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Objective. To explore the molecular network mechanism of modified Taohong Siwu Decoction (MTHSWD) to interfere with
premature ovarian failure based on systematic pharmacological strategy.Methods. 0e network pharmacology strategy was used
to explore the potential mechanism of MTHSWD intervention in POF, and then it was verified through animal experiments.
Mouse zona pellucida 3 was used as an antigen to subcutaneously immunize BALB/c female mice to establish an immune POF
model. Mice were divided into MTHSWD low-, medium-, and high-dose groups, positive control group, model group, and
normal group. After 30 days of drug intervention, ovarian tissue was taken for pathological hematoxylin-eosin (HE) staining, and
immunohistochemical methods were used to detect the expression of TGF-β1 and TGF-βRII and Smad2/3 protein expression in
follicular wall granular cells and ovarian tissue, respectively. Results. Network pharmacology studies have shown that MTHSWD
may interfere with the TGF-β signaling pathway. Animal experimental research shows that, compared with the model group, the
number of ovarian mature follicles in the MTHSWD groups and the positive group was significantly increased, and the number of
atresia follicles decreased. Immunohistochemistry showed that, compared with the control group, the expression of TGF-β1,
TGF-βRII, and Smad2/3 in the follicular wall granulosa cells and ovarian tissues of MTHSWD groups was significantly higher
than that of the model group (P< 0.05). Conclusion. MTHSWD may improve the ovarian function of POF mice by upregulating
the protein expression of granulosa cells TGF-β1, TGF-βRII, and Smad2/3.

1. Introduction

Premature ovarian failure (POF) refers to a disease that
causes amenorrhea, infertility, menopause, and genitouri-
nary symptoms before the age of 40 due to ovarian failure
[1]. Epidemiological studies have shown that the incidence
rate in women is about 1% [1, 2]. Hormone detection in-
dicators showed that it has hypogonadotropic hypogonad-
ism [3]. At present, hormone replacement therapy (HRT) is
the most popular choice for women with POF to get rid of
menopausal syndrome [4]. However, HRT has its own in-
dications and contraindications [5]. For example,

unexplained vaginal bleeding, acute liver injury, liver in-
sufficiency, vascular embolism, and breast cancer are con-
traindications to HRT [6, 7]. In alternative medicine, ancient
Chinese medicine has accumulated a lot of clinical experi-
ence. With the increase of clinical evidence, TCM has shown
a good effect in the treatment of POF [8–10]. 0e systematic
review and meta-analysis of Bushen Huoxue (nourishing the
kidney and promoting blood circulation) Chinese herbal
medicine for POF showed that compared with the western
medicine group, Chinese medicine may improve the total
effective rate, menstrual improvement rate, symptom score
improvement, and so on, and the incidence of adverse
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reactions is low [11, 12]. Nourishing the kidney and pro-
moting blood circulation, Chinese medicine may also reduce
the level of follicle-stimulating hormone, increase the level of
estrogen, reduce clinical symptoms, promote the growth of
antral follicles, increase the volume of the ovary, increase the
blood flow speed and blood flow pulsation of the ovary, and
reduce the blood flow resistance of the ovary. It may also
reduce the level of osteocalcin and serum alkaline phos-
phatase in the body, increase the level of calcitonin, delay the
occurrence of osteoporosis, reduce triglycerides and total
cholesterol, and reduce the risk of cardiovascular and ce-
rebrovascular diseases. It may also increase the level of CD3+
and CD4+ lymphocytes, improve the body’s immunity, and
reduce the recurrence rate after drug withdrawal [13–16].

Siwu Decoction [17] was first published in the “Secret
Recipe of Xianshou Li Shang” by Lin Taoist in the Tang
Dynasty. It was used to treat traumatic diseases, iron beating
injuries, blood loss, and blood stasis. In the Song Dynasty,
“Tai Ping Hui Min He Ji Ju Fang” began to develop Siwu
Decoction into a special prescription for the treatment of
gynecological diseases, enriching blood, promoting blood
circulation, and regulatingmenstruation [18, 19]. Since then,
physicians of the past generations have elaborated and
exerted the use of Siwu Decoction in the treatment of gy-
necological diseases. 0ey believed that the effect of Siwu
Decoction was to enrich blood, promote blood circulation,
regulate menstruation, and treat many diseases caused by
blood deficiency and blood addiction [19]. On this basis, the
addition and subtraction changes have formed many Siwu
Decoctions as the core to treat women’s abdominal pain
during menstruation, that is, Siwu Decoction prescriptions
for gynecological blood stasis dysmenorrhea [20]. Among
them, Taohong Siwu Decoction is the main representative
prescription of nourishing blood and promoting blood
circulation in Siwu Decoctions. Recent studies have shown
that Modified Taohong Siwu Decoction (MTHSWD)
combined with HRT may significantly improve ovarian
function and improve the clinical efficacy of the treatment of
POF [21]. MTHSWD can improve the symptoms of late
menstruation, decreased menstrual flow, irritability, and
vaginal dryness in patients with decreased ovarian reserve,
reduce FSH levels, improve ovarian blood supply, and in-
crease the number of antral follicles [22]. In addition, the
treatment of infertility patients with Shou Tai Wan com-
bined with Taohong Siwu Decoction can effectively improve
the quality of pregnancy and improve the immune function
and ovarian function of the body [23]. Further studies have
shown that Siwu Decoction can improve ovarian reserve and
improve follicular dysplasia [24, 25].

However, the molecular biological network mechanism
of MTHSWD in the treatment of POF is still not clear.
Network pharmacology combines the ideas of systems bi-
ology and multidirectional pharmacology. It analyzes the
mechanism of action of the effective ingredients of drugs by
constructing a complex network within “component targets-
pathways-disease,” which turns pharmacological research
from the traditional research concept of finding a single
target to the network comprehensive analysis thinking
[26, 27]. In network pharmacology research, the same

disease can be regulated by different genes at different stages
of development, and some genes can also play a central
regulatory role in multiple diseases. 0is coincides with the
traditional Chinese medicine theory of “different treatment
of the same disease” and “treatment of the same disease at
the same time” [28, 29]. 0erefore, this study hopes to
explore the molecular biological network effect and the basis
of pharmacodynamic active ingredients of MTHSWD in the
treatment of POF by combining systemic pharmacology and
experimental pharmacology strategies, so as to provide a
scientific basis for the clinical application of MTHSWD.

2. Materials and Methods

2.1. Potential Compounds and Targets of MTHSWD and POF
Gene Collection. 0e potential components and targets of
MTHSWD were searched from TCMSP (https://tcmsp-e.
com/) [30] according to the pharmacokinetic parameters of
chemical components (absorption, distribution, meta-
bolism, and excretion (ADME)). 0e standard was oral
bioavailability (OB)≥ 30%, Caco-2 parameter>−0.4, and
drug-like activity (DL)≥ 0.18 [30]. 0e POF genes were
collected to search the OnlineMendelian Inheritance inMan
(OMIM, http://omim.org/) [31] and GeneCards (http://
www.genecards.org/) [32]. 0e official gene symbol of
MTHSWD potential targets and POF genes were collected
from UniProt KB (https://www.uniprot.org/uniprot/), with
the species restricted to human (Table S1 and Table S2).

2.2. Network Construction and Analysis Methods. 0e String
database (https://string-db.org/) was utilized to collect the
PPI data of MTHSWD targets and POF genes [33]. 0e
Cytoscape 3.7.2 was utilized to construct and analyze the
MTHSWD-POF PPI network [34]. 0e DAVID ver 6.8
(https://david.ncifcrf.gov/) was utilized to perform gene
ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis [35].

2.3. Experimental Materials

2.3.1. Experimental Animal. Sixty-seven healthy female
BALB/c mice (SYXK (Xiang) 2013–0005), aged 7–8 weeks
and weighing 20–22 g, were selected. 0e vaginal exfoliated
cell smear showed that the estrus cycle was normal. Mice
were kept in a clean environment, room temperature
18∼22°C, relative humidity 40%∼60%, and light for 12 h.

2.3.2. Experimental Drugs. MTHSWD is composed of
Rehmanniae Radix Praeparata (Di Huang) 15 g, Polygonatum
sibiricum Red. (Huang Jing) 12 g, Cornus officinalis Sieb. et
Zucc. (Shan Zhu Yu) 12 g, Lycium barbarum L. (Gou Qi Zi)
12 g, Angelica sinensis (Oliv.) Diels (Dang Gui) 15 g, Paeonia
lactiflora Pall. (Bai Shao) 12 g, Ligusticum chuanxiong Hort.
(Chuan Xiong) 9 g, Salvia miltiorrhiza Bge. (Dan Shen) 12 g,
and Prunus persica (L.). Batsch (Tao Ren) 9 g. 0ose medical
materials were purchased from Pharmacy Department of the
First Affiliated Hospital of Hunan University of Chinese
Medicine. 0e Department of Pharmacy, the First Affiliated
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Hospital of Hunan University of Chinese Medicine, identified,
screened, washed, processed, sliced, dried, and crushed the
source and variety of the same batch of Chinese medicinal
materials. 0e batch number was 20150701. Estradiol valerate
tablets were obtained fromBayerHealthcare Co., Ltd., National
Medicine Standard J20130009.

2.3.3. Instruments and Reagents. Mouse zona pellucida
polypeptide solution and the 330–342 amino acid sequence
of mouse zona pellucida 3 (ZP3) (NSSSSQFQIHGPR), with
an analytical purity of 91.5%, were obtained from Hangzhou
Zhongpi Biochemical Co., Ltd. (P00105). Freund’s complete
adjuvant (F5881) and Freund’s incomplete adjuvant (F5506)
were obtained from American Sigma company. Rabbit anti-
mouse TGF-β1, TGF-βRII, and Smad2/3 polyclonal anti-
bodies were obtained from Wuhan Boster Bioengineering
Co., Ltd. (BA0290, BA0526, BA1395). TRIzol reagent was
obtained from 0ermo Fisher Technology (China) Co., Ltd.
[lot number 267309]. MonScri RTIII All-in-One Mix with
sdDNase was obtained from Mona Biotechnology Co., Ltd.
(lot number 130449). Universal SYBR qPCR Master Mix
Universal Real-Time PCR Kit was obtained from China
Biosharp Company (lot number 70090100). Horseradish
peroxidase- (HRP-) labeled secondary antibody was ob-
tained from Beijing Zhongshan Jinqiao Biotechnology Co.,
Ltd. (ZDR-5118). Whole protein extraction kit was obtained
from Nanjing KGI Biotechnology Development Co., Ltd.
(KGP2100). BCA protein quantitative detection kit was
obtained from Shanghai Shenggong Biological Engineering
Co., Ltd. (C503031). LEICADMLB2 binocular microscope
and LEICARM2255 automatic rotary microtome were ob-
tained from German LEICA company.

2.4. Quality Control of MTHSWD

2.4.1. Preparation of Sample. Control solution preparation:
morroniside 4.07mg, loganin 1.16mg, and paeoniflorin
2.34mg were accurately weighed into a 10mL volumetric
flask. 0en methanol : water (1 :1) was added, dissolved, and
diluted to the mark and filtered through a 0.45 μm filter
membrane to make a mixed reference solution.

MTHSWD solution preparation: themedicinalmaterials of
MTHSWDwere placed in a round-bottomed flask, 1000mL of
pure water was added, and the mixture was refluxed, extracted
for 1.5 h, and filtered. 0en, 1000mL of pure water was added,
refluxed for extraction for 1h, and filtered. 0e two filtrates
were combined and concentrated to 500mL by rotary evap-
oration. 2mL of the concentrated filtrate was added into a 5mL
volumetric flask, and anhydrous methanol was added to the
volume. 0en, the filtrate was ultrasonically processed (power
300W, frequency 40Hz) for 30min and filtered by suction.0e
subsequent filtrate was filtered with a 0.45μm organic mi-
croporous filter membrane.

2.4.2. HPLC Condition. Chromatographic column was
Hypersil ODS C18 chromatographic column (200mm
× 4.6mm, 5μm). Flow rate was 1.0mL/min. Detection

wavelength was 237nm. Mobile phase was acetonitrile (A)-
0.1% phosphoric acid solution (B) gradient elution. Injection
volum was 10μL. Column temperature was 30°C.0e contents
of those components are morroniside 4.612± 0.013mg/g,
loganin 1.291± 0.003mg/g, and paeoniflorin 3.084± 0.009mg/
g (Figure S2).

2.5. Experimental Methods

2.5.1. Experimental Grouping, Modeling, and Intervention.
According to the random number table method, 67 female
BALB/cmice were divided into (N) 10mice as the blank group,
and the remaining 57 were prepared formodeling. Add 6mg of
ZP3 transparent polypeptide powder, add 6mL of double-
distilled water to make a solution, and make a 1 :1 immune
reagent with Freund’s complete adjuvant; it is formulated with
Freund’s incomplete adjuvant at a ratio of 1 :1 to prepare
immune enhancement reagents (both in the form of porous
white viscous oil). Mice were given 0.15mL of immune reagent
injected into the soles of both hind feet and subcutaneously in
the abdominal cavity. 14 days later, 0.15mL of immu-
noenhancing reagent was injected again into the soles of both
hind feet and subcutaneously in the abdominal cavity to es-
tablish an immune POF model. Mice in the blank group was
injected with 0.15mL of normal saline into the same area.
Beginning on the 8th day after modeling, all mice were sub-
jected to cervical mucus smears and HE staining of vaginal
exfoliated cells at 9 : 00 every morning. 0e observation lasted
for 12 days and the estrus cycle of the mice was checked. 0e
results showed that 5 mice still did not have any estrous cycle
disorder and were eliminated.

In the remaining 52 mice, 2 were randomly selected to
observe follicular morphology to confirm the POF model.
0e other 50 mice were randomly divided into model group,
positive control group, MTHSWD low-dose group, middle-
dose group, and high-dose group, with 10 mice in each
group. 0e dosages of MTHSWD low-, medium-, and high-
dose groups were 0.54 g, 1.08 g, and 2.16 g of crude drug/mL,
respectively.0e low, medium, and high doses of MTHSWD
were converted by 1, 2, and 4 times the adult clinical dose
according to the “Equivalent Dose Table for Conversion of
Human and Animal Body Surface Areas,” respectively
[36, 37]. 0e positive control group was given 0.03mg of
Estradiol. 0e intragastric administration was started 1 week
after the model was established. Both the blank group and
the model group were given 0.3mL of normal saline. 0e
intervention lasted 30 days and was given by gavage. 0e
mice were weighed every 7 days.

2.5.2. Pathological Observation. 0e ovaries were fixed in 4%
paraformaldehyde solution, dehydrated with gradient alcohol,
embedded in paraffin, sectioned, deparaffinized, and stained
with the conventional hematoxylin-eosin (HE) method.

2.5.3. Expression of TGF-β1, TGF-ΒβRII, and Smad2/3
Protein in Ovarian Tissue Detected by
Immunohistochemistry. 0e ovaries were fixed in 4%

Evidence-Based Complementary and Alternative Medicine 3



paraformaldehyde solution, dehydrated with gradient al-
cohol, embedded in paraffin, sectioned, and deparaffinized.
0en the expression of TGF-β1, TGF-βRII, and Smad2/3
protein in ovarian tissue was detected by immunohisto-
chemistry SP two-step method. 0en the areas under the
microscope were randomly selected and analyzed with
Image-Pro Plus 6.0. 0e cumulative optical density (IOD)
and area and mean density were measured according to the
standard operation method.

2.5.4. Determination of Smad2, Smad3, and Smad7 mRNA
Expression in Ovarian Tissue. 0e total RNA of mouse
ovarian tissue was extracted according to the TRIzol
method, and the first-strand cDNA was synthesized by
reverse transcription, and Smad2, Smad3, and Smad7
mRNA were detected according to the Real-Time PCR
method, and β-actin was used as the internal control. 0e
reaction was prepared according to the operating in-
structions of the kit, and the primer sequence was syn-
thesized by Shenggong Bioengineering (Shanghai) Co.,
Ltd. 0e reaction conditions were 95°C predenaturation
for 2min, 95°C denaturation for 15 s, 60°C annealing for
20 s, 72°C extension for 30 s, and 40 cycles of amplification.
0e 2-△△Ct method was used to analyze mRNA ex-
pression levels (Table 1).

2.6. Statistical Analysis. 0e SPSS 21.0 statistical software
was used for analysis, and the data were expressed as
mean± standard deviation. Multigroup analysis was per-
formed by single-factor analysis of variance. P< 0.05 indi-
cated that the difference was statistically significant.

3. Results

3.1.MTHSWDPotential Targets andPOFTargets. A total of
247 MTHSWD potential targets were obtained and 754
POF genes were collected from OMIM and GeneCards.
0e relationship among compounds and targets of
MTHSWD is shown in Figure 1. 0is network consists of
100 compound nodes, 247 potential target nodes, and
1527 edges. In this network, the targets near the center can
be regulated by more components than targets near the
periphery.

3.2. MTHSWD-POF PPI Network Analysis. 0e MTHSWD
potential targets, POF genes, and the PPI data were input
into Cytoscape 3.7.2 to construct MTHSWD-POF PPI
network. 0is network consists of 823 nodes (578 POF gene
nodes, 183 MTHSWD potential target nodes, and 62
MTHSWD-POF target nodes) and 19442 edges. 0e targets
are arranged according to degree from large to small, and the
top 20 targets can be divided into 3 categories: (1)MTHSWD
potential targets: JUN, EGFR, IL1B, EGF, HIF1A, and FOS;
(2) POF genes: ACTB, ALB, INS, and IGF1; (3) MTHSWD-
POF targets: TP53, AKT1, IL6, MYC, TNF, ESR1, VEGFA,
STAT3, CASP3, and PTEN (Figure 2).

3.3. Enrichment Analysis of MTHSWD-POF PPI Network

3.3.1. Biological Processes of MTHSWD-POF PPI Network.
0e biological processes include positive regulation of
pathway-restricted SMAD protein phosphorylation, pos-
itive regulation of transcription from RNA polymerase II
promoter, response to drug, SMAD protein signal trans-
duction, positive regulation of DNA-templated tran-
scription, aging, response to ethanol, positive regulation of
gene expression, response to hypoxia, positive regulation
of cell proliferation, cholinergic synaptic transmission
BMP signaling pathway, negative regulation of apoptotic
process, ovarian follicle development, regulation of apo-
ptotic process, transforming growth factor beta receptor
signaling pathway, and signal transduction (Figure 3)
(Table S3).

3.3.2. Cell Components of MTHSWD-POF PPI Network.
0e cell components include extracellular space, cytosol,
extracellular region, acetylcholine-gated channel complex,
receptor complex, nucleoplasm, integral component of
plasma membrane, postsynaptic membrane, membrane raft,
external side of plasma membrane, transcription factor
complex, cell surface, plasma membrane, neuron projection,
and cytoplasm (Figure 4) (Table S3).

3.3.3. Molecular Function of MTHSWD-POF PPI Network.
0e molecular function includes transforming growth
factor beta receptor binding, growth factor activity, en-
zyme binding, cytokine activity, protein binding, protein
homodimerization activity, drug binding, acetylcholine
binding, acetylcholine-activated cation-selective channel
activity, hormone activity, identical protein binding,
acetylcholine receptor activity, ligand-gated ion channel
activity, and protein heterodimerization activity (Figure 5)
(Table S3).

3.3.4. Signaling Pathway of MTHSWD-POF PPI Network.
0e signaling pathway includes neuroactive ligand-receptor
interaction, TGF-beta signaling pathway, FoxO signaling
pathway, ovarian steroidogenesis, TNF signaling pathway,
prolactin signaling pathway, apoptosis, PI3K-Akt signaling
pathway, Tcell receptor signaling pathway, steroid hormone
biosynthesis, HIF-1 signaling pathway, cytokine-cytokine
receptor interaction, neurotrophin signaling pathway, p53
signaling pathway, NF-kappa B signaling pathway, and
NOD-like receptor signaling pathway (Figures 6 and 7). 0e
TGF-beta signaling pathway was shown in Figure 8
(Table S3).

3.4. Morphological Changes of Ovarian Tissue. In model
group, the ovarian volume was reduced; a few primary
follicles and growing follicles were seen in the ovarian
cortex. 0e number of mature follicles was significantly
reduced, the atretic follicles increased, and the secondary
follicles were loosely arranged. In MTHSWD medium-
and low-dose groups, compared with the model group,
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the number of primary and mature follicles increased and
the number of atretic follicles decreased. In MTHSWD
high-dose group and the positive control group, a large
number of primary follicles and antral follicles are seen in
the ovarian cortex, and there are many near-mature
follicles, and the corpus luteum increases and grows well
(Figure 9).

3.5. Expression of TGF-β1, Smad2, and Smad3 mRNA in
Ovarian Tissue. Compared with the normal group, the ex-
pression levels of TGF-β1, Smad2, and Smad3 mRNA in the
ovarian tissue of the model group were significantly decreased
(P< 0.05). Compared with the model group, the expression
levels of TGF-β1, Smad2, and Smad 3 mRNA in the ovarian
tissue of the MTSWD group increased (P< 0.05) (Figure 10).

Table 1: Primer sequence of RCR.

Sequence Upstream 5′–3′ Downstream 5′–3′
TGF-β1 CCAAGGAGACGGAATACAGG GTGTTGGTTGTAGAGGGCAAG
Smad 2 AGCCGCCCGAAGGGTA AGACCCACCGGCTGATTTTT
Smad 3 CGAGCTGCCTCTGTGCG CCATCCAGTGACCTGGGGAT
β-Asctin CGCGAGTACAACCTTCTTGC CGTCATCCATGGCGAACTGG

GABRA1
GABRA3

Butylidenephthalide

StigmasterolHederagenin

GA120CHRM1
ADRA2A

ADH1B

Salvianolic acid G

ADRB1

Ligustilide

MOL007048

CTRB1

Sitosterol alpha1 ADH1C

LTA4HeGRIA2

Wallichilide

Beta-sitosterol

Mandenol

PARP4 NR3C2

Danshenol B

Salvilenone I

PLAU

CALM2

Ethyl linolenate

MAOB

RXRA

Przewaquinone B

Miltionone II

4',5-Dihydroxyflavone

MOL007155

CDK2

NCOA2

SLC6A2

PGR

SLC6A3

NR3C1

Gibberellin A44

PRKACA

Gibberellin 7

GibbeGibbeG bbee
GABRA2

(2R)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one

CCL2

CXCL11
RUNX2

NFE2L2

IGFBP3

IL1A

PPARD

ACPPPTGER3

POR

FASNCALCR
CDKN1A

Baicalein

HIF1A

Catalpol
(+)-catechin

IL1B

PCOLCE

F3

PRKCA

SERPINE1
ODC1

NQO1
HSPB1

PARP1

NPEPPS

MGAM
PON1

RASSF1

CXCL2
E2F2

PRKCB

NR1I2

zewaewzewawaz aqaqu
DihyDiDihyDihyyyd

CALM3
PRSS1

RELA

VEGFA

AALAAA
AKT1 97411-46-6Kaempferol

Perlolyrine
TP53

HSP90AA1

CXCL10C
HSF1

MYC

STAT1

SPP1

NR1I3

ALOX5GJA1

DIO1

IGF2
GSTM1

VCAM1

MPO

SELE

AHR

1M1M1
BAX

JUN

AHSA1

CASP3ASPAS
CCNB1

CDK1
BCL2

Ferulic acid

Neocryptotanshinone

MAOA

ADRA2B

NOS2
HTR2A

MOL007036
Deoxyneocryptotanshinone s

PDE3A

ADRA1D

GABRA5

GABRA6

MOL005481 HTR1A

CHRNA2

DRD2

OOL00
KDR

DRD5

PKIAEpidanshenspiroketallactone

DRD1

Sugiol

ADRA2C

Danshenol A

ADRA1B

OPRD1

C09092

HTR3A

PIM1

Stachyose

CHRM3

MAN2A1

Sclareol

Diop
Isoimperatorin

GSK3B

HTR1B

GABREPaeoniflorgenone

GABRG3

HTR2C

ESR2
Salviolone

Senkyunolide I

Tanshinaldehyde

2,3-didehydro GA70

HSPA5

CAV1

COL1A1

NKX3-1
CHUK

SULT1E1

RAF1

DCAF5

THBD

ABCG2

CHEK2

IRF1

ACACA

CASP8

MAPK1

CASP9

EGFR

IFNG

MMP2

XDH

ERBB3

DUOX2 COL3A1

CXCL8

ELK1

CD40LG

GSTP1

Quercetin

TNF

INSR
HMOX1

MMP9

PLAT

IL2
EGF

RASA1

HK2

NCF1

RB1

IL10

SLC2A4

IL6

CYP1B1

BIRC5

ERBB2
MMP1

NFKBIA

TOP1

ICAM1

TYR

NUF2

MET

CDK4

MDM2
ADCY2

IL4

MCL1
Acteoside

GA121-isolactone

Palbinone

Campesterol

Przewalskin A

GA122-isolactone

Poriferasterol

Mairin

CRP

TGFB1

EIF6

CTSD

E2F1 CLDN4

PPARA

RUNX1T1

PTEN

MMP3

SOD1 AKR1C3
GSTM2

IKBKB

PSMD3

FOS

NFATC1

SLPI

NOX5

Diosgenin

MTOR

CAT

APOD
FABP5

ALOX12

EGLN1

FOSL2

Przewalskin B

Sitosterol

Poriferast-5-en-3beta-ol

PPP3CA

Manool

Ethyl oleate (NF)

ECE1

ABCC2

TDRD7

PLA2G4A

FOSL1

Miltirone

Myricanone

ADRA1A

CHRNA7

PTGS2

SLC6A4

ADRB2

ESR1

ACHE

NCOA1
DPP4

HydroxygenkwaninProlithospermic acid

3'-Methoxydaidzein

CHRM4

IGHG1
Neocryptotanshinone II

97399-70-7

Isotanshinone II

Danshenspiroketallactone
Tanshinone VI

CHRM5

Tanshindiol B

NPM1

CCND1

MOL007070
Przewaquinone E

Luteolin

CYP1A1

MAPK8

MOMMOMCYP1A2

BBCHEK1

Tanshinone IIATanshaaaTTTaaaaTTanshaTaTanshTanshTaTTTan
CALM1

3-hydroxytanshinone
IIA

Formyltanshinone

TOP2A

ITGB3

KCNMA1

XIAP

PCNA
STAT3

Miltipolone

Isocryptotanshinone

CASP7

APP MAPK14

Cornudentanone

PPARG

537-15-5 F2

KCNH2

CEDN1

Cryptotanshinone

AR

BCL2L1

Przewaquinone F
F7

CYP3A4

AKR1B1

PIK3CG

HAS2

CCNA2
MOL007050

Salvilenone

Dan-shexinkum D

Figure 1: Compound-compound target of MTHSWD (red, orange, yellow, green, blue, indigo, and purple circles stand for components of
Paeonia lactiflora Pall., Polygonatum sibiricum Red., Salvia miltiorrhiza Bge., Prunus persica (L.) Batsch, Rehmanniae Radix Praeparata,
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3.6. Expression of TGF-β1, TGF-ΒβRII, and Smad2/3 in
Granulosa Cells of Ovarian Follicle Wall Detected by
Immunohistochemistry. In the model group, TGF-β1,
Smad2/3, and TGF-βRII were weakly expressed in the
cytoplasm of granulosa cells of antral follicles. In the
MTHSWD low-dose and middle-dose groups, TGF-β1
and Smad2/3 were strongly expressed in some areas of
antral follicles. In the MTHSWD high-dose group,
positive control group, and blank group, TGF-β1 and
Smad2/3 were strongly expressed in most areas of antral
follicles. TGF-βRII was strongly expressed in some areas
of the antral follicles of MTHSWD low-, medium-, and
high-dose groups, positive control group, and blank
group (Figures 11–13).

Compared with the model group, the expression of
TGF-β1, TGF-βRII, and Smad2/3 in the MTHSWD me-
dium-dose, high-dose group, positive control group, and
blank group increased (P< 0.05). 0ere was no difference
in the expression of TGF-β1, TGF-βRII, and Smad2/3 in

the MTHSWD medium-dose and high-dose groups
compared with the positive control group (P< 0.05)
(Figure 14).

4. Discussion

At present, it is more recognized that the factors that cause
POF involve genetics, immunity, infection, iatrogenic,
psychological, and other factors. In the treatment of POF,
hormone replacement or combined use of ovulation in-
duction and assisted reproductive technology is also used
for those who have fertility requirements [38]. Previous
studies have shown that TCM, which focuses on invig-
orating the kidney, can reduce the damage of cisplatin to
the ovary, promote follicular development, and improve
and enhance ovarian function by regulating the content of
various hormones in the serum of POF rat models and
changing the expression of apoptotic cell-related proteins
[39]. Further studies have shown that the Chinese
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Figure 2: MTHSWD-POF PPI network (blue, pink, and purple circles stand for POF gene, MTHSWD target, MTHSWD-POF target, resp.).
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Figure 6: Herb-Target-Signaling pathway network (red diamond stands for signaling pathway. Blue, pink, and purple circles stand for POF
gene, MTHSWD target, and MTHSWD-POF target, respectively. Green hexagon stands for herbs).
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medicine compound for replenishing qi and blood can
regulate the rate of estrous cycle disorder in mice with
primary ovarian insufficiency, reduce serum LH and FSH
levels, and reduce the rate of ovarian granulosa cell ap-
optosis. It may also increase serum E2 and AMH levels,
increase the quality of uterus and ovaries, and increase the
expression of TGF-β, GDF-9, and BMP15 proteins in
ovarian tissue, thereby improving the ovarian function of
POF mice [40].

Current studies have shown that mutations in the bone
morphogenetic proteins (BMP) gene, which is a member of
the transforming growth factor (TGF-β) superfamily, will
cause serious abnormalities in follicular development and
ovulation.0e TGF-β/Smad signaling pathway involves the
growth and development of follicles, the proliferation and
apoptosis of granulosa cells and membrane cells, the
synthesis of steroid hormones, the maturation of oocytes,
ovulation, and luteinization [41, 42]. Smad2 and Smad3
proteins are members of the Smads protein family receptor
regulation, and their main function is to participate in
signal transduction in the TGF-β and activin signaling
pathways. At present, siRNA transfection studies have
shown that Smad2 and Smad3 are involved in the upre-
gulation of TGF-β1 and the production of PGE2, respec-
tively, and then participate in the occurrence and
development of ovarian regulation of ovulation [41].
Further studies have shown that Smad2/3 plays an im-
portant role in the transition from primordial follicles to

primary follicles and the formation of antral follicles
[43–45]. 0e fertility of mice with knocked out Smad2 and
Smad3 genes was greatly reduced, and they cannot form
normal cumulus expansion and mediate the signal trans-
duction between granulosa cells and oocytes [46]. Re-
searches have showed that Bushen Tiaochong method can
effectively increase the expression of TGF-β1, Smad3, and
P-Smad3 in rat ovarian cells [46]. However, the specific role
and mechanism of TGF-β/Smad signaling pathway in the
granulosa cells of immune POF mice have not been re-
ported yet. 0e factors that affect follicle development and
cell proliferation and differentiation involve multiple sig-
naling pathways, including wnt/β-catenin signaling path-
way [47], Nodal signaling pathway [48], FGF signaling
pathway [49], and BMP/Smads signaling pathway [50].
Smad2 and Smad3 are important factors for maintaining
ovarian development and function [51, 52]. A number of
studies have shown that the fertility of Smad3 knockout
mice is reduced, and the proliferation of granulosa cells is
inhibited [53, 54]. Smad2/3 plays an important factor in the
granular cells of newly formed primordial follicles [55].
Smad2 and Smad3 knockout mice have greatly reduced
fertility [45]. Yang et al. further found that TGF-β inhibits
the degradation of CyclinD2 through Smad2 and Smad3,
activates CDK4, and promotes the synthesis of granular cell
DNA [56]. 0is study found that, compared with the blank
group, the protein expression of granulosa cells TGF-β1,
TGF-βRII, and Smad2/3 in the mouse follicles of the model
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Figure 9: Morphological changes of ovarian tissue (HE staining: 200X). (a) Model group, (b) MTHSWD low-dose group, (c) MTHSWD
medium-dose group, (d) MTHSWD high-dose group, (e) positive control group, and (f) blank group. O: oocyte, FL: follicular fluid, FF:
follicular cavity, GC: granular cell, ZP: zona pellucida, Cap: blood vessel, and black arrow points to white blood cell.

10 Evidence-Based Complementary and Alternative Medicine



group was significantly reduced, and the follicular atresia
was significantly increased. After MTHSWD intervention,
the protein expression of TGF-β1, TGF-βRII, and Smad2/3

was significantly increased (P< 0.05), and the expression of
MTHSWD high-dose group was significantly higher than
that of MTHSWD low-dose group (P< 0.05).
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Figure 10: Expression of Smad2, Smad3, and Smad7 mRNA in ovarian tissue (compared with normal group, ∗p< 0.05. Compared with
model group, #P< 0.05).

Figure 11: Expression of TGF-β1 in granulosa cells (immunohistochemistry: 400X). (a) Model group, (b) MTHSWD low-dose group,
(c) MTHSWD medium-dose group, (d) MTHSWD high-dose group, (e) positive control group, and (f) blank group.
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Figure 12: Expression of TGF-βRII in granulosa cells (immunohistochemistry: 400X). (a) Model group, (b) MTHSWD low-dose group,
(c) MTHSWD medium-dose group, (d) MTHSWD high-dose group, (e) positive control group, and (f) blank group.

Figure 13: Expression of Smad2/3 in granulosa cells (immunohistochemistry: 400X). (a) Model group, (b) MTHSWD low-dose group,
(c) MTHSWD medium-dose group, (d) MTHSWD high-dose group, (e) positive control group, and (f) blank group.
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5. Conclusion

In summary, this study showed that MTHSWD can sig-
nificantly promote the transmission of the TGF-β1/Smads
signaling pathway in POF mice, thereby promoting the
proliferation and differentiation of granulosa cells. However,
since we only studied the TGF-β1 ligand in the TGF-β
pathway, the changes in the local microenvironment formed
by the interaction of various factors within the ovary during
the development of POF still need to be clearly elucidated.
Meanwhile, whether MTHSWD can enhance the signal
transcription of other cytokines by increasing the expression
of Smads in the treatment of POFmice remains to be further
studied.
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