorption, reducing hepatic glycogen pro-
duction and increasing triglyceride synthesis [100–102]. In
terms of infammation, g_Collinsella also increases intestinal
permeability, decreases the expression of tight junction
protein in epithelial cells, and induces the expression of
IL-17 [103–105]. At present, the molecular mechanism by
which g_Collinsella afects host metabolism is not yet clear
[106]. It is certain that g_Collinsella is involved in the
progression of ulcerative colitis [107], hyperlipidemia [108],
and diabetes [109]. A recent study found that a lower dietary
fber intake may lead to an increased abundance of g_Col-
linsella. A structured weight loss program could signifcantly
reduce the abundance of g_Collinsella in patients [110].

Anaerostipes is closely related to eating habits and in-
fammation in obese people, but the precise mechanism is
unclear [103, 111]. It is reported that by promoting propionate
formation via inositol or phytate, anaerostipes may lower the
risk of metabolic disorders [112]. Tese species, which can use
a variety of substrates as well as lactate and acetate to create
butyrate, are among the most efective lactate consumers in the
human colon [113, 114]. Tis is essential for maintaining
healthy intestinal barrier function. Tis is essential for main-
taining healthy intestinal barrier function [115].

Spearman’s correlation analysis further proved that these
genera were closely connected with the regulatory efects of HLF
on lipid metabolism, cholesterol transport, metabolism, immu-
nity, infammation, and oxidative stress. Te present study
suggested that the mechanism of HLF in treating hyperlipidemia
may be related to regulate signifcantly the relative abundance of
some bacteria, such as g_Lactobacillus, g_Anaerostipes, g_
[Eubacterium]_hallii_group, g_Fusicatenibacter, g_Akkermansia,
g_Collinsella, and other bacteria.Tese dominant bacterial genera
altered by HLF showed strong correlations with the
hyperlipidemia-related metabolic parameters in HFD-fed rats.

5. Conclusion

In conclusion, HLF could play a role inmaintaining the normal
level of blood lipids in a great deal of ways (Figure 16).We have
shown that HLF could improve disorders of lipid metabolism
by inhibiting the absorption of intestinal cholesterol and
promoting cholesterol excretion. Meanwhile, HLF played an
important role in controlling the levels of cholesterol synthesis.
In addition, HLF could efectively alleviate oxidative stress and
infammatory response induced by hyperlipidemia. Further-
more, HLF could also regulate the relative abundance of gut
microbiota, such as g_Lactobacillus, g_Anaerostipes, g_

[Eubacterium]_hallii_group, g_Fusicatenibacter, g_Akkerman-
sia, g_Collinsella, and other bacteria, which may be an efective
way to modulate lipid metabolism.
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