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WD40 repeat and SOCS box containing 1 (WSB1) consists of seven WD40 repeat structural domains at the N-terminal end and
one SOCS box structural domain at the C-terminal end. WSB1 promotes cancer progression by a�ecting the Von Hippel–Lindau
tumor suppressor protein (pVHL) and upregulating hypoxia inducible factor-1α (HIF-1α) target gene expression. However, the
crystal structure ofWSB1 has not been reported, which is not bene�cial to the research onWSB1 inhibitors.�erefore, we focused
on speci�c small molecule inhibitors of WSB1. �is study applied virtual screening and molecular dynamics simulations; �nally,
20 compounds were obtained. Among them, compound G490-0341 showed the best stable structure and was a promising
composite for further development of WSB1 inhibitors.

1. Introduction

Metastasis is one of the causes of cancer death [1–3]. However,
due to the lack of e�ective interventions, the study of new
antimetastatic targets has become a popular research topic in
oncology-related research areas. Tumor-derived blood vessels
are unevenly distributed, and their function is abnormally
compared tonormalbloodvessels, leading to thepersistenceof
a hypoxic microenvironment in the tumor, which shows that
tumor metastasis is closely related to hypoxia [4, 5]. HIF-l has
been reported to regulate various related signaling pathways
during the adaptation of tumor cells to the hypoxic envi-
ronment and plays a crucial role in tumor cell proliferation,
angiogenesis, malignant invasion, and metastasis [6–9]. For
example, high expression of HIF-l has been associated with
local in�ltration and distal metastasis of tumors, including
colon, prostate, and lung cancers [10, 11].

HIF-1 regulatesWSB1 expression.WSB1 increases under
hypoxic conditions, and it has been identi�ed tobedependent
on HIF-1 [12, 13]. WSB1 has been shown to regulate pVHL
protein stability not only under hypoxia but also under
normoxia. WSB1 can upregulate HIF-1 through ubiq-
uitination of pVHL [14–16]. �us, HIF-1 and WSB1 form a
positive feedback loop, which provides a strong activation of
HIF-1. Under hypoxic conditions, the HIF-l protein tran-
scriptionally activates the E3 ubiquitin ligase family protein
WSB1 and induces an increase in its protein expression.

�ere are many research studies about WSB1 regulating
tumor progression [17–21]. WSB1 was found to drive the
metastatic potential in osteosarcoma cells which correlated
with the pulmonary metastatic potential. WSB1 plays a role
in neuroblastoma cell growth and involved in pancreatic
cancer progression. Besides, it has also been reported to
participate in the carcinogenesis of lung cancer.
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Currently, studies on the crystal structure of WSB1 and
the inhibition of WSB1 activity by gene silencing and gene
mutation techniques are still in progress.)ere are still many
challenges for tumor control, and it is even more important
for us to investigate small molecule inhibitors to support the
development of subsequent new drugs.

However, in cancer drug discovery, the experimental
tests used to examine small molecules are often expensive
and laborious [22]. In recent years, artificial intelligence (AI)
has provided new opportunities for drug discovery [23–25].
In this study, we applied AlphaFold2 to predict the protein
structure of WSB1. After that, molecular dynamics simu-
lations were applied to optimize the structure as well as
software to validate the accuracy of the modeled structure,
followed by peptide-protein docking and structure-based
virtual screening including AutoDock-GPU and Glide.
Virtual screening (VS) is a powerful drug discovery tool that

takes advantage of high-performance computers to filter
compounds by using ligand or structure-based methods
[26–28]. Finally, four compounds with different compound
scaffolds were selected, namely, G490-0341, G610-0188,
Y043-6168, and Y044-5019 compounds. Moreover, the
binding mode of compound G490-0341 was investigated,
which provided important information for further structural
modifications. )ese results provide relevant information
for the study of WSB1 inhibitor drugs and may assist in
future drug design.

2. Materials and Methods

2.1. Protein Structure Acquisition and Evaluation of Repair.
We obtained the AlphaFold model from their web page
(https://deepmind.com/research) as an initial machine
learning-based model. Our latest improved protocol based
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Figure 1: Molecular dynamics simulation results of WSB1. (a) )e RMSD plot of a protein. (b) )e RMSF plot of a protein 1. )e blue line
indicates the simulation results of a protein. (c))e SSF plot of a protein. (e) Docking results of the WSB1 protein with D2.)e structure of
theWSB1 protein is predicted by using AlphaFold2.)ere are two forms ofWSB1 protein docking with D2, and the red part in the black box
is D2. (f ) )e workflow of virtual screening.
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on molecular dynamics simulations was applied to the
protein model. )is approach is an improved version of the
protocol we used previously during CASP13. )e repaired
protein structure was further processed by the Protein
Preparation Wizard for modules including hydrogenation,
redistribution of bond levels, readdition of side-chain

residues, recovery of selenomethionine, and specifying
conditions such as the protonated state pH of the protein.
Finally, molecular dynamics simulations of 200 ns were
performed to eliminate the irrational conformation in the
structure. To fix the irrational factors in the confirmation, we
performed longer (200 ns) simulations at 300K.

Table 1: Docking numerator scores for WSB1 and metadynamics scores.

Entry ID AutoDock-GPU Glide SP Glide XP PoseScore ComScore
G610-0009 −10.01 −7.712 −8.674 1.534 −0.766
4464-1021 −10.26 −8.335 −8.645 1.739 −0.441
C776-3318 −10.15 −8.42 −8.643 2.015 −0.53
G796-1782 −10.26 −7.214 −8.462 1.800 −0.925
G610-0205 −10.13 −8.413 −8.456 2.018 −0.257
G610-0036 −10.24 −7.706 −8.333 1.449 −1.921
G490-0341 −10.32 −8.334 −8.31 0.929 −1.676
G610-0191 −10.19 −8.387 −8.256 1.683 −0.922
Y043-6168 −10.15 −7.981 −8.214 1.718 −2.222
G490-0604 −10.37 −8.11 −8.169 1.372 −0.723
G610-0257 −10.88 −8.259 −8.144 1.005 −2.215
G610-0188 −10.71 −8.316 −8.143 0.966 −1.699
G610-0096 −10.16 −8.095 −8.118 3.516 2.516
G610-0149 −10.34 −8.121 −8.073 1.538 −0.682
G610-0007 −10.79 −8.04 −8.057 1.433 −1.827
G490-0586 −10.01 −8.91 −8.021 1.920 −1.3
G610-0156 −10.69 −8.374 −8.009 1.509 −1.596
K784-7081 −12.24 −7.834 −8.008 1.226 −0.354
Y044-5019 −10.02 −8 −8 1.794 −1.651
G490-0627 −10.11 −8.076 −8 1.494 −0.626
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Figure 2: Structures of the 20 compounds obtained by virtual screening.
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2.2. Protein Peptide Docking. Molecular docking was per-
formed in Maestro using GlideSP. First, the protein was
prepared for docking using anMOE’s quick prep tool, which
included correcting structural issues, protonating the
structure, removing unbound water molecules, and mini-
mizing the structure to a specified gradient to make the
pocket available for docking of the new molecule. )e
original ligand (D2) was used to define the binding site of the
WSB1 active pocket. )e LigPrep module was used to
prepare the WSB1 inhibitor. After preparation, the ligand-
docking module was used to perform the docking work. In
the docking parameters, the maximum output confirmation
number was set to 20 to improve the accuracy of docking.
)e molecular conformation with the highest docking score
was selected for analysis. )e results can be displayed in a
ligand interaction diagram.

2.3. Virtual Screening. )e ChemDiv database is a com-
mercial small molecule database from ChemDiv Inc.
(ChemDiv) containing over 1.6 million compounds as
screening libraries.

In recent years, there has been an increasing interest in
applying various methods to improve its accuracy in mo-
lecular docking and eventually to increase the discriminative
ability of molecular docking to efficiency. Here, we report a
virtual screening campaign for WSB1 inhibitors on the
ChemDiv library through a novel selection strategy.

)e virtual screening workflow includes AutoDock-
GPU, HTVS, SP, and XP models.

First, the first round of screening of ChemDiv was
performed by AutoDock-GPU, and the top 10,000molecules
were selected for scoring. After that, the screening was
performed by Glide-dock-SP with 5 docking conformation
parameters, and 15,000 molecules were obtained for the next
round of Glide SP accuracy screening. To improve the
screening accuracy, the docking program was reprepared by
LigPrep for better adaptation to Glide SP; docking screening
was performed by Glide SP for compounds and WDR5
proteins with the highest output confirmation set to 20, and
the remaining parameters were kept constant. )e final 20
top scoring molecules were obtained, and the combinatorial
pose metadynamics analysis was performed.

2.4. Binding PoseMetadynamics. )e combination of WSB1
and D2 was studied by using three 10 ns independent mild
metadynamics simulations of Desmond 39, version 2.3
(Schrödinger, LLC). Metadynamics simulations are a widely
used enhanced sampling method for sampling the free
energy landscape. Schrödinger’s binding posemetadynamics
(BPMD) is a variant of metadynamics that samples the
motion of ligands in and around their binding modes to use
metadynamics methods to determine the relative stability of
different binding modes. In this simulation, the biased
collective variable is defined as the distance between the
center of mass of the ligand molecule and the ligand-binding
residues, i.e., Arg174, Arg315, and TYR218, used for WSB1
binding simulations. )e initial Gaussian peak height and

goodness-of-fit parameters were set to 0.1 and 2.4 kcal/mol,
respectively.

In this experiment, we first induced fit docking of the
20 molecules obtained from the virtual screening and
then performed BPMD with the 20 poses obtained from
the induced fit docking. )e stability of the resulting
poses was assessed based on the PoseScore. )e PoseScore
is the root mean square value of the atomic coordinates of
the ligand relative to the initial ligand weight. A Pose-
Score ≤2 Å was considered stable (this RMSD value is
often used as a threshold to define the success of pro-
spective docking simulations). )e results were analyzed
by PersScore, which indicates the strength of the hy-
drogen bond formed between the ligand and the protein
residues. If 60% of the hydrogen bonds were retained
during the simulation (e.g., PersScore ≥0.6), this was
considered as a sign of good persistence. Finally, com-
pound G490-0341 showed the best stable structure and
was obtained as a promising compound for further de-
velopment of WSB1 inhibitors.
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3. Results and Discussion

3.1. AlphaFold2 Protein Structure Prediction. Jinxin Che
et al. found that 5,6-bis (4-methoxy-3-methyl phenyl)
pyridine-2-amine acted as a degradation agent to inhibit
cancer cell metastasis [18]. However, research on inhibitors
targeting the WSB1 axis is still ongoing, so we put more
emphasis on drug discovery specifically forWSB1 to identify
potential inhibitors. Currently, the crystal structure ofWSB1
has not been reported. In this study, we applied α-folding
deep learning algorithms to predict the structure of WSB1.

AlphaFold2 is artificial intelligence for protein structure
prediction, which is a new neural network-based model that
can predict protein structures with atomic-level accuracy
[29, 30]. In recent years, artificial intelligence and machine
learning techniques have played a crucial role in drug dis-
covery and development [31–33]. )e neural network of
AlphaFold2 can predict the structure of a typical protein in
minutes, as well as larger proteins, such as a protein

containing 2180 amino acids without a homologous struc-
ture. )e model provides accurate predictions of the reli-
ability of its predictions on a per amino acid basis. For this
experiment, the prediction model was downloaded from the
AlphaFold protein structure database [34].

3.2. Molecular Dynamics Simulation of WSB1. We per-
formed molecular dynamics (Figure 1(b)) to enable the
repair of the irrational factors in the structure of WSB1
predicted by AlphaFold [35]. After 200 ns MD simulations,
we obtained the repaired structure as well as RMSD and
RMSF. Figure 1(b) shows the results of the RMSD analysis of
the WSB1 interface. WSB1 reached equilibrium after 25 ns
simulations and reached a stable conformation below 1 Å,
which was acceptable. Meanwhile, the residues of WSB1
were relatively unstable and prone to displacement
(Figure 1(c)).)e secondary structure ofWSB1 (Figure 1(d))
has 6.67% α-helix and 34.64% β-strand.
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Figure 4: Molecular dynamics simulation and interaction mechanism analysis of G490-0341 with WSB1: (a) root mean square deviation
(RMSD) of WSB1 backbone during MD simulation; (b) the 3D plot of the complex; (c) protein-ligand interaction; (d) the 2D plot of the
complex.
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3.3. WSB1 Docking with Ligands. It was reported that
thyroid-hormone-activating type 2-iodothyronine deiodi-
nase (D2) expression was associated with activation of
serum thyroid hormone, (de)ubiquitinase ubiquitin-spe-
cific peptidase 33, WD repeat sequence, and SOCS box-
containing 1 (WSB1), correlated ions of cytokine expres-
sion, and inflammatory pathways [36]. To further explore
inhibitors targeting WSB1, we hypothesized that D2
docking sites withWSB1 were very promising docking sites.
We performed protein-peptide docking of WSB1 and D2
peptides using Maestro and simulated the binding con-
formation of WSB1 and D2, which is shown in Figure 1(e).
WSB1 is also the E3 ubiquitin ligase for D2 [37]. To position
D2 relative to the ECSWSB-1 complex, a new loop of 18
amino acids is identified in D2 by comparing a three-di-
mensional model of D2 with nonubiquitinated D1 and D3
enzymes. It is shown that a better binding position do exist
between the 18 amino acids of D2 and WSB1, and we also
find further details of the binding between D2 and WSB1.
)e loops of 18 amino acids are critical for WSB1 to rec-
ognize D2 [38, 39]. D2 is integrated into the model by
positioning the 18 amino acid loops proximal to the D-A/B-
C side of the WSB1 propeller.

In other WD40 propeller E3 ubiquitin ligases, substrate
recognition relies on a “supersite” for protein-protein in-
teractions andmost commonly the permeation of the second
position of each blade, which is often occupied by an ar-
ginine residue that interacts with the phosphate group in the
substrate. Arginine occupies three sites in WSB1, namely,
Arg174, Arg315, and TYR218 [40, 41]. )e study confirmed
that the WSB-1 WD40 propeller supersite was essential for
D2 recognition. )e present study restored the details of
WSB1 and D2 binding and provided us with more high-
definition views of the two bindings.

3.4. Virtual Screening. Based on the above analysis, we
conducted virtual screening from the ChemDiv database to
find the inhibitors targeting WSB1. )e ChemDiv database
is a commercially available small molecule database con-
taining over 1.58 million compounds that serves as a
screening library reference [42]. )e virtual screening
workflow based on the ChemDiv database is shown in
Figure 1(f ). Data are shown in Table 1.

Initially, we screened the ChemDiv compound library of
1.58 million molecules by AutoDock-GPU [43] and selected
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Figure 5: Molecular dynamics simulation and interaction mechanism analysis of G610-0188 with WSB1: (a) root mean square deviation
(RMSD) of WSB1 backbone during MD simulation; (b) the 3D plot of the complex; (c) protein-ligand interaction; (d) the 2D plot of the
complex.
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127,105 molecules with a score of ≤−10.0 for the next round
of Glide SP accuracy screening [44]. After screening, we
retained 15,297 molecules with scores ≤−5.5 and then
performed a conformational restriction screen test (the
highest output confirmation was set to 10, and the remaining
parameters were kept constant).

Finally, we obtained 278 molecules and proceeded to the
next screening stage. In the XP mode [45], compounds with
Glide SP scores ≤−7.0 were docked to WSB1. )is final
docking procedure narrowed down our group of com-
pounds to 20 (Glide XP score ≤−8.0), after which we sub-
jected these molecules (Figure 2) to combinatorial pose
metadynamics analysis.

3.5. Binding Pose Metadynamics. A theoretical strategy able
to probe the conformational profile of ligands in the enzyme
active site is very important. It is well known that, from a
theoretical standpoint, molecular dynamics simulations can
be used to evaluate the molecular flexibility of ligands and
receptors; however, it is worth mentioning that some

conformational changes occur in the time scale of only
dozens of nanoseconds, which could compromise the MD
simulation viability for virtual screening studies, for in-
stance. In this regard, a theoretical strategy to select
promising configurations from the MD simulation is crucial
to determine the theoretical accuracy. Hence, great com-
putational effort is necessary to carry out this kind of
simulation. Aiming, then, to reduce the number of frames of
MD simulations to rationalize the theoretical findings
without loss of the relevant information from the simulation,
new methods based on the statistical inefficiency such as
principal component analysis and wavelet analysis for
selecting MD conformations had been developed. Based on
the above analysis, we selected binding pose metadynamics
[46, 47]. Metadynamics can enhance sampling by allowing
efficient back and forth motions across large-free energy
barriers, using a more realistic heap of computational re-
sources to sample the relative stability of different binding
conformations produced by IDFD while still maintaining
full atomic resolution [48, 49]. In contrast, Schrödinger’s
binding pose metadynamics (BPMD), a variant of
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Figure 6: Molecular dynamics simulation and interaction mechanism analysis of Y043-6168 with WSB1: (a) root mean square deviation
(RMSD) of WSB1 backbone during MD simulation; (b) the 3D plot of the complex; (c) protein-ligand interaction; (d) the 2D plot of the
complex.
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metadynamics that samples the motion of ligands in and
around their binding modes, aims to use metadynamics
methods to determine the relative stability of different
binding modes.

Compared to molecular dynamics, BPMD can help
select the dominant molecule more accurately and effi-
ciently. In this experiment, three kinetic runs were per-
formed for each of the 20 candidate poses. During the
metadynamics calculations of the initial structure, the av-
erage RMSD of the 20 candidate poses increased from the
beginning to the end of the simulation time and hydrogen
bonds were present for finite time of the simulation run.
Table 1 summarizes the scores of the 20 candidate poses
obtained from the scheme, including PoseScore, PersScore,
and ComScore.)e stability of the poses is assessed based on
the PoseScore, which is the root mean square value of the
atomic coordinates of the ligand relative to the initial ligand

weight, and a PoseScore ≤2 Å is considered stable. PersScore
indicates the strength of the hydrogen bond form between
the ligand and the protein residues. If 60% of the total
hydrogen bonds are retained during the simulation (e.g.,
PersScore ≥0.6), it is considered a sign of good persistence.

)e docking of the ligand to theWSB1 receptor in pose 6
provided a good example of metadynamics isolating a na-
tive-like pose (RMSD of 0.929 Å). )is pose was ranked 6th
by PersScore, and none of the top 5 poses by PersScore were
native. Figure 3 shows the average RMSD estimate versus
simulation time for all 20 candidate poses.

3.6. Conformation Analysis. To explore the binding modes
between the compounds andWSB1 protein, we selected four
compounds with more potential in the metadynamics re-
sults, including G490-0341, G610-0188, Y043-6168, and
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Figure 7: Molecular dynamics simulation and interaction mechanism analysis of Y044-5019 with WSB1: (a) root mean square deviation
(RMSD)ofWSB1backboneduringMDsimulation; (b) the3Dplotof the complex; (c) protein-ligand interaction; (d) the2Dplotof the complex.
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Y044-5019, and analyzed them using molecular dynamics
(MD) simulations and interaction decomposition. )e
binding modes of the four complexes are shown in
Figures 4–7. Compound G490-0341 formed three hydrogen
bonds with residues such as Arg315, Tyr276, and Asp175. An
aromatic interaction with residue TRP38 was observed. )e
reported binding sites for WSB1 might include Arg174,
Arg315, and Tyr218. Like G490-0341, G610-0188 (Figure 5),
Y043-6168 (Figure 6), and Y044-5019 (Figure 7) also had
hydrogen-bonding interactions with residues Asp175 and
Arg315. Compound G610-0188, identical to compound
G490-0341, had hydrogen bonds with residues Arg315,
Tyr276, and Asp175. In addition, both Y043-6168 and
compound Y044-5019 formed hydrogen bonds with Ser316
and Y043-6168 formed π-π interactions with residue Tyr28.
)erefore, it was highly likely that the relatively advanta-
geous compound G490-0341 in BPMD forminghydrogen
bonds through hydrophobic residues of amino acids such as
Arg315, Tyr276, and Asp175 might be more stable and
contribute significantly to the formation of the complexes.

4. Conclusions

Considering that WSB1 plays an important role in tumor
metastasis and tumor cell proliferation, clinically relevant
drugs targeting the WSB1 axis as inhibitors are still being
investigated. In this study, we predicted the protein structure
of WSB1 by Alphafold2 and then used structure-based
virtual screening, including AutoDock-GPU and Glide, to
select compounds. )rough structure-based virtual
screening of WSB1 inhibitors, we finally found four com-
pounds with different compound scaffolds such as G490-
0341, G610-0188, Y043-6168, and Y044-5019. )e binding
pose meta-kinetics showed that compound G490-0341 binds
tightly to residues Asp175 and Arg315 and is more stable
than other compounds. )is study will contribute to the
further development of WSB1 inhibitors and provide some
valuable information for understanding the structure of
WSB1 inhibitors. To further study the medicinal properties
of these compounds, the ADME/TOX properties of G490-
0341 were calculated [50]. )e detailed results for the
pharmacokinetic parameters and toxicity analyses are shown
in Table S1. Computational pharmacokinetics and toxicol-
ogy studies on G490-0341 suggest that it can be used as a
good starting point for further developing and designing
new derivatives.
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