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Bergenin is a phenolic glycoside that has been reported to be present in some medicinal plants which are traditionally used for
their antihypertensive actions. So, bergenin was investigated for antihypertensive and vasorelaxant experiments in a rat model.
Bergenin produced a signifcant fall in themean arterial pressure (MAP) of rats. To explore the involvement of NO andmuscarinic
receptors, rats were pretreated with L-NAME and atropine in-vivo. Te L-NAME did not change signifcantly the efect of
bergenin onMAP excluding the involvement of NO. Unlike the L-NAME, atropine pretreatment reduced the efect of bergenin on
MAP, indicating the role of muscarinic receptors. In in-vitro study, the bergenin produced endothelium-dependent (at lower
concentrations) and independent (at higher concentrations) vasorelaxation, which was attenuated signifcantly in the presence of
atropine and indomethacin but not with L-NAME. While a partial response was observed against K+-induced contractions. Tis
was further confrmed when bergenin partly shifted the CaCl2-CRCs toward right. Bergenin also suppressed the PE peak
formation, indicating the antagonist efect against the release of Ca2+. Moreover, the bergenin-induced vasorelaxant response was
not markedly attenuated with TEA, while signifcantly ablated with 4-AP and BaCl2. In conclusion, the antihypertensive efects of
bergenin are due to Ca2+ channel blockade, K+ channels activation, and muscarinic receptor-linked vasodilation.

1. Introduction

Medicinal plants and their phytochemical constituents have
been documented as potential sources of therapeutic agents
[1]. It has been reported that 30%–50% of all marketed drugs
have their origin from medicinal plants [2]. Major classes of
phytochemicals are reported for diferent pharmacological
activities including, glycosides, alkaloids, and polyphenols [3].

Bergenin is a c-glucoside of 4-O-methylgallic acid/tri-
hydroxybenzoic acid glycoside (Figure 1) [4]. Bergenin is a
phenolic glycosides due to gallic acid (a phenolic compound)
in its structure. It reveals a wide range of pharmacological

activities and also in numerous cases is responsible for the
folk use of its natural sources [5]. Bergenin has been reported
to occur as a major constituent in several Bergenia species
like Bergenia crassifolia, Bergenia stracheyi, and Bergenia
ligulata Wall, which are reported and traditionally used for
their antioxidant and antihypertensive efects [6–9]. An-
other major source of bergenin is Ficus racemosa L, which is
reported for its antioxidant and angiotensin-converting
enzyme inhibitory efect [4]. However, earlier reported
activities have not recognized the active constituents re-
sponsible for antihypertensive activity and could not reach
to the decisive mechanism.
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Bergenin is reported for several biological activities,
including antiulcer [10], antiplatelet [11], antioxidant [12],
antiarthritic [13], anti-infammatory activity [13, 14], and
hypolipidemic activities [15]. However, bergenin is not in-
vestigated as an antihypertensive agent. Tis study was
intended to identify the role of bergenin against hyper-
tension and its probable vascular mechanisms.

2. Materials and Methods

2.1. Chemicals and Reagents. Te reference chemicals, ace-
tylcholine chloride, angiotensin II (Ang II), atropine sulfate,
BaCl2, dimethyl sulfoxide (DMSO), phenylephrine hydro-
chloride, potassium chloride, indomethacin, Nω-Nitro-L-
arginine methyl ester (L-NAME), tetraethylammonium
chloride (TEA), 4-aminopyridine (4-AP), verapamil hy-
drochloride and test compound bergenin, EGTA, thiopental
sodium, and heparin inj. were purchased from specifed
standard resources. For most drugs, distilled water/normal
saline is used as a solvent; however, ethanol is used as a
solvent for indomethacin and bergenin was frst dissolved in
DMSO and then diluted with distilled water (the fnal bath
concentration for in-vitro study was <0.1% DMSO and in-
vivo study doses contain ≤1% DMSO).

2.2. Experimental Animals. Antihypertensive and vascular
reactivity study was conducted on adult male Sprague-
Dawley (SD) rats of weight 200–250 g that were placed under
the standard conditions of the animal house of CUI,
Abbottabad campus, Abbottabad (60% humidity, 23± 1°C)
with a 12 h dark/light schedule. Te ethical committee of the
Pharmacy department (CUI, Abbottabad campus, Abbot-
tabad) approved this protocol in a meeting held on June 18,
2013 (notifcation # EC/PHM/07–2013/CUI/ATD).

2.3. Measurement of Invasive Blood Pressure

2.3.1. Measurement of MAP in Normotensive SD Rats.
Tese experiments were carried out according to the pro-
tocol followed by Shah and Gilani, (2009) [16] and Taqvi
et al. (2008) [17] with few changes. SD rats were anaes-
thetized with administration of pentothal (≈60mg/kg i.p).
After that, approximately, 1 cm mid-tracheal incision was
made and trachea was cannulated with PE-20, while PE-50
was inserted in the left carotid artery and right jugular vein.
Tis cannulation was important for BP recording. To record
and analyze the BP, invasive BP apparatus (ADInstruments)

was used. When the animal is stable (after 20–30min), the
hypertensive and hypotensive responses of animal were
checked by norepinephrine and acetylcholine (1 µg/kg of
each). After that diferent doses of bergenin were injected.
Standard experimental drugs like L-NAME (20mg/kg) and
atropine (1mg/kg) were used to identify the role of nitric
oxide (NO) pathway and muscarinic receptors. Ten MAP
was calculated according to the standard formula [18].

2.3.2. Efect of Bergenin on MAP of the High Salt (8%)
Hypertensive Rat Model. A high salt diet (8% NaCl in water
and food for 14 days) was used to induce hypertension in
normotensive rats. Rats were considered hypertensive with
systolic BP> 140mmHg and diastolic BP more than
90mmHg. Te rest protocol was same as mentioned for
normotensive rats [18, 19].

2.4. Vascular Reactivity Studies

2.4.1. Tension Studies in Isolated Rat Aorta. Te isolated SD
rat aorta was to see the vascular reactivity response of
bergenin. Te 2mm aortic ring after cleaning from extra
tissues was transferred to the 10mL bath, aerated with
carbogen, and the temperature was maintained at 37°C. A
tension of 2 g was applied after hanging tissue in the bath.
Te stability period was almost 45min. During this period,
the tissue was washed after every 15min. Te response in
aortic ring was recorded through PowerLab attached with an
amplifer and transducer (ADInstruments) [19].

2.4.2. Determination of Bergenin Response in the Presence of
Diferent Vessel-Related Signaling Pathway Inhibitors.
Initially, the vasorelaxant response of bergenin was con-
frmed against the phenylephrine (1 μM) induced contrac-
tion in endothelium intact aortic tissues. To diferentiate the
role of endothelium, some tissues were deliberately denuded.
Furthermore, standard experimental drugs, L-NAME
(10 µM), atropine (1 µM), and indomethacin (1 µM), were
added to intact rat aortic rings to determine the involvement
of nitric oxide (NO), muscarinic receptor, and prostacyclin
in the relaxation response. Te mentioned experimental
drugs were added 20min prior to the addition of phenyl-
ephrine. Responses were compared in the presence and
absence of the abovementioned inhibitors [18, 20].

2.4.3. Efect of Bergenin on Ca2+ Signaling Pathways. Te
procedures suggested by Furchgott and Zawadzki [21] and
Ahmad et al. [18] were adopted with some changes.
Phenylephrine (1 µM), K+ (80mM), and Ang II (5 µM) in
separate experiments were added to the rat aortic rings for
obtaining steady-state contractions. After that, bergenin was
added at diferent concentrations cumulatively and the re-
sponse was observed (in a separate set of experiments). To
observe the efect of bergenin on calcium channels, con-
centration response curves (CRCs) of CaCl2 (0.01–10.0mM)
(as Ca2+) were produced in the presence of bergenin in a
calcium-free medium. In addition, the efect of bergenin on
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Figure 1: Te chemical structure of bergenin.
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intracellular calcium stores was also confrmed by producing
phenylephrine individual contraction in calcium-free Kreb’s
solution.

2.4.4. Te Efect of Bergenin on K+ Channels. Contractile
responses were obtained by adding phenylephrine in both
the absence (control) and presence of potassium channel
blockers; tetraethylammonium (TEA) (5mM) [22], 4-ami-
nopyridine (4-AP) (1mM) [23], and barium chloride
(BaCl2) (30 µM) [24] in diferent experiments, 20min prior
to phenylephrine-induced contraction. Te response of
bergenin was obtained by adding diferent concentrations
cumulatively.

2.5. Statistical Analysis. GraphPad Prism (8) was used for
statistical analysis. Student’s t-test and two-way ANOVA
(Bonferroni test) were applied for data analysis. Te data
were refected as signifcant when ∗p≤ 0.05.

3. Results

3.1. Antihypertensive Activities of Bergenin

3.1.1. Blood Pressure Lowering Efect of Bergenin in Both
Normotensive and Hypertensive Rats. Intravenous (i.v) in-
jections of norepinephrine (1 µg/kg) and acetylcholine (1 µg/
kg) produced a signifcant increase and decrease in the MAP
of both anaesthetized normotensive and hypertensive SD
rats, respectively (Figures 2(a)–2(c)). Te MAP calculated
for the normotensive and hypertensive rats was
115± 2.09mmHg and 163± 2.18mmHg (Figure 2(c)). Tese
measures validated the protocols. Bergenin produced a
graded dose-response by decreasing the MAP both in
normotensive and hypertensive rats, respectively
(Figure 2(e)). Te % decrease in MAP was 6.01± 0.44,
23.75± 1.33, 40.75± 1.30, and 59.25± 2.10mmHg at
0.003_3mg/kg doses, as shown in Figures 2(d) and 2(e).
Bergenin produced a more signifcant fall in MAP of hy-
pertensive rats that was 10.50± 0.9, 31.50± 1.45,
48.75± 2.84, and 68.75± 2.52mmHg, as shown in
Figure 2(e). In the normotensive and hypertensive rats
treated with diferent doses of bergenin induced a signifcant
decrease in the heart rate (48%, 56% at 3mg/kg dose) as-
sociated with a fall in blood pressure, as shown in Table 1.

3.1.2. Efects of Bergenin onMAP in SD Rats in the Presence of
L-NAME and Atropine. Te experiments were carried out
in anaesthetized normotensive SD rats. Before the injection
of bergenin, L-NAME (20mg/kg) and atropine (1mg/kg)
were preadministered. Te L-NAME pretreatment did not
signifcantly alter changes in the MAP to bergenin;
6.0 ± 0.95, 25.50 ± 0.80, 41.0 ± 2.80, and 65.0 ± 3.27mmHg
(Figure 3). While in the atropine pretreated rats, the
magnitude of the fall in the MAP to bergenin was reduced
as 3.01± 0.90, 17.50 ± 1.81, 27.0 ± 2.30, and
39.50 ± 3.60mmHg (Figure 3).

3.2. Stud on Isolated Blood Vessels

3.2.1. Efect of Bergenin on Isolated Rat Aortic Tissues.
Te contraction was induced in intact aortic rings by pre-
incubation with phenylephrine (1 μM), followed by the
cumulative addition of bergenin. Tis resulted in a vaso-
relaxant response with an EC50 value of 1.09 μM (0.90–2.06)
(Figure 4(a)). Moreover, in denuded tissues, the response of
bergenin was not changed signifcantly (at higher concen-
trations), with EC50 values 1.70 μM (1.95–2.65) (Figure 4(a)).
Tis confrms the nonsignifcant role of factors related to
endothelium. Tis response is further validated by the un-
changed vasorelaxant response of bergenin against the
phenylephrine-induced contractions in isolated tissues,
preincubated with 10 µM L-NAME. Te EC50 value was
1.85 μM (1.98–3.01) (Figure 4(a)). Te pretreatment of at-
ropine signifcantly inhibited the vasorelaxant efect of
bergenin (>50%) (Figure 4(a)). Moreover, the indomethacin
pretreatment partially modifes the efect of bergenin with
the EC50 value, 3.35 μM (1.60–4.41) (Figure 4(a)). Te efect
of bergenin is compared with acetylcholine (Figure 4(b)).

Moreover, bergenin induced concentration-dependent
relaxation in comparison to verapamil against the con-
traction induced by phenylephrine, and Ang II in isolated
tissues with EC50 values of 1.14 μM (0.90–1.87) and 0.63 μM
(0.50–1.20), respectively. However, the bergenin vaso-
relaxant response was highly reduced against the pre-con-
tractions induced by both 80mM (49%) and 20mM KCl
(39%), as shown in (Figures 5(a) and 5(b)).

3.2.2. Calcium Channels’ Antagonist Efect of Bergenin.
In calcium-free medium, the cumulative addition of dif-
ferent concentrations (3–100 μM) of bergenin signifcantly
shifted the concentration response curves (CRCs), induced
by calcium chloride (CaCl2), toward the right (Figure 6(a)).
Tis response of bergenin was compared to verapamil (0.01─
0.3 μM) (Figure 6(b)).

3.2.3. Bergenin Attenuated the Intracellular Calcium Stores.
Pre-incubation of bergenin (0.1–3.0 µM) produced a sig-
nifcant inhibitory response against the intracellular calcium,
by suppressing the individual contractions produced by
phenylephrine in calcium-free medium. Tis response of
bergenin was compared to verapamil (Figures 7(a)–7(c)).

3.2.4. Bergenin Response in the Presence of Potassium
Channel Inhibitors. To identify the role of potassium
channels in the response produced by bergenin, diferent
potassium channel inhibitors; TEA, BaCl2, and 4-AP were
used. In the presence of TEA (5mM), the vasorelaxant
response of bergenin was not changed signifcantly. How-
ever, 4-AP and BaCl2 signifcantly (23%, 69%) attenuated the
bergenin response (Figure 8).

4. Discussion

In this study, the response of bergenin against blood
pressure was investigated both in normotensive and
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Figure 2: A representative tracing. (a) shows the response of norepinephrine (NE) and acetylcholine (ACH) on MAP and (b) reveals the %
increase and fall in BP of normotensive rats. (c) shows the response of NE and ACH on MAP in both normotensive and hypertensive rats.
(d) A representative tracing showing the efect of bergenin on BP in normotensive anaesthetized rats. Te bar graph (e) shows the fall in
MAP produced by bergenin in normotensive and hypertensive rats. ∗p< 0.05 and ∗∗p< 0.01 describe the signifcant diferences.
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hypertensive rats. In addition to the in-vivomeasurement of
MAP in normotensive rats, BPmeasurement in hypertensive
rats is considered the most authentic approach. Due to this
reason, bergenin is also evaluated in the hypertensive model.
In the 8% salt hypertensive model, bergenin produced a
signifcant decrease in MAP. However, the % fall in MAP in
hypertensive rats was higher as compared to normotensive
rats. Tis might support the hypothesis that drugs produced
a more potent response in pathological conditions. After
these exciting fndings on bergenin, as an antihypertensive
agent, further mechanistic studies were carried out. In de-
nuded tissues, the bergenin response was not completely
blocked, although less potent relaxation was observed as
compared to control (intact aortic tissues). To comprehend
the nitric oxide (NO)-pathway involvement in the in the
antihypertensive response of bergenin, the L-NAME was
preinjected in SD rats, however, no signifcant change in the
blood pressure lowering response of bergenin was observed.
Te other possibility was that, bergenin might produce its
efect through muscarinic receptors. So, to confrm the role
of muscarinic receptors, we used atropine to inhibit the
muscarinic receptors [25, 26]. Tis pre-administration
modifes (26%) the efect of bergenin on MAP, which shows
that bergenin has an inhibitory efect on vascular muscarinic
receptors. Tese results confrmed that bergenin is one main

agent present in its plant sources which are reported for their
antihypertensive efects, like Bergenia crassifolia leaves’ ex-
tract is reported for its hypotensive efect in rats and Ber-
genia ligulata Wall in dogs. Moreover, bergenin produced a
signifcant fall (50%) in the heart rate (HR), which might be
due to the Ca2+ antagonist activity.Tis response of bergenin
is also comparable to verapamil. So, further studies are
suggested to trace this negative chronotropic efect in a
perfused isolated rat heart model. Interestingly, the bergenin
plant source, the Bergenia ligulata Wall extract is also re-
ported for negative inotropic and chronotropic efects
[6, 8, 27]. To further study the response of bergenin on
vascular mechanism (s) linked to hypertension, isolated rat
aorta was used for further in-vitro studies.

Initially, some standard vasoconstrictors were used like
phenylephrine, high K+, and Ang II, respectively. Te
contraction produced by phenylephrine and Ang II was
signifcantly reduced (100%) by bergenin, while a partial
response was observed against the high K+ (49%) and even at
low K+ (20mM; 39%) contractions. Tis response confrms
initially the calcium antagonist efect of bergenin.

To investigate the endothelium-dependent and inde-
pendent response diferent experiments were performed.
Te relaxation to bergenin was partially reduced (at initial
concentration), while at higher concentrations, no signif-
cant change in the response was observed in aortic rings with
pretreatment of L-NAME, a nitric oxide inhibitor [28].
Tese fndings excluded the dominant role of nitric oxide
(NO). In vascular endothelial muscarinic receptors (M3) also
have a role in vasorelaxation, to observe its involvement in
the response produced by bergenin, atropine was pre-
incubated [26]. Tis preincubation of atropine reduced
(54%) the vasorelaxant efect of bergenin. So, muscarinic
receptors are partially involved in the vasorelaxant efect of
bergenin. Other endothelium-linked vasoactive substances
include a prostacyclin inhibitor, indomethacin [29, 30].
With preincubation of indomethacin, a partial change in the
vasorelaxant (18%) response of bergenin was observed.

As confrmed before initially that bergenin produced a
vasorelaxant response against the contraction produced by
phenylephrine, suggesting a Ca2+ inhibitory response
against the intracellular Ca2+. Phenylephrine is well known
for its biphasic contraction. A sharp contraction (fast phase)
followed by a stable contraction (slow phase), due to Ca2+
release from the stores and then infux of Ca2+ through
receptors operated calcium channels (ROCCs) [31]. Tis
response was further validated by the inhibitory efect of
diferent concentrations of bergenin against the

Table 1: Reveals the percent decrease in the BP and heart rate (HR) with diferent doses of bergenin in rats.

Dose (mg/kg)
Normotensive rats Hypertensive rats

BP (%) HR (%) BP (%) HR (%)
Control 99.9± 0.06 99.4± 0.04 99.2± 0.10 99.7± 0.07
0.003 7± 0.64∗ 20± 1.23∗ 10.50± 0.93 25± 1.02∗
0.03 24± 2.28∗ 25± 1.84∗ 31.50± 1.45 28± 3.04∗
0.3 42± 0.62∗∗ 40± 1.03∗∗ 48.75± 2.84 39± 2.04∗∗
3 58± 2.05∗∗∗ 48± 2.30∗∗∗ 68.75± 2.52 56± 3.14∗∗∗

Values were tabulated as mean± SEM for six experiments, where ∗p< 0.05, ∗∗p< 0.01 and ∗∗∗p< 0.001 vs. Control.
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phenylephrine individual peaks. Such a response was also
observed with selected standard Ca2+ entry blocker verap-
amil [21].

In aggregate, the vasorelaxant response of bergenin is
mediated through its inhibitory action on the IP3-dependent
Ca2+ pathway which is sensitive to phenylephrine con-
traction. Tese fndings encouraged us to investigate the
response of bergenin against the voltage gated Ca2+ channels

present in the plasma membrane. As discussed previously
that bergenin produced a partial response against contrac-
tion induced by high K+. Moreover, the contraction is in-
duced by high K+ through the opening of L-type calcium
channels [31, 32]. So, drugs that inhibit high K+ precon-
traction can be considered as a calcium channel antagonist
[33]. A partial vasorelaxant response was observed with
bergenin against the 20 and 80MmK+ precontractions on
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isolated rat aorta, in comparison to verapamil. To investigate
further, rat aortic rings were hung in a calcium-free solution.
Ten, preincubation of the isolated tissues with diferent
concentrations of bergenin induced a partial rightward shift
in CRCs produced by CaCl2 addition, in comparison to
verapamil, indicating that bergenin inhibits partly the Ca2+
entry through VDCs. Te response of bergenin was further
investigated.

Previous studies have confrmed that Ang II receptors
are present in rat aortic smooth muscle cells and play a
vital role in marinating the tone of blood vessels [34, 35].
So, bergenin was added cumulatively against the pre-
contraction produced by Ang II in rat aortic tissues. In
response, a signifcant vasorelaxant response was ob-
served, which suggests further studies to identify the exact
target of bergenin in the Ang II-produced signaling
pathway.

To have further insights into the response produced by
bergenin, the role of potassium channels was also investi-
gated. Potassium channels in the vascular smooth muscles
play a vital role in vascular activity and blood pressure.
Diferent types of potassium channels included; Ca2+-acti-
vated K+ channels (KCa), inward rectifying K+ channels
(Kir), and K+ voltage-gated channels (Kv), respectively. Te
pretreatment of BaCl2 (Kir channels inhibitor) [36] and 4-
AP (Kv channels inhibitor) [37] signifcantly (69% and 23%)
reduced the vasorelaxant efect of bergenin. Te TEA,
blocker of KCa channels [38], was unable to block signif-
cantly the efect of bergenin. In aggregate, the involvement of
potassium channels (Kv and Kir) can be considered in the
predominant endothelium-independent vasorelaxant re-
sponse of bergenin.

5. Conclusion

So, these fndings have identifed glycoside bergenin as a
potential antihypertensive agent. Our data revealed that
bergenin exerts its hypotensive efect through its vaso-
dilatory potential. Findings on the antihypertensive and
vascular reactivity response of bergenin are mainly mediated
through its action on muscarinic receptors, attenuation of
Ca2+ intracellular stores and opening of potassium channels
which possibly explain the underlying mechanisms.
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