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Pyroptosis is an in�ammatory form of programmed cell death that is dependent on in�ammatory caspases, leading to the cleavage
of gasdermin D (GSDMD) and increased secretion of interleukin (IL)-1β and IL-18. Recent studies have reported that
hyperglycemia-induced cellular stress stimulates pyroptosis, and di�erent signaling pathways have been shown to play crucial
roles in regulating pyroptosis.�is review summarized and discussed themolecular mechanisms, regulation, and cellular e�ects of
pyroptosis in diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, and diabetic cardio-
myopathy. In addition, this review aimed to provide new insights into identifying better treatments for diabetic microvascular
complications.

1. Introduction

Diabetes is a low-grade in�ammatory disease that seriously
a�ects the quality of life of 463 million adults aged
20–79 years [1]. Diabetic microvascular complications
(DMCs), such as diabetic nephropathy (DN), diabetic ret-
inopathy (DR), and diabetic cardiomyopathy (DC), are the
main contributors to the morbidity and mortality associated
with diabetes. However, the pathogenesis and pathophysi-
ology of these DMCs are complex. Chronic in�ammatory
response induced by hyperglycemia is a common mecha-
nisms in DMCs. Further investigation of novel molecular
mechanisms is required to develop new therapeutic ap-
proaches for DMCs.

Pyroptosis is a type of programmed cell death and its
morphological characteristics are mainly caused by cell
membrane rupture, chromatin condensation, nuclear frag-
mentation, and substantial release of cellular contents, in-
cluding interleukin (IL)-1β, IL-18, and lactate
dehydrogenase [2]. Pyroptosis is initially considered an
innate immune and in�ammatory response to invasion by
external pathogens. Appropriate cell pyroptosis eliminates
pathogens when they invade, but subsequent investigations
suggest that pyroptosis is a double-edged sword, and that
excess pyroptosis leads to a constant in�ammatory response
[3]. Recent studies have reported that a series of chronic
in�ammatory diseases, such as cardiovascular disease [4],
rheumatoid arthritis [5], and nervous system diseases [6],
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are associated with pyroptosis, and that blocking excessive
pyroptosis is a promising strategy for delaying disease de-
velopment. Evidence suggests that diabetes is closely asso-
ciated with pyroptosis [7]. ,is review provided an overview
of the role of pyroptosis in DMCs and the effects of in-
hibition of the pyroptosis pathway in DMCs.

2. Pyroptosis and Pyroptosis-Related
Mechanisms

tZychlinsky et al. first discovered the phenomenon of pyrop-
tosis in 1992, which was initially considered apoptosis in
macrophages infected by Shigella flexneri [8]. Studies have
shown that pyroptosis is caused by caspase-1-regulated etiol-
ogy. Scholars called this the canonical pyroptosis pathway and
named it “pyroptosis” in 2001 to contrast with other types of
cell death, meaning “fire” [9]. ,ereafter, a noncanonical
pyroptosis pathway was observed [10]. In 2015, Kayagaki and
Shi demonstrated that gasdermin D (GSDMD) was the ulti-
mate executor of pyroptosis [11, 12]. GSDMD is a gasdermin
family member that can be cleaved into GSDMD-N fragments
by inflammatory caspases, including caspase-1 and caspase-4/
caspase-5/caspase-11 (caspase-4/caspase-5 in humans and
caspase-11 in mice) [13]. ,e GSDMD-N fragment of ring-
shaped oligomers anchored on the cell membrane forms pores
to induce cell death [14].

Inflammation is a complex process that reflects local and
systemic responses to different immunological and non-
immunological stimuli. Pyroptosis, which is essentially an
inflammatory reaction, has provided a new perspective for
research on the pathophysiological mechanisms of DMCs.
Pyroptosis mechanisms include canonical and noncanonical
pathways. ,e difference between the two pathways is
primarily due to their triggering factors. ,e two pathways
are independently discussed below, and the details can be
found in Figures 1(a) and 1(b).

2.1. Canonical Pyroptosis Pathway. ,e canonical pyroptosis
pathway is caspase-1-dependent and is triggered by
inflammasomes [15]. In this pathway, pattern recognition
receptors including Nod-like receptor (NLR) proteins
(NLRP1, NLRP3, NAIP/NLRC4), pyrin, and ALR proteins
(AIM2 and IFI16) as sensors, first recognize pathogen-
associated molecular patterns (such as bacteria, viruses,
and DNA damage) or danger-associated molecular patterns
(such as uric acid and extracellular adenosine 5′-tri-
phosphate) [16]. During this process, NLRP1 and NLRC4
directly recruit pro-caspase-1, while binding between pro-
caspase-1 and NLRP3/pyrin/ALR, and the activation of
caspase-1 must be accompanied by the adaptor protein ASC
to form inflammasomes [17]. ,ereafter, pro-IL-1β and pro-
IL-18 are sheared to activate IL-1β and IL-18, respectively,
by activating caspase-1, and GSDMD is cleaved into
GSDMD-N to form pores on the cell membrane [18].

2.2. Noncanonical Pyroptosis Pathway. ,e noncanonical
pyroptosis pathway is caspase-11- or caspase-4/caspase-5-
dependent (caspase-11 in mice and caspase-4/5 in humans)

[19]. In 2011, Kayagaki et al. reported that the secretion of
IL-1β frommacrophages was inhibited in Casp11-/- C57BL/
6 or Casp1-/- Casp11129mt/129mt mice infected with Gram-
negative bacteria and that cell death induced by caspase-11
activation was independent of NLRP3 and ASC [20].
,erefore, they proposed this phenomenon as the non-
canonical inflammasome-triggered caspase-11 or the
noncanonical pyroptosis pathway [20]. ,e study has
shown that lipopolysaccharide (LPS) initially activates the
non-canonical pyroptosis pathway, and this process is
independent of Toll-like receptor 4 (TLR4) [21]. Lipid A in
LPS binds to caspase-11/caspase-4/caspase-5 through the
CARD-CARD domain. Subsequently, inflammatory cas-
pases are activated, and GSDMD is cleaved to GSDMD-N
to induce cell death [22]. Notably, although activated
caspase-11/caspase-4/caspase-5 can induce pyroptosis,
they cannot directly cleave pro-inflammatory
cytokines [23].

3. Pyroptosis in Diabetic Microvascular
Diseases

Recently, although limited, studies have attempted to ex-
plore the relationship between pyroptosis and DMCs and
their potential mechanisms. Studies on pyroptosis and its
associated diseases are summarized in this review.

3.1. Pyroptosis in Diabetic Nephropathy. DN is one of the
most prevalent and serious microvascular complications
associated with diabetes. Its early pathological characteristics
include basement membrane thickening, increased mesan-
gial matrix production, and extracellular matrix accumu-
lation, with the subsequent development of
glomerulosclerosis and tubulointerstitial fibrosis, eventually
leading to proteinuria and irreversible renal damage. ,e
early clinical diagnosis of DN is based on canonical bio-
chemical markers, such as glomerular filtration rate, urinary
microalbumin, urinary microalbumin to urinary creatinine
ratio, serum creatinine, urinary cystatin C, and serum β2
microglobulin. In addition, some biomarkers related to the
pathogenesis of DN, such as kidney injury molecule 1 (Kim-
1), neutrophil gelatinase-associated lipocalin (NGAL), tissue
inhibitor of metalloproteinases-2, insulin-like growth factor-
binding protein 7 (IGFBP-7), vascular endothelial growth
factor (VEGF), transforming growth factor-β (TGF-β),
monocyte chemoattractant protein-1(MCP-1), and in-
flammatory cytokines, such as tumor necrosis factor (TNF)-
α, MCP-1, and ILs (IL-1α, IL-1β, IL-18, IL-10), have also
attracted significant attention [24, 25]. However, the path-
ogenesis of DN remains unclear, and treatment strategies are
limited. Recent studies have found that pyroptosis is in-
volved in pathophysiological processes and may be a po-
tential therapeutic target.

3.1.1. Glomerular Endothelial Cells. Glomerular endothe-
lial cells (GECs) are located within the glomerulus and
are the first layer to be involved in glomerular filtration.
Recent findings suggest that both cell loss and
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inflammation in GECs are important causes of DN [26],
and that pyroptosis may be a pivotal link between them.
Activation of NLPR3 inflammasomes has been observed
in the glomeruli of patients with DN and in animal
models [27]. An in vitro study has reported that LPS
directly induces pyroptosis in vascular endothelial cells
[28]. Because low-grade inflammation and hyperglyce-
mia form a vicious circle that promotes the development
of DN toward end-stage renal disease, inhibiting
pyroptosis may be an ideal strategy to block it. Our
previous study showed that high glucose levels could
induce pyroptosis in GECs, which was alleviated by
a caspase-1 inhibitor or sodium butyrate [29]. Another
study reported that hirudin ameliorated DN by inhib-
iting GSDMD-mediated pyroptosis in GECs [30].

3.1.2. Podocytes. Podocytes are the outer glomerular fil-
tration barriers. Podocyte fusion and foot process efface-
ment cause proteinuria, and cell death and inflammation are
the underlying mechanisms [31]. Podocyte pyroptosis has
gradually been elaborated upon. Previous studies have
demonstrated the activation of NLRP3/caspase-1/IL-1β in
podocytes derived from patients with DN, db/db mice, and
streptozotocin (STZ)-induced mice/rats [27, 32]. High
glucose [27], D-ribose [33], and visfatin [34] levels directly
induce the activation and release of NLRP3/ASC/caspase-1/
IL-1β in podocytes, whereas inhibition or knockdown [33]
of NLRP3 [32], ASC [33], and caspase-1 [33] improves the
function of podocytes. A previous study showed that in-
hibition of NLRP3 reduced the expression of podocin and
ameliorated renal fibrosis [32]. Another study reported that
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Figure 1: Canonical and noncanonical pathway pyroptosis. Pyroptosis mechanisms include canonical and noncanonical pathways. ,e left
side of (a) shows the canonical pyroptosis pathway, which is caspase-1 dependent; the right side of (b) shows the noncanonical pathway,
which is caspase-4/caspase-5/caspase-11 dependent; the cleavage of gasdermin D (GSDMD) (GSDMD-N domain) forms pores on the cell
membrane, inducing pyroptosis.
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the inhibition of caspase-1/IL-18 signaling in DN could
reduce albuminuria [35]. Additionally, high glucose levels
activate caspase-11/caspase-4 and GSDMD-mediated
pyroptosis, resulting in podocyte loss and DN develop-
ment [36]. ,us, the intervention of the podocyte pyrop-
tosis pathway may be a new target for the treatment of DN.
Given the targets of pyroptosis, the regulatory mechanism
of the pyroptosis pathway is gradually being studied. TLR4
knockdown attenuates high glucose-induced podocyte
injury via the NALP3/ASC/caspase-1 signaling pathway
[37]. ,ere is also an indication that thioredoxin in-
teraction protein (TXNIP) is involved in activating the
high-glucose-induced NALP3 inflammasome and podo-
cyte injury [38]. Forkhead box protein M1 transcriptionally
activates sirtuin 4 and inhibits nuclear factor kappa B (NF-
κB) signaling and NLRP3 inflammasome to alleviate kidney
injury and podocyte pyroptosis in DN [39]. Moreover,
sublytic complement C5b-9 induces pyroptosis in podo-
cytes via the KCNQ1 overlapping transcript 1
(KCNQ1OT1)/miR-486a-3p/NLRP3 regulatory axis [40].
A recent study by Ding et al. showed that MiR-21-5p in
macrophage-derived extracellular vesicles could regulate
pyroptosis-mediated podocyte injury induced by A20 in
DN [41]. Furthermore, unexpectedly, some drugs have
been found to exert a protective effect against DN via an
antipyroptosis mechanism. Geniposide inhibits pyroptosis
via the AMPK/SIRT1/NF-κB pathway in podocytes in DN
[42]. Atorvastatin protects podocytes via the metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1)/
miR-200c/nuclear factor-erythroid 2-related factor 2
(NRF2) signaling pathway from hyperglycemia (HG)-in-
duced pyroptosis and oxidative stress [43]. Catalpol ef-
fectively inhibits oxidative stress and inflammation
accompanied by pyroptosis in podocytes via the AMPK/
SIRT1/NF-κB pathway [44]. ,e total flavones of Abel-
moschus manihot (TFA) alleviate podocyte pyroptosis and
injury by adjusting methyltransferase-like protein 3
(METTL3)-dependent m6A modification and regulating
NLRP3-inflammasome activation and phosphatase and
tensin homolog (PTEN)/phosphoinositide 3-kinase/pro-
tein kinase B (Akt) signaling [45]. As podocytes act as the
last barrier against proteinuria, exploring agents that
prevent damage to these cells is of special significance.

3.1.3. Glomerular Mesangial Cell. Glomerular mesangial
cells (GMCs) play a pivotal role in maintaining the basic
structure of the glomerulus. Increasing the mesangial matrix
and GMCs proliferation promotes DN development. In-
flammation is an important factor in GMC proliferation
[46]. Previous studies have shown that high glucose level
significantly induces the expression of pyroptosis markers,
including NLRP3, caspase-1, pro-caspase-1, IL-1β, and pro-
IL-1β, in GMCs [47, 48], whereas inhibiting NLRP3 with
MCC950 suppresses NLRP3/caspase-1/IL-1β activation and
decreases renal fibrosis [32]. Nuclear enriched abundant
transcript 1 and its target gene miR-34c are also found to
regulate pyroptosis by mediating NLRP3 on GMCs in DN
[49]. Furthermore, naringin and ginsenoside compound K

have been reported to exert potential effects against
pyroptosis in GMCs [50, 51].

3.1.4. Renal Tubular Epithelial Cells. Renal tubular epithelial
cells (RTECs) are more vulnerable to death because they are
inevitably stimulated by various pathogenic factors, such as
toxins, hypoxia, and metabolic disorders. In patients with
diabetes, the expression of IL-18, an inflammatory cytokine
released during pyroptosis in renal tubular cells, increases
significantly (approximately 83%) [52], suggesting the po-
tential involvement of pyroptosis in RTEC damage. ,e
expression of NLRP3, caspase-1, and IL-1β increases sig-
nificantly in both STZ-induced DN rats and high glucose-
treated RTECs [53]. Inhibition of caspase-1 or GSDMD
knockdown ameliorates RTEC pyroptosis and reduces
kidney damage in vivo and in vitro [54, 55]. Moreover,
upregulation of miR-23c inhibits RTEC pyroptosis by
modulating MALAT1/ELAVL [53]. ,e TLR4/NF-κB sig-
naling pathway also modulates GSDMD-mediated pyrop-
tosis in RTECs [56]. Recent studies have reported that
antisense noncoding RNA in the INK4 locus/miR-497/
TXNIP and KCNQ1OT1/miR-506-3p are involved in the
regulation of high glucose-activated HK2 cell pyroptosis
[57, 58]. Moreover, circACTR2 regulates high glucose-
induced pyroptosis, inflammation, and fibrosis in proxi-
mal tubular cells [59]. Specific inhibitors of pyroptosis in
RTEC have not been well studied, and existing evidence
suggests a potential function for an A1 adenosine receptor
agonist [35] or hirudin [30]. In summary, the canonical
pyroptosis pathway is associated with intrinsic damage to
RTECs and plays an essential role in DN development.
RTEC pyroptosis inhibition may be a novel target for
ameliorating albuminuria and renal fibrosis.

3.2. Pyroptosis in Diabetic Retinopathy. DR is a hallmark
complication of diabetes and a leading cause of vision loss in
adults. Loss of retinal pericytes is one of the earliest changes
associated with DR, and it has been postulated to initiate or
trigger microaneurysm formation, abnormal leakage,
edema, and ischemia, provoking proliferative neo-
vascularization in the retina. Although the pathophysio-
logical mechanisms of DR are complex, vascular endothelial
damage, increased vascular permeability, and neo-
vascularization are the most common phenomena.

Hemoglobin A1c (HbA1c) is the only validated systemic
biomarker for DR progression. However, only 6.6% of the
variation in the risk of DR is explained by HbA1c levels [60].
In addition, there are some biomarkers for the pathogenesis
of DR, including VEGF, pigment epithelium-derived factor,
platelet-derived growth factor subunit B, photoreceptor-
secreted retinol-binding protein 3, forkhead box protein
O1, NRF2, atypical protein kinase C, and inflammatory
cytokines, such as TNF-α, IL1β, IL-6, IL-8, chemokines, C-C
motif ligand-2, intercellular cell adhesion molecule-1, and
vascular cell adhesion molecule-1 [61]. Furthermore, long
noncoding RNAs (lncRNAs) and circular RNAs (circRNAs)
in whole blood can serve as novel non-invasive biomarkers
for proliferative DR [62, 63]. However, there remains an
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urgent need to identify novel biomarkers for DR screening
and detection.

Hyperglycemia-induced cell pyroptosis in the retina has
been well demonstrated [64]. ,e density of corneal en-
dothelial cells reduces and the expression of NLRP3,
caspase-1, and IL-1β increases in patients with DR [65]. A
similar event has been reported in STZ-induced diabetic rats
[66]. Further studies have demonstrated that inhibiting
caspase-1 [67] or silencing NLRP3 can reduce the secretion
of caspase-1 and IL-1β, improve retinal layer thickness, and
ameliorate blood-retinal barrier permeability [68], thus ef-
fectively retarding the progression of DR [69]. Moreover, the
reactive oxygen species (ROS)/TXNIP/NLRP3 pathway is
responsible for high glucose-induced retinal vascular per-
meability and pyroptosis in human retinal microvascular
endothelial cells [69]. Further investigations have suggested
that miR-590-3p induces the upregulation of NLRP1/
NADPH oxidase 4, which participates in the above mod-
ulation [70]. Furthermore, miR-214 and KCNQ1OT1 are
involved in the caspase-1 signaling pathway [65]. In addi-
tion, high glucose levels can induce pyroptosis in retinal
pigment epithelial cells through the METTL3/miR-25-3p/
PTEN/Akt signaling cascade or by regulating CircZNF532/
miR-20b-5p/signal transducer and activator of transcription
3 [71, 72].

Although inhibition of caspase-1 or NLRP3 has been
suggested to delay DR progression, a series of issues remain
to be solved. First, current studies have mainly focused on
the NLRP3-caspase-1 signaling pathway in DR. ,erefore,
the role of the noncanonical pyroptosis pathway in this
disease remains unknown. Moreover, as inflammasome
activation does not always trigger pyroptosis, other signaling
pathways involved in pyroptosis should be investigated.
Second, the regulatory mechanism of pyroptosis is currently
focused on noncoding RNA, and other regulatory mecha-
nisms are yet to be defined. ,ird, GSDMD is the ultimate
executor protein in pyroptosis, and its function in DR re-
quires further in-depth study. In addition, although studies
have indicated the influence of resolvin D1, minocycline,
caspase 1, and NLRP3 inhibitors (such as Mcc950), or H3
relaxin [73] on blocking the NLRP3-caspase-1 signaling
pathway [65–67, 69], these have not been applied clinically,
and more inhibitors are waiting to be screened.

3.3. Pyroptosis in Diabetic Cardiomyopathy. DC is the main
cardiovascular complication that occurs in approximately
60% of patients with well-controlled diabetes, resulting in
systolic and diastolic dysfunctions, which are independent
risk factors for any vascular disease or hypertension [74].
Increasing evidence suggests that hyperglycemia, lip-
otoxicity, and mitochondrial uncoupling contribute to
cardiac inflammation, which plays an important role in the
pathogenesis and progression of DC [75]. In this process,
cytoplasmic calcium is increased, triggering mitochondrial
changes, the production of ROS is increased, and activating
ROS levels lead to oxidative damage in DC, among which
oxidative stress and chronic inflammation are critical [75].

A broad spectrum of cardiovascular biomarkers that
have been described in patients with DC includes brain
natriuretic peptide (BNP), cardiac troponins (T, N, and I),
and matrix metalloproteinases (MMPs), particularly MMP-
9. Some biomarkers related to the pathogenesis of DR have
been reported, such as cardiotrophin-1, IGFBP7, TGF-β,
activin A, ROS-induced inflammatory cytokines (TNF-α, IL-
6), galectin-3, suppression of tumorigenicity 2 (sST2),
lncRNAs, and microRNAs [76]. However, the predictive
roles of these biomarkers in patients with DM remain un-
clear owing to limited evidence [77]. We hope to identify
novel biomarkers for DC screening.

Due to the undefined pathophysiology of DC, several
studies have attempted to investigate the role of pyroptosis
in DC. In early 2014, Luo et al. [78] reported that the ex-
pressions of NLRP3, ASC, caspase 1, and IL-1β increased
significantly in cardiomyocytes of STZ-treated diabetic rats
and that NLRP3 silencing or inhibition of caspase-1 reduced
their expression, alleviated left ventricular dysfunction, and
ultimately reversed myocardial remodeling in DC. Similar
findings were observed in a DC model developed from
C57BL/6J mice [79, 80]. Apart from the caspase-1 modu-
lated pathway, noncoding RNAs are also involved in this
process. Upregulation of microRNA-30d directly modulates
the downregulation of forkhead box class O 3a in STZ-
treated rats or high glucose-induced cardiomyocytes [81].
,e study has observed that knockdown of the long non-
coding RNA KCNQ1OT1 inhibits high glucose-induced
pyroptosis by upregulating miR-214-3p and reducing
caspase-1 expression in AC16 cells and primary car-
diomyocytes [82]. Similarly, another study suggested that
lncRNA-MALAT1 targeted miR-141-3p to promote HG-
induced H9C2 cardiomyocyte pyroptosis [83]. Moreover,
activation of the transforming growth TGF-β1/Smads
pathway in cardiac fibroblasts is repressed by KCNQ1OT1
knockdown [80]. A further study reported that hsa_-
circ_0076631, a caspase-1 related circRNA that suppresses
miR-214-3p, increased in high-glucose-treated car-
diomyocytes or serum from patients with diabetic [84].
Other noncoding RNAs, including AIM2 [85], miR-9 [86],
GAS5 [87], and MIAT [88], are also potential modulators of
pyroptosis in DC. A recent study demonstrated that the
circRNAs circ_0071269 might promote the development of
DC through the miR-145/GSDMA axis [89]. In addition,
overexpression of mitochondrial aldehyde dehydrogenase 2
can reduce the high glucose-induced occurrence of pyrop-
tosis in H9C2 cardiac cells [90].

Many drugs have been demonstrated to have some ef-
fects against pyroptosis (e.g., metformin [91], exendin-4
[92], pyrroloquinoline quinone (PQQ) [93], and skim-
ming) [94]. A natural coumarin derivative has been found to
protect against experimental DC by inhibiting pyroptosis in
cardiomyocytes [94]. Empagliflozin has also been confirmed
to alleviate the activation of NLRP3 and subsequent car-
diomyocyte pyroptosis in the diabetic heart [95]. Overall,
these studies indicate that the role of pyroptosis in DC and
inhibition of the pyroptosis pathway might have an ad-
vantage in their ability to protect DC.
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4. Conclusions and Prospects

In conclusion, the pathophysiological mechanisms un-
derlying DMCs are complex and unclear. However,
pyroptosis, a type of programmed cell death that triggers
inflammatory reactions, provides a novel perspective for
determining the mechanisms and therapeutic targets of
DMCs (Table 1). ,ese experiments have demonstrated the
involvement of pyroptosis in the pathophysiological process
of DMCs in vitro and in vivo. Based on an enhanced un-
derstanding of these existing results, we further explore how
pyroptosis and inflammasome are activated, including some
novel studies related to pyroptosis regulation and its re-
lationship with DMCs, to provide a promising avenue for
DMC prevention and treatment. ,ree new insights have
been discovered regarding the regulation of pyroptosis in
DMCs:

(1) ,e important causes of DMCs are oxidative stress
and inflammation resulting in pyroptosis. Based on
the antioxidative stress and antiinflammatory
strategies, we determined effective drugs or small-
molecule compounds against pyroptosis to improve
DMCs and further explored the regulation of
pyroptosis and its potential mechanisms, which will
open up a new direction for the prevention and
treatment of DMCs.

(2) ,e pro-inflammatory effect of pyroptosis is a key
factor in the development of DMCs. Some studies
have found that several upstream regulatory sig-
naling proteins, noncoding RNAs, and circRNAs
play a role in the upregulation of pyroptosis. Fur-
thermore, autophagy plays a protective role in the
inhibition of NLPR3 overactivation [96]. ,erefore,
further clarification of the regulatory mechanism of
pyroptosis and targeting these pathways will also be
an effective means to prevent and treat DMCs.

(3) ,e inflammatory response is an important factor in
the development of DMCs. Pyroptosis maintains or
expands inflammation by tightly controlling the
inflammatory response via the release of IL-1β and
IL-18. IL-1β and IL-18 are two essential pro-
inflammatory cytokines that are upregulated in
tissue-resident cells of patients and animals with
diabetes and are further induced by positive feedback
to pyroptosis to form inflammatory storms [97].
Based on the perspective of the upregulation of
different pro-inflammatory factors triggered by
metabolic and hemodynamic disorders, controlling
the chronic inflammatory microenvironment of
diabetes will provide potential insights into the
prevention and treatment of DMCs.

Nevertheless, whether some promising pyroptosis bio-
markers can be used as novel targets for diagnosing and
treating DMCs requires further investigation, particularly in
animal experiments and clinical studies. Further in-
vestigations into the exact molecular and regulatory
mechanisms of pyroptosis are necessary for DMCs.

Furthermore, GSDMD, as the ultimate pyroptosis protein,
should be investigated for its function in DMCs and to
determine whether inhibiting GSDMD is a more valuable
therapeutic target for these complications. Moreover, in-
hibition or activation of the pyroptosis pathway affects
various aspects of physiology and can have different effects.
It is necessary to consider the overall body balance when
studying drugs that target the pyroptosis pathway in DMCs.
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