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Background. Chronic obstructive pulmonary disease (COPD) is a long-term respiratory disorder marked by restricted airfow and
persistent respiratory symptoms. According to previous studies, icariin combined with nobiletin (I&N) signifcantly ameliorates
COPD, but the therapeutic mechanisms remain unclear. Purpose. Te aim of the study is to investigate the therapeutic
mechanisms of I&N against COPD using network pharmacology and experimental validation. Methods. Te targets of I&N and
related genes of COPD were screened and their intersection was selected. Next, the protein-protein interaction (PPI) networks,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed.
Further, a COPD rat model was established to validate the efect and mechanisms of I&N. Results. 445 potential targets I&N were
obtained from SwissTargetPrediction, STITCH 5.0, and PharmMapper databases. 1831 related genes of COPDwere obtained from
GeneCards, DrugBank, and DisGeNet databases. 189 related genes were screened viamatching COPD targets with I&N.16 highest
score targets among 189 targets were obtained according to PPI networks. GO and KEGG pathway enrichment analyses of 16
highest score targets suggested that these key genes of I&N were mostly enriched in the tumor necrosis factor (TNF) pathway,
mitogen-activated protein kinase (MAPK) pathway, and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (AKT) pathway.
Terefore, the treatments of I&N for COPD were connected with infammation-related pathways. In in vivo experiments, the
studies indicated that I&N improved the lung function and alleviated the damage of pulmonary histopathology. Moreover, I&N
reduced levels of interleukin (IL)-6, IL-1β, and TNF-α in lung tissues of COPD rats and inhibited the activation of the MAPK
pathway and PI3K-Akt pathway. Conclusions. Icariin combined with nobiletin has therapeutic efects on COPD by inhibiting
infammation. Te potential mechanisms of I&N may relate to the MAPK pathway and PI3K-Akt pathway.

1. Introduction

Chronic obstructive pulmonary disease is the most common
disease of the respiratory system with high morbidity and
mortality and endangers public health [1]. Lung and sys-
temic infammation and lung injury are the main patho-
physiology changes in COPD [2]. Nowadays, various

treatment strategies are available for COPD, including
bronchodilators and anti-infammatory agents, and bron-
chodilator therapy is the most common treatment against
COPD [2]. However, serious side efects, such as potentially
paradoxical bronchospasm, may arise due to adhibition of
bronchodilator therapy [3]. Traditional Chinese medicine
(TCM) has special superiorities for treating COPD. Bufei
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Yishen formula (BYF), which is an efective therapeutic
strategy for COPD, exerts various positive efects for COPD
patients via inhibition of infammation [4]. Icariin and
nobiletin, two active ingredients screened from BYF, have
been reported to have anti-infammatory, antiapoptosis, and
antioxidant efects against several infammatory diseases
[5–7]. Te efects on improving the lung function and
inhibiting the infammatory response of I&N in COPD rats
had been proved in previous studies. However, the mech-
anisms of I&N for treatment of COPD remain unclear and
the traditional experimental approaches are difcult to
elucidate the mechanisms and key action targets of I&N
for COPD.

Network pharmacology is a strategy based on multidi-
rectional pharmacology, system biology, network analysis,
and computational biology, which systematically expounds
the potential targets and mechanisms of TCM [8]. In this
method, the relationship networks of herb, compound,
target, pathway, and disease are established, which reveal the
molecular basis and forecast the pharmacological
mechanisms [9].

In this study, the targets of I&N and related genes of
COPD were screened and the ingredients-disease targets
network was established. Ten, the potential molecular
mechanisms were revealed via gene enrichment analysis and
molecular docking. Finally, the COPD rat model was
established to verify therapeutic efects and potential
pathway of I&N against COPD (Figure 1). Terefore, the
primary goals of this study were (1) to screen related genes of
COPD and the potential targets of I&N; (2) to dissect the
underlying mechanisms of I&N for COPD using network
pharmacology; and (3) to validate anti-infammatory efects
and the potential pathway of I&N for treatment of COPD.

2. Materials and Methods

2.1. Network Pharmacology

2.1.1. Screening the Molecular Targets of Icariin and
Nobiletin. Te canonical SMILES of icariin and nobiletin
were acquired by searching the keywords of “icariin”
(Compound CID: 5318997) and “nobiletin” (Compound
CID: 72344) from PubChem [10]. Te molecular targets of
icariin and nobiletin were fltered by searching the canonical
SMILES of icariin and nobiletin from SwissTargetPrediction
(https://www.swisstargetprediction.ch/), STITCH 5.0
(https://stitch.embl.de/) [11], and PharmMapper (https://
lilab-ecust.cn/pharmmapper/) [12].

2.1.2. Acquisition of Gene Targets for COPD. Te related
genes of COPD were screened via the keywords of “chronic
obstructive pulmonary disease” in GeneCards (https://www.
genecards.org/) [13], DrugBank (https://go.drugbank.com/)
[14], and DisGeNet (https://www.disgenet.org/) [15]. Ten,
all targets of components and COPD were submitted to
UniProtKB (https://www.uniprot.org/) [16] to acquire the
standardized gene symbols.

2.1.3. PPI Network Construction. First, we intersected the
obtained components targets with the genes associated with
COPD and obtained a Venn diagram of the intersected gene
symbols. Ten, a PPI network was built using STRING [17]
and Cytoscape 3.8.2. To screen the key targets, the topo-
logical characteristics were analyzed of the PPI network.
First, the gene symbols were chosen by the degree score.
Next, the betweenness centrality (BC), closeness centrality
(CC), degree, and average shortest path length (ASPL) were
calculated by Cytoscape to indicate the potential targets.

2.1.4. Enrichment of GO and KEGG Pathways. Te GO and
KEGG pathways enrichments of the topological potential
targets were analyzed in DAVID 6.8 [18]. Te p value <0.05
was set as a signifcant diference for KEGG pathway
analysis.

2.1.5. Molecular Docking. Te 3D structures of icariin and
nobiletin were acquired from PubChem and were trans-
formed from their original constructions into PDB formats
using Open Babel 3.1.1. From RCSB Protein Data Bank, the
X-ray crystal structures of key proteins were obtained [19].
Seven protein targets were studied: AKT1 (PDB ID: 2UZR),
TNF (PDB ID: 7KP9), VEGFA, (PDB ID: 7LL8), EGFR,
(PDB ID: 5Y9T), JUN, (PDB ID: 5T01), MMP9, (PDB ID:
1L6J), and SRC, (PDB ID: 2BDF). Te water molecules were
deleted and hydrogen atoms were added in optimizer of
structures using AutoDock Tool 1.5.6. Ten, the receptor
proteins were docked with ligand molecules via AutoDock.
All of options were default setting for docking run. Finally,
the molecular docking results were visualized by PyMoL
2.2.3, which acquire the highest scores.

2.2. Experiment Validation

2.2.1. Chemicals and Reagents. Sprague-Dawley (SD) rats
were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd (220± 20 g, No.110011211105823815,
Beijing, China). Hongqi Canal® Filter tip cigarette was
purchased from Henan Tobacco Industry (Zhengzhou,
China). Klebsiella pneumoniae (46117-5a1) was purchased
from National Center for Medical Culture Collections
(Beijing China). Icariin (Cas, 489-32-7) and nobiletin (Cas,
478-01-3) were purchased from Chengdu Must Bio-
Technology (Chengdu, China). Doxofylline was obtained
from Heilongjiang Fuhe Pharmaceutical Group Co., LTD.
(Heilongjiang, China). Te rat ELISA kits of IL-6
(Cat.No.550319) were purchased from BD Biosciences
(California, America). Te rat ELISA kits of IL-1β (E-EL-
R0012c) and TNF-α (E-EL-R2856c) were purchased from
Elabscience Biotechnology Co., Ltd (Wuhan, China). Te
antibodies for rat of PI3K (GTX55747, Gene Text) and
P-AKT (GTX128414, Gene Text) were obtained from Gene
Tex, Inc (North America). Te antibody for rat of P-p38
(4511, CST) was obtained from Cell Signaling Technology
(Shanghai, China). Te antibody for rat of GAPDH (10494-
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1-AP, Proteintech) was purchased from Proteintech
(Wuhan, China).

2.2.2. Establishing the COPD Rat Model. A COPD rat model
was performed in terms of previous studies [20]. SD rats
were randomly classifed to 4 groups: control group, COPD
model group, I&N group, and doxofylline group.Te COPD
rat model was created via exposure to cigarette smoke (CSE)
and Klebsiella pneumoniae infection. Specifcally, the rats
were exposed to CSE (3000± 500 ppm) for 40 minutes twice
daily for 8 weeks and to Klebsiella pneumoniae (6×108 CFU/
ml, 0.1ml) for 5 days once for 8 weeks. Te procedures of
this study were approved by the Experimental Animal Care
and Ethics Committees of the First Afliated Hospital of
Henan University of Chinese Medicine, and the ethical
review approval number is YFYDW2019031.

2.2.3. Drug and Treatment. Fromweek 9, the I&N group rats
were given I&N at 2.12mg/kg/d (the ratio of icariin to
nobiletin was 12.5 :1). Te doxofylline is a newer generation
xanthine, which is a kind of efective bronchodilator rec-
ommended by Global Initiative for Chronic Obstructive
Lung Disease (GOLD) [2]. Te doxofylline has benefcial
efects with both bronchodilating and anti-infammatory
activities in COPD 1. So, we chose doxofylline as the
control drug. Te doxofylline group rats were given dox-
ofylline at 36mg/kg/d. Te dosages of these drugs were
calculated according the following formula (D: dose; K: body
shape index, K�A/W2/3, A: surface area in m2,W: weight in
kg):

Drat � Dhuman ×
Krat

Khuman
  ×

Wrat

Whuman
 

2/3

. (1)

control model

GO analyse KEGG analyse

189 targets

1831 COPD targets445 ingredients targets

Icariin Nobiletin COPD

COPD rat model

Lung histopathology

I&N doxofylline

Lung function

Infammation

Signal pathway verifcation

Figure 1: Schematic fowchart.

Evidence-Based Complementary and Alternative Medicine 3



At week 17, 4 group rats were sacrifced after in-
traperitoneal injection of 2% pentobarbital sodium at 40mg/
kg.

2.2.4. Lung Function Measurement and Lung Tissue
Histopathology. Lung function was detected for all group
rats every four weeks from 0 week to 16th week via the tidal
volume (TV), peak expiratory fow (PEF), and 50% tidal
volume expiratory fow (EF50) by unrestrained pulmonary
function testing plethysmographs (Buxco Inc., Wilmington,
NC, USA).

Te lung tissues were soaked in 4% paraformaldehyde
solution. Next, the tissues were cut and embedded in parafn
and made slices. Ten, the lung tissues slices were stained
with hematoxylin and eosin and were observed by a light
microscope (Olympus, Tokyo, Japan). Te mean linear in-
tercept (MLI) and mean alveolar numbers (MAN) were
considered as the degree of alveolar damage. Under mi-
croscopy (×200), 6 visual felds were taken in each slice, and
the alveolar number and the linear intercept in a fxed area of
visual feld were measured. MAN (/mm2)�Na/A. Na is the
number of pulmonary alveoli in each visual feld. A is the
area of the visual feld. Ten, we made a cross (+) under the
visual feld and counted the number of alveolar septaon the
cross. MLI (μm)� L/Ns. Ns is the number of alveolar septa. L
is total length of the cross.

2.2.5. ELISA. Te lung tissue was homogenized in PBS
solution and centrifuged to collect the supernatant. Te
secretion of TNF-α, IL-1β, and IL-6 in a lung tissue ho-
mogenate was measured using ELISA kits, according to the
manufacturer instructions. Te dilution ratio of the lung
tissue homogenate was determined according to the stan-
dard curve. Samples were incubated with antibodies in 96-
well plates. Te OD value was detected by a microplate
reader (Termo Fisher Scientifc 1500, Vantaa, Helsinki,
Finland), and the concentration was calculated according to
the standard curve.

2.2.6. Real-Time Polymerase Chain Reaction Assay. Te
mRNA levels of GAPDH (forward: ACAGCAACAGGG
TGGTGGAC, reverse: TTTGAGGGTGCAGCGAACTT),
TNF-α (forward: CGTCAGCCGATTTGCCATTT, reverse:
TCCCTCAGGGGTGTCCTTAG), IL-1β (forward: CCT
ATGTCTTGCCCGTGGAG, reverse: CACACACTAGCA
GGTCGTCA), and IL-6 (forward: TCCGGAGAGGAGACT
TCACA, reverse: TTCTGACAGTGCATCATCGCT) in
lung tissues were detected by qPCR.

2.2.7. Western Blotting Assay. Te lung tissues were lysed
with RIPA bufer in ice to obtain protein samples. Te
concentrations of lung tissue protein samples were measured
using BCA kits, and the lung tissue protein samples were
adjusted to equal concentrations. Te lung tissue protein
samples with equal concentrations in each group were di-
vided by SDS-PAGE electrophoresis and metastasized to
PVDF membranes. 5% skim milk was used to block the

PVDF. Next, membranes were incubated with their primary
antibodies, including GAPDH (1 : 5000), P-p38 (1 :1000),
P13K (1 :1000), and P-AKT (1 :1000), and secondary anti-
bodies (1 : 5000). Te membranes were visualized using the
Bio-Rad Imaging System (Pierce, USA).

2.2.8. Statistical Analysis. Te experimental data were an-
alyzed by SPSS v21.0. A comparison among groups was
performed by one-way analysis of variance with an ap-
propriate post-hoc test. If the variances were homogeneous,
the LSD method was performed. If the variances were in-
consistent, Dunnett’s T3 test was performed.Te mean± SD
were used as the data present presentation. A p value of
<0.05 was set for a statistically signifcant diference.

3. Results

3.1. Network Pharmacology

3.1.1. Screening Targets of Components and COPD. From
PubChem, the 2D structures of icariin and nobiletin were
downloaded (Figure 2(a)). 445 genes were obtained as po-
tential targets of icariin and nobiletin from Swis-
sTargetPrediction database, STITCH database, and
PharmMapper database. Ten, 1,831 related genes of COPD
were obtained from DisGeNET database, GeneCards data-
base (score >15.0), and DrugBank database. Matching
COPD targets with icariin and nobiletin targets, 189 genes
(Figure 2(b)) were chosen as related genes of I&N against
COPD for constructing the component-target (C-T) net-
work (Figure 2(c)). Te C-Tnetwork was built by Cytoscape
software. According to the C-T network, 120 potential
targets were common targets of icariin and nobiletin. 59
potential targets were unique targets of icariin and 10 po-
tential targets of nobiletin.

3.1.2. Protein-Protein Interaction (PPI) Network Analysis.
All of 189 potential therapeutic targets were submitted to
STRING database, and they were submitted to Cyto-
Scape3.8.2 for constructing and analyzing the PPI network
(Figure 3).Te PPI network consisted of 189 nodes and 2809
edges and the average degree was 23. Ten, the targets with
degree higher than double average degree were selected and
41 targets were screened for further analysis. Next, the mean
value of BC, CC, ASPL, and degree of 41 targets were cal-
culated using the Analyze Network tool of Cytoscape3.8.2.
Te targets with values of BC, CC, and degree higher than
the mean value of BC, CC, and degree (BC> 0.0092,
CC> 0.5875, degree> 60), and value of ASPL lower than
mean value of ASPL (ASPL< 1.7021), were selected as key
targets. Finally, 16 targets were screened out, including TNF,
AKT1, VEGFA, EGFR, JUN, SRC, MMP9, CASP3, MYC,
IGF1, HSP90AA1, HRAS, ESR1, PTGS2, PPARG, and
MAPK1 (Figure 3).

3.1.3. Enrichment Analysis of the GO and KEGG Pathways.
Te DAVID 6.8 database was used to perform GO and
KEGG analyses on 16 important targets. Positive regulation
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of transcription from the RNA polymerase II promoter,
negative regulation of the apoptotic process, and positive
regulation of transcription, DNA-templated, were mostly
enriched in BP enrichment analysis; nucleus, cytoplasm, and
cytosol were mostly enriched in CC enrichment analysis;
protein binding, identical protein binding, and enzyme

binding were mostly enriched in MF analysis. (Figure 4(a)).
Te results of KEGG analysis indicated that the regulatory
pathway included TNF, MAPK, and PI3K-Akt pathways
(Figure 4(b)). Tese results suggested that I&N may exert
inhibition efects of infammation in COPD by regulating
the TNF, MAPK, and PI3K-Akt pathways. Te component-
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target-pathway network was built by Cytoscape software
(Figure 4(c)).

3.1.4. Molecular Docking. To clarify the potential interaction
between two components and the key proteins, molecular
docking was performed to reveal the possible binding mode
between the 7 highest scoring proteins, including TNF,
AKT1, VEGFA, EGFR, JUN, SRC, and MMP9 (Figure 4(d)),
and two components. Te binding energy was considered as
an important factor for constituents screening (Table 1).
Icariin was predicted to interact with AKT via 3 residues
(ASP-119, GLN-59, and LEU-78), with EGFR via 6 residues
(PRO-669, ASN-700, ARG-831, ARG-776, ILE-1018, and
TYR-1016), with MMP9 via 6 residues (ARG-370, LEU-35,
LYS-184, ASN-38, ASP-185, and THR-96), with JUN via 4
residues (DG-26, DG-27, DA-23, and DA-17), with SRC via
2 residues (GLU-270 and GLU-265), and with TNF via 4
residues (PHE-144, GLY-24, ASP-140, and PRO-139). In
addition, nobiletin could bind to AKT by 3 residues (GLN-
79, LEU-78, and GLN-59), to EGFR by 5 residues (VAL-769,
ARG-776, ALA-767, LEU-777, and ILE-1018), to MMP9 by
4 residues (THR-426, GLY-428, PRO-430, and LEU-431), to
SRC by 2 residues (TRP-260 and LYS-316), and to VEGFA
by 2 residues (CYS-131, TYR-52).

According to Table 1 and Figure 5, icariin and nobiletin
have strong binding interactions with TNF, AKT1, VEGFA,
EGFR, JUN, SRC, and MMP9.

3.2. Experiment Validation

3.2.1. Efects of I&N on the Lung Function in COPD Rats.
To verify treatment of I&N of COPD, we established the
COPD model through co-treatment with CSE and Klebsiella
pneumoniae in rats. As described in Figure 6, compared with
the control group, the TV, PEF, and EF50 in lung functions

descended signifcantly in COPD rats (P< 0.05), and I&N
and doxofylline increased the TV, PEF, and EF50 in rats
(P< 0.05).

3.2.2. Efects of I&N on Lung Tissue Histopathology in COPD
Rats. Lung tissue histopathology analysis indicates that I&N
reduced alveolar damage and airway wall thickness
(Figure 7(a)). Quantitative analysis of lung tissue histopa-
thology showed that (Figure 7(b)), compared to the control
group, MAN was decreased and MLI was increased in
COPD rats (P< 0.05); I&N and doxofylline increased MAN
and decreased MLI (P< 0.05); and I&N efectively relieved
the thickened airway wall in COPD rats (P< 0.05).

3.2.3. Efect of I&N on the Infammatory Response and
Infammation-Related Pathway. In the COPD rats, the
mRNA levels and protein secretion of infammatory factor
in lung tissues were signifcantly increased, including IL-6,
IL-1β, and TNF-α, and these were decreased with treatment
of I&N (P< 0.05) (Figures 8(a) and 8(b)). As in Figures 8(c)

(c)

MMP9

JUN

EGFR

AKT1

VEGFA

TNF

SRC

(d)

Figure 4: Network pharmacology analysis of common targets. (a) GO analysis of 16 key targets. (b) KEGG analysis of 16 key targets. (c)Te
component-target-pathway network. (d) 7 highest scoring targets according degree score.

Table 1: Binding energy between components and 7 highest
scoring targets (kcal/mol).

Components CID Targets PDB ID Binding energy
Icariin 5318997 AKT 2UZR −4.38
Icariin 5318997 EGFR 5Y9T −5.84
Icariin 5318997 MMP9 1L6J −5.32
Icariin 5318997 JUN 5T01 −3.25
Icariin 5318997 SRC 2BDF −2.95
Icariin 5318997 TNF 7KP9 −4.28
Nobiletin 72344 AKT 2UZR −5.36
Nobiletin 72344 EGFR 5Y9T −5.85
Nobiletin 72344 MMP9 1L6J −6.2
Nobiletin 72344 SRC 2BDF −6.18
Nobiletin 72344 VEGFA 7LL8 −5.84
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and 8(d), the expression of PI3K, P-AKT, and P-p38 of lung
tissues were signifcantly increased in the model group, and
I&N decreased the expression of PI3K and phosphorylation
of P-AKTand P-p38 of lung tissues in COPD rats (P< 0.05).
Tese results suggested that I&N inhibit infammatory re-
sponses in COPD rats via regulating the PI3K-AKT and
MAPK pathways.

4. Discussion

It has been verifed that TCM has positive therapeutic efects
on COPD. BYF, a TCM therapeutic strategy for COPD, has
demonstrated that it can inhibit secretion of infammatory
cytokine, recover protease-antiprotease imbalance, and re-
duce collagen deposition [22]. Due to the complicacy of

icariin
nobiletin

AKT

EGFR

MMP9

SRC

JUN

TNF

VEGFA

AKT

EGFR

MMP9

SRC

Figure 5: Molecular docking results: Icariin-AKT;icariin-EGFR;icariin-MMP9;icariin-JUN;icariin-SRC;icariin-TNF;nobiletin-AKT;
nobiletin-EGFR;nobiletin-MMP9;nobiletin-SRC; and nobiletin-VEGFA.
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TCM ingredients, it is difcult to explore potential thera-
peutic mechanisms of BYF. Terefore, fve critical active
ingredients of BYF were screened out and integrated into
efective-component compatibility of Bufei Yishen formula
(ECC-BYF), including icariin, nobiletin, astragaloside IV,
20-S-ginsenoside Rh1, and paeonol. It has been verifed the
treatment efects of ECC-BYF for COPD on improving the
pulmonary function and reducing pathological damage and
the infammatory cytokine levels in lung tissues in COPD
rats [23]. Icariin and nobiletin are two main active in-
gredients of ECC-BYF. In a previous study, we found the
efects of I&N on improving the lung function, reducing
pathological damage, and inhibiting infammatory response
in COPD rats. However, the therapeutic mechanisms of I&N
for COPD remain unclear. In this study, we devote to reveal
the treatments and mechanisms of I&N against COPD.
Terefore, we integrated network pharmacology and ex-
periment verifcation to systematically evaluate the potential
pharmacological mechanisms of I&N for COPD.

First, we applied network pharmacology to screen the
possible targets of I&N against COPD. 189 targets of I&N in
COPD were obtained from 6 databases, and those with
BC> 0.0092, CC> 0.5875, degree> 60, and ASPL< 1.7021
were considered as key targets. 16 key targets were screened
out from the 189 targets via PPI network analysis, including
TNF, AKT, andMAPK1.Tese key targets were signifcantly
related to infammation. Furthermore, the 16 key targets
were mostly enriched infammation-related pathway

according GO analysis and KEGG analysis, such as TNF,
PI3K-AKT, and MAPK signaling pathways. Te result
suggested I&N may inhibit the infammatory response in
COPD via these proteins and pathways. Ten, molecular
docking of I&N and these proteins was performed to verify
the possibility of interaction, and these proteins, including
AKT, TNF, EGFR, and MMP9, had strong binding energy
with I&N.

Infammation is a key pathological reaction for the
development of COPD [24]. Te main infammatory cells in
COPD involve neutrophils, macrophages, and lymphocytes
in the lung tissue and airway [25]. Te infammatory me-
diators and destructive enzymes from infammatory cells are
related to the structural damage of the airway and lung tissue
in COPD [26]. For instance, neutrophils in COPD patients
and COPD model rats are recruited to the lung and airway
and secrete various serine proteases, including myeloper-
oxidase (MPO), matrix metalloproteinase (MMP), and
neutrophil elastase (NE), all of which are related to de-
struction of the alveolar airway and cause emphysema [27].
PI3K, a kind of lipid kinases, induced the phosphorylation of
AKT to regulate cell survival, growth, multiplication, and
death in response to extracellular signals. Based on previous
studies, the infammatory efcacy of the PI3K-AKTsignaling
pathway in COPD.Te concentrations of TNF-α and IL-6 in
both the bronchoalveolar lavage fuid (BALF) and serum are
decreased via restraining the activation of PI3K-AKT sig-
naling in COPDmodel rats [28]. Macrolide reduces lung and
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systemic infammation of COPD patients by regulating the
PI3K-AKTN pathway [29]. Te family of MAPKs, including
p38, ERK, and JNK, is considered as a signifcant role in the
infammatory process [30]. Te MAPK signaling pathway
regulates COPD-related characteristics such as chronic in-
fammation and cytokine expression. Te levels of phos-
phorylation of ERK, p38, and JNK in RAW 264.7 cells
stimulated by CSE are much higher, indicating that MAPK
signaling was activated in macrophages. Treatment with
a MAPK signaling inhibitor also successfully inhibited the
TNF-α, IL-1β, and HO-1 overexpression following CSE [31].

Moreover, PI3K-AKT and MAPK signaling pathways are
considered as the major pathways, which observably
upregulate the MUC5AC expression with the elevated
phosphorylation level [32]. MUC5AC, a major secreted
mucin which is closely connected with the viscoelasticity of
sputum, endangers mucociliary functions and decreases
mucus clearance because of secretion excessive, and leads to
aggravated lung infection [33]. According to previous
studies, the secretion of MUC5AC was downregulated via
the inhibition of PI3K-AKT signaling pathway
phosphorylation [34].
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It has been reported that icariin inhibits CSE-induced
infammation, ROS production, and airway remodeling via
mitigating glucocorticoids resistance in CSE-exposed
BEAS-2B cells [35]. In addition, nobiletin exhibited pro-
tective efects in decreasing the production of TNF-α, IL-6
via restraining activation of NF-κB signaling in the LPS-
induced acute lung injury mice model and LPS-stimulated
A549 cells [36]. We had validated the anti-infammatory
efect of I&N against COPD in in vivo experiment. Te
mRNA and protein expression levels of IL-6, IL-1β, and

TNF-α in lung tissues of COPDmodel rats were signifcantly
increased and were decreased by I&N and doxofylline. On
the other hand, the decline of lung function and emphysema
is a common symptom during the development of COPD
[37]. In in vivo experiments, the lung function and alveolar
damage were signifcantly improved by treatment of I&N
and doxofylline compared to the model group. Furthermore,
the expression levels of PI3K and phosphorylation levels of
P-AKT and P-p38 in lung tissues were signifcantly de-
creased after the treatment of I&N and doxofylline
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compared to the model group. Tese results confrm the
inhibition infammatory response efects of I&N in by de-
creasing the expression levels of infammatory cytokines.
Moreover, doxofylline can improve the lung function and
the expression of infammatory factors in COPD rats. Te
therapeutic efects of I&N were consistent with those of
doxofylline in improving symptoms and inhibiting in-
fammation. Moreover, the potential mechanism may be
related to suppress the phosphorylation of the PI3K-AKT
and MAPK pathway in COPD.

5. Conclusion

In our research, the therapeutic efcacy and mechanisms of
I&N for COPD are verifed via the method integrating
network pharmacology and experiment validation. 16 key
targets of I&N against COPD were screened, including TNF,
AKT1, and MAPK1. According KEGG pathway analysis, the
activation of the MPAK and PI3K-AKT pathways was
a signifcant mechanism of I&N against COPD. In in vivo
experiments, the lung function, pathological damage of lung
tissues, and secretion of IL-6, IL-1β, and TNF-α were im-
proved by treatment of I&N in COPD rats. Furthermore, the
levels of PI3K, P-AKT, and P-p38 were reduced by I&N. In
conclusion, I&N have signifcant anti-infammation efects
for COPD via the restraining activation of PI3K-AKT and
MPAK pathways. However, the complex mechanisms of
I&N for treatment of COPD require further exploring.
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