Research Article

Meta-Analysis of the Effects of Three-Dimensional Visualized Medical Techniques Hepatectomy for Liver Cancer with and without the Treatment of Sorafenib

Lei Zeng, Yuming Zhu, and Peng Guo

Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China

Correspondence should be addressed to Peng Guo; gpcyfs202204@163.com

Received 8 May 2022; Revised 28 June 2022; Accepted 17 August 2022; Published 13 September 2022

Academic Editor: Xi Wei

Copyright © 2022 Lei Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The application of medical image three-dimensional (3D) reconstruction technology can provide intuitive 3D image data support for accurate preoperative evaluation, surgical planning, and operation safety. However, there is still a lack of high-quality evidence to support whether 3D reconstruction technology is more advantageous in liver resection. Therefore, this study systematically evaluated the clinical effects of 3D reconstruction and two-dimensional (2D) image-assisted hepatectomy. Methods. Databases were searched to collect published clinical studies on 3D reconstruction technology and 2D image-assisted liver resection. Data were extracted from the database construction to March 2022 and the risk of bias in the included studies was evaluated. Meta-analysis was performed using RevMan5.3 software. Results. A total of 13 clinical studies were included, including 1616 patients, 795 in the 2D group and 819 in the 3D group. The meta-analysis showed that the incidence of postoperative complications was lower in the 3D group than in the 2D group (OR equals 0.64, 95% CI equals 0.49–0.83, P equals 0.001) and also reduced operation time (SMD equals −0.51, 95% CI equals −0.74−−0.27, P < 0.0001), decreased intraoperative blood loss (SMD equals −63.85, 95% CI equals −109.66–29.04, P equals 0.0003), decreased incidence of postoperative liver failure (OR equals 2.42, 95% CI equals 0.99–5.95, P equals 0.05), decreased postoperative recurrence rate (OR equals 0.29, 95% CI equals 0.16–0.53, P < 0.0001), and increased postoperative survival rate (OR equals 2.19, 95% CI equals 1.49–3.23, P < 0.0001). Conclusions. Current data suggest that 3D reconstruction-assisted hepatectomy can reduce intraoperative blood loss, postoperative complications, and recurrence, and improve postoperative survival. Therefore, the 3D reconstruction technique is worthy of application and promotion in assisted liver resection.

1. Introduction

The liver is the largest organ in the human viscera and the largest digestive gland in the human digestive system [1–3]. At the same time, it is also one of the tumor-prone sites. Pathological examination still plays an important role in guiding clinical treatment and evaluation as well as disease prognosis, especially in the diagnosis of different liver diseases [4]. Therefore, a biopsy is still the criterion for the diagnosis of benign and malignant liver lesions, but the biopsy cannot comprehensively evaluate the information of lesions. Imaging technology reduces the need for liver biopsy to a certain extent [5]. Its blood supply system has two pipeline systems: the portal vein and the hepatic artery. The portal vein supplies about 75% of the blood volume and about 50% of the oxygen, and the hepatic artery supplies about 25% of the blood volume and 50% of the oxygen [6]. Due to the variable anatomical structure of liver development, the variation rate of the hepatic arteries is very high. At present, most clinical classification standards used are Michels [7] type 10 or Hitta [8] type 6. The portal vein is generally divided into five types of variation [9], and its variation type is less than that of the hepatic artery, mainly because the portal vein system is composed of superior mesenteric vein, a splenic vein, etc., and then branches in the liver, starting with capillary network and ending with a capillary network. In addition, in hepatectomy, due to a large number of hepatic duct systems and interlaced multi-stage
2. Materials and Methods

2.1. Inclusion Criteria. Study type: clinical study on the application of the 3D reconstruction technique in hepatectomy. Randomized controlled trials (RCTS) were the first choice. If RCTS were not available, other types of clinical controlled trials were included. Participants: patients who have been clinically diagnosed with primary benign or malignant liver tumors, hepatolithiasis, metastatic liver tumors, or other diseases requiring surgical treatment. Intervention and control: the liver of the experimental group was evaluated by the 3D reconstruction technique before surgery, and the liver of the control group was evaluated by conventional 2D imaging before surgery. Outcomes: (1) postoperative complications; (2) operating time; (3) intraoperative blood loss; (4) the incidence of liver failure; (5) the postoperative 1-year recurrence rates; and (6) the postoperative 1-year survival rates.

2.2. Exclusion Criteria. The exclusion criteria were as follows: (1) repeated literature; (2) non-English literature; (3) the original research data cannot be extracted; (4) inconsistent intervention measures; and (5) the control group (2D group) was not set in the experimental design.

2.3. Literature Retrieval Strategy. Embase, PubMed, and the Cochrane Library databases were searched for published clinical trials on 3D reconstruction compared with 2D image-assisted liver resection from database establishment to March 2022. Search terms: 3D; 3D visualization reconstruction; hepatectomy; and hepatectomies.

2.4. Literature Screening and Data Extraction. First, the repeatedly published literature was screened out, and then, the literature was screened by reading the title. After excluding clearly irrelevant literature, the abstract and the full text of the literature were further read, and finally, the inclusion criterion was determined. The main contents of data extraction include the following: (1) basic data, such as first author, year of publication, study time, type of study design, sample size, and type of disease studied. (2) Basic characteristics of participants, such as age, sex, and disease status. (3) Intervention, such as preoperative evaluation methods and postoperative actual measurement indicators. (4) Bias risk assessment. (5) Outcomes, including postoperative complication rate, intraoperative blood loss, postoperative liver failure rate, postoperative recurrence rate, and survival rate.

Risk assessment of bias in the included studies. Since RCTS were not retrieved, the Newcastle–Ottawa Scale (NOS) [17] was used to evaluate the risk of bias in included studies.

2.5. Statistical Method. The standard mean difference (SMD) was used to measure continuous variables, the rate ratio (RR), and 95% confidence interval (CI) were used to measure categorical variables, and the funnel plot was used to evaluate publication bias. The Egger analysis was carried out with Stata 15.0. P < 0.05 was considered statistically significant.

3. Results

3.1. Literature Screening Results. A total of 632 relevant literatures were obtained in the initial search and 13 clinical studies were finally included after screening. The literature screening process and results are shown in Figure 1.

3.2. Basic Features of the Included Studies. 11 studies [18–28] reported the incidence of postoperative complications, 12 studies [18–22, 24–30] reported the duration of surgery, 4 studies [20–22, 25] reported the incidence of postoperative liver failure, 10 studies [18–21, 24, 25, 27–30] reported the amount of intraoperative bleeding, 5 studies [18, 21, 22, 24, 27] reported survival rates, and 4 studies
reported recurrence rates. A total of 1616 patients were included, including 795 patients in the 2D group and 819 patients in the 3D group. The basic characteristics of the included study are shown in Table 1.

3.3. Meta-Analysis

3.3.1. Postoperative Complications. A total of 11 studies reported postoperative complications [18–28]. The meta-analysis of the fixed-effect model showed that the incidence of postoperative complications in the 3D group was lower than that in the 2D group (OR = 0.64, 95% CI = 0.49–0.83, \(P < 0.001 \)), and the difference between the two groups was statistically significant (Figure 2).

3.3.2. Operating Time. Operating time was reported in 12 studies [18–22, 24–30]. The meta-analysis of the random effects model showed that the operation time of the 3D group was less than that of the 2D group (SMD = −0.51, 95% CI = −0.74–−0.27, \(P < 0.0001 \)), and the difference between the two groups was statistically significant (Figure 3).

3.3.3. Intraoperative Blood Loss. A total of 10 studies reported intraoperative blood loss [18–21, 24, 25, 27–30]. The meta-analysis of random effects model showed that intraoperative blood loss in the 3D group was less than that in the 2D group (SMD = −63.85, 95% CI = −98.66–29.04, \(P < 0.0003 \)), and the difference between the two groups was statistically significant (Figure 4).

3.3.4. The Incidence of Liver Failure. The incidence of liver failure was reported in four studies [20–22, 25]. The meta-analysis of the fixed effects model showed that the incidence of postoperative liver failure in the 3D group was lower than that in the 2D group (OR = 2.42, 95% CI = 0.99–5.95, \(P = 0.05 \)), and there was no statistical significance between the two groups (Figure 5).

3.3.5. The Postoperative 1-Year Recurrence Rates. The 1-year recurrence rates were reported by four studies [18, 21, 24, 29]. The fixed effects model analysis showed that the rate of postoperative recurrence in the 3D group was lower than that in the 2D group (OR = 0.32, 95% CI = 0.19–0.55, \(P < 0.0001 \)), and the difference between the two groups was statistically significant (Figure 6).
3.3.6. The Postoperative 1-Year Survival Rates. Five studies reported 1-year survival rates of the software [18, 21, 22, 24, 27]. The meta-analysis of fixed effects model showed that the postoperative survival rate in the 3D group was higher than that in the 2D group (OR = 2.19, 95% CI = 1.49–3.23, \(P < 0.0001 \)), and the difference between the two groups was statistically significant (Figure 7).

3.3.7. Sensitivity Analysis. RevMan 5.3 software was used to conduct a sensitivity analysis of outcome indicators by removing single included studies one by one, and the combined results did not change significantly, indicating that the meta-analysis results of this study were relatively stable.

3.3.8. Publication Bias. Based on the incidence index of postoperative complications, RevMan 5.3 software was used to draw a funnel plot for publication bias analysis, and the results showed that the distribution of each study on both sides of the funnel was not completely symmetrical, suggesting the possibility of publication bias (Figure 8).
Since the 1970s, medical imaging equipment has been continuously improved, and there are more and more medical imaging methods. New imaging techniques provide continuous improvement, and there are more and more medical imaging methods. This technology has gradually penetrated the medical field. We use computers to analyze and process 2D images, segmentation, they sometimes come up with different results. After the 1990s, computer image processing technology developed rapidly and gradually penetrated the medical field. We use computers to analyze and process 2D images, segmentation, extraction, 3D reconstruction, and so on. With the gradual popularization and application of the 3D reconstruction technology in clinical practice, the technology has gradually developed into an important medical diagnostic tool.

4. Discussion

Since the 1970s, medical imaging equipment has been continuously improved, and there are more and more medical imaging methods. New imaging techniques provide a very effective means to observe the function of tissues and organs, thus becoming an important medical diagnostic tool. However, the 2D imaging is difficult to meet the requirements of accurate preoperative evaluation and preoperative planning, so it can only make a qualitative analysis of the disease, and the diagnosis result depends on the experience of reading film and subjective understanding of medical imaging. When different doctors diagnose the same disease, they sometimes come up with different results. After the 1990s, computer image processing technology developed rapidly and gradually penetrated the medical field. We use computers to analyze and process 2D images, segmentation, extraction, 3D reconstruction, and so on. With the gradual popularization and application of the 3D reconstruction technology in clinical practice, the technology has gradually developed into an important medical diagnostic tool.
transferred from orthopedic-assisted nail placement [31],
craniocerebral model reconstruction in neurosurgery
[32, 33], and plastic surgery [34–37] to the field of hepato-biliary surgery [38], which has become the preoperative
diagnosis and evaluation of hepatobiliary diseases and the
development of surgical planning [39].

On the 3D liver models, the virtual liver excision
technique can accurately provide safe surgical removal and
judge the distribution range of the blood vessels in advance.
Then, we calculate the blood vessels and their branches’ area
and avoid the risk of liver parenchyma perfusion inadequacy
or obstruction; the maximum limit retains the functional
liver tissue. By observing virtual liver resection, doctors can
evaluate and design the best surgical resection plan, so as to
improve the success rate of complex liver resection, reduce
postoperative complications, and accelerate the recovery of
patients.

The results of this study show that, compared with
traditional 2D imaging, 3D reconstruction can reduce
postoperative complications and intraoperative blood loss,
and the volume of liver resection predicted by precise
planning is consistent with the actual volume of liver re-
section. It avoids the problems of liver insufficiency or even
failure caused by the insufficient residual volume of the liver
after the operation.

In this study, 12 studies were included and no RCTs were
included, so study type-based subgroup analysis was not
conducted. Differences in basic diseases, surgical methods,
technical level, and study design of included patients will
affect the reliability of the results.

In conclusion, the 3D liver reconstruction is helpful for
safety assessment before anatomic hepatectomy and is
beneficial for fine operation during surgery, reducing
intraoperative blood loss, shortening treatment time, and
reducing complications. However, due to the limitation of
the quantity and quality of the included literature, more
reliable conclusions from high-quality RCT studies are
needed to better determine the practical application value of
3D reconstruction of medical images. However, current
evidence shows that the application of the 3D reconstruction-
assisted liver resection can improve the resection rate of
the liver tumors, shorten the operation time, reduce

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>three-dimensional</th>
<th>two-dimensional</th>
<th>Weight (%)</th>
<th>Odds Ratio</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td>Fang 2013</td>
<td>4</td>
<td>56</td>
<td>12</td>
<td>42</td>
<td>24.9</td>
</tr>
<tr>
<td>Fang 2015a</td>
<td>10</td>
<td>45</td>
<td>15</td>
<td>40</td>
<td>24.1</td>
</tr>
<tr>
<td>Li 2018</td>
<td>2</td>
<td>64</td>
<td>8</td>
<td>42</td>
<td>18.3</td>
</tr>
<tr>
<td>Song 2020</td>
<td>11</td>
<td>56</td>
<td>21</td>
<td>57</td>
<td>32.7</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>27</td>
<td>221</td>
<td>181</td>
<td>100.0</td>
<td>0.32 [0.19, 0.55]</td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 2.79, df = 3 (P = 0.43); I² = 0%
Test for overall effect: Z = 4.22 (P < 0.0001)

Figure 6: Forest plot of OR of comparison of the postoperative 1-year recurrence rates between the three-dimensional group and the two-
dimensional group.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>three-dimensional</th>
<th>two-dimensional</th>
<th>Weight (%)</th>
<th>Odds Ratio</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td>Fang 2015a</td>
<td>37</td>
<td>45</td>
<td>31</td>
<td>40</td>
<td>16.7</td>
</tr>
<tr>
<td>Li 2018</td>
<td>109</td>
<td>137</td>
<td>63</td>
<td>111</td>
<td>40.8</td>
</tr>
<tr>
<td>Nakayama 2017</td>
<td>118</td>
<td>120</td>
<td>117</td>
<td>120</td>
<td>5.6</td>
</tr>
<tr>
<td>Song 2020</td>
<td>46</td>
<td>56</td>
<td>42</td>
<td>57</td>
<td>21.3</td>
</tr>
<tr>
<td>Wei 2016</td>
<td>23</td>
<td>31</td>
<td>25</td>
<td>43</td>
<td>15.5</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>333</td>
<td>389</td>
<td>371</td>
<td>100.0</td>
<td>2.19 [1.49, 3.23]</td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 2.50, df = 4 (P = 0.64); I² = 0%
Test for overall effect: Z = 3.97 (P < 0.0001)

Figure 7: Forest plot of OR of comparison of the postoperative 1-year survival rates between the three-dimensional group and the two-
dimensional group.

In conclusion, the 3D liver reconstruction is helpful for
safety assessment before anatomic hepatectomy and is
beneficial for fine operation during surgery, reducing
intraoperative blood loss, shortening treatment time, and
reducing complications. However, due to the limitation of
the quantity and quality of the included literature, more
reliable conclusions from high-quality RCT studies are
needed to better determine the practical application value of
3D reconstruction of medical images. However, current
evidence shows that the application of the 3D reconstruction-
assisted liver resection can improve the resection rate of
the liver tumors, shorten the operation time, reduce

Figure 8: Funnel plot based on incidence of postoperative
complication.

0.05 0.2 1 5 20
SE (log[OR])

0.01 0.1 1 10 100
Favours experimental Favours control

0 0.2 0.4 0.6 0.8
SE (log[OR]) 1

0.4 0.2 0.05
OR
intraoperative blood loss, and reduce the occurrence of postoperative complications. It has strong advantages in accurate preoperative evaluation and surgical planning and excellent postoperative management. [40–43].

Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

References

