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Hyperuricemia is a common disease caused by a high level of uric acid. Urate transporter 1 (URAT1) is an important protein and
mediates approximately 90% of uric acid reabsorption. �erefore, the URAT1 inhibitor is a class of uricosuric medicines widely
used in the clinic for the treatment of hyperuricemia. To �nd the new medicine with stronger URAT1 inhibition and lower
toxicity, researchers have been exploring natural products. �is study systematically summarizes the natural products with
URAT1 inhibition. �e results show that many natural products are potential URAT1 inhibitors, such as �avonoids, terpenoids,
alkaloids, coumarins, stilbenes, and steroids, among which �avonoids are the most promising source of URAT1 inhibitors. It is
worth noting that most studies have focused on �nding natural products with inhibition of URAT1 and have not explored their
activities and mechanisms toward URAT1. By reviewing the few existing studies of the structure-activity relationship and
analyzing common features of natural products with URAT1 inhibition, we speculate that the rigid ring structure and negative
charge may be the keys for natural products to produce URAT1 inhibition. In conclusion, natural products are potential URAT1
inhibitors, and exploring the mechanism of action and structure-activity relationship will be an important research direction in
the future.

1. Introduction

Uric acid is the end metabolite derived from the oxidation of
purine compounds [1]. Hyperuricemia is a chronic meta-
bolic disease caused by a high level of uric acid. Excessive
intake of purine-containing foods and insu�cient uric acid
excretion are the keys to causing hyperuricemia [2]. In
recent years, the incidence of hyperuricemia has continued
to increase worldwide, which may be related to changes in
lifestyle, such as the prevalence of a high-purine diet,
fructose beverages, and alcohol consumption [3, 4]. In
China, the overall prevalence of hyperuricemia is 13.3%, and
the prevalence in men is higher than in women [5]. In the
United States, the prevalence of hyperuricemia is 21.2% in
men and 21.6% in women [6]. Hyperuricemia is related to
the occurrence of many diseases, such as cardiovascular

disease, metabolic syndrome, and acute kidney injury [7].
�erefore, patients have an urgent need for e�cient and safe
therapeutic methods or drugs [8].

Reducing purine intake, inhibiting uric acid production,
and promoting uric acid excretion are e¡ective ways to treat
or improve hyperuricemia [9]. URAT1 inhibitors are
a widely used class of uricosuric drugs by inhibiting the
reabsorption of uric acid, such as probenecid, sul�npyra-
zone, and benzbromarone [10]. Although these drugs have
good uric acid lowering e¡ects, they all have varying degrees
of side e¡ects [11]. Currently, sul�npyrazone has been
withdrawn from most countries due to its severe gastro-
intestinal toxicity [12]. Benzbromarone has severe hepato-
toxicity and is currently approved for use in only a few
countries [13]. Even the newly approved lesinurad has renal
toxicity and cardiovascular toxicity [14]. �erefore, scholars
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have been exploring new URAT1 inhibitors with low
toxicity [15].

Natural products refer to components or metabolites
from animals, plants, insects, and microorganisms, such as
proteins, peptides, polysaccharides, and alkaloids [16–18].
Natural products have been used as medicines for thousands
of years. Moreover, the importance of natural products is
increasing day by day and has become an important source
of drug development [19]. At present, long-term clinical
practice has demonstrated that traditional Chinese medicine
(one of the important sources of natural products) has exact
efficacy in lowering serum uric acid without serious adverse
effects [20]. With the deepening of research, scholars have
found that natural products are expected to be the source of
new URAT1 inhibitors. +is study systematically summa-
rizes natural products with URAT1 inhibition. +e results
showed that flavonoids, terpenoids, alkaloids, coumarins,
stilbenes, steroids, organic acids, and polysaccharides show
inhibitory effects of URAT1, which can inhibit URAT1
activity and promote uric acid excretion. However, most
studies have focused on finding natural products with in-
hibition of URAT1 and have not explored their activities and
mechanisms towards URAT1. By reviewing the few existing
studies on the structure-activity relationship studies and
analyzing common features of natural products with URAT1
inhibition, we speculate that the rigid ring structure and
negative charge may be the keys for natural products to
produce URAT1 inhibition. In conclusion, natural products
are valuable sources of URAT1 inhibitor, and exploring the
mechanism of action and structure-activity relationship will
be an important research direction in the future.

2. Pathological Processes of Hyperuricemia and
the Role of URAT1

Uric acid, also known as 2,6,8-trihydroxypurine, is a het-
erocyclic carbonyl compound with a relative molecular
weight of 168 [21]. Uric acid is mainly produced by the
metabolism of endogenous and dietary purine compounds
under the action of xanthine oxidase in the liver (Figure 1)
[22]. Hyperuricemia refers to an excessively high concen-
tration of uric acid in the blood. +at is, uric acid con-
centration <7.0mg/dl in men or <6.0mg/dl in women [23].
As a metabolic disease, hyperuricemia is closely related to
the occurrence and development of many diseases, such as
gout, hypertension, heart disease, and diabetes [24]. +e
appearance of gout is most closely related to hyperuricemia.
+is is because an excessively high concentration of uric acid
is easily deposited in the articular cavity in body tissue,
causing pain, edema, and inflammation in the joints, finally
inducing gout [25].

+e metabolic disorder of uric acid includes excessive
uric acid production and decreased uric acid excretion [26].
Causes of excess uric acid production include the intake of
purine-rich foods, such as seafood and meat, and the in-
creased concentrations or activities of intermediate meta-
bolic enzymes of uric acid, such as xanthine oxidase [27].
Since more than 70% of uric acid in the human body is
produced by metabolism, inhibiting the activities of

metabolic enzymes can effectively inhibit the production of
uric acid [28]. +erefore, xanthine oxidase inhibitors such as
allopurinol, febuxostat, and topiroxostat are the drugs of
choice for the clinical treatment of hyperuricemia and gout
[29]. In addition, the main reason for the decrease in uric
acid excretion is closely related to the insufficient renal
excretion capacity. +is is because the kidney is the main
excretory organ of uric acid, andmore than 2/3 of uric acid is
excreted from the kidney [30]. +erefore, promoting the
excretion of uric acid by the kidney by regulating the ac-
tivities of uric acid transporters is an effective method to
treat hyperuricemia and gout. Current studies have found
that uric acid transport-related proteins mainly include uric
acid reabsorption-related proteins and uric acid secretion-
related proteins (Figure 2). Proteins related to uric acid
reabsorption include URAT1, glucose transporter 9
(GLUT9), organic anion transporter 4 (OAT4), and organic
anion transporter 10 [31]. Proteins related to uric acid se-
cretion include organic anion transporter 1, organic anion
transporter 2, organic anion transporter 3, sodium-
dependent phosphate transport protein 1 (NPT1),
sodium-dependent phosphate transport protein 4, ATP-
binding cassette superfamily G2 (ABCG2), multidrug re-
sistance protein 4 (MRP4), and urate transporter (UAT)
[32]. Among these proteins, URAT1 is a highly valuable
potential therapeutic target.

URAT1 is encoded by the SLC22A12 gene, which is lo-
cated on chromosome 11q13, contains 10 exons and 9 in-
trons, encodes 555 amino acids, and has 12 transmembrane
domains [33]. URAT1, originally called the renal-specific
transporter, is a member of the organic anion transporter
family and the first protein to be involved in renal uric acid
transport [34]. Figure 2 shows that URAT1 is located in the
renal tubule epithelial cell apical membrane and mediates the
exchange of uric acid in the lumen with inorganic and organic
anions in the proximal tubular epithelial cells, thus reab-
sorbing uric acid from the lumen into epithelial cells [35].
Although URAT1 is not the only protein that mediates uric
acid re-absorption, the importance of URAT1 is reflected in
its strong transport capacity: approximately 90% of uric acid
re-absorption is mediated by URAT1 [36]. +erefore, con-
sidering the important role of URAT1 in uric acid re-
absorption, URAT1 inhibitors are considered highly effec-
tive and promising drugs for the treatment of hyperuricemia.
As early as 2002, related studies explored the possibility and
value of URAT1 as a target for reducing uric acid and first
proposed the development of URAT1 inhibitors [37]. So far,
researchers have developed a variety of URAT1 inhibitors,
such as probenecid, benzbromarone, lesinurad, and doti-
nurad [12]. +ese drugs can effectively inhibit the reab-
sorption of uric acid by URAT1 and promote the excretion of
uric acid, thus exerting a uric acid-lowering effect.

3. Natural Products with URAT1 Inhibitory
Effects

Due to the great potential of URAT1 inhibitors in the
treatment of hyperuricemia and gout, researchers have been
exploring new URAT1 inhibitors [38]. As an important
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source of new drugs, natural products have received more
and more attention for their inhibitory effects on URAT1
[39]. Table 1 summarizes the species, main sources, and
inhibitory effects of URAT1 of these natural products. It can
be seen that many of the natural products with URAT1
inhibition are flavonoids [45, 52, 53]. In addition, some
terpenoids, alkaloids, coumarins, stilbenes, and steroids also
show a URAT1 inhibitory effect [60, 66, 68, 74, 77]. How-
ever, most studies have focused on finding natural products
with inhibition of URAT1 and have not explored their
mechanisms toward URAT1 [63, 64]. +erefore, exploring
the mechanism of action will be an important research
direction in the future.

3.1. Flavonoids. Flavonoids are a class of secondary plant
metabolites widely present in a variety of plants and are the
active components of many Chinese herbal medicines.
Chemical structure generally refers to the connection of two

benzene rings (ring A and ring B) through three carbon
atoms to form the structure C6-C3-C6 [78]. Flavonoids
contain many subclasses based on the connection position of
the B and C rings as well as the degree of saturation, oxi-
dation, and hydroxylation of the C ring [79]. Currently,
studies have shown that many natural products with URAT1
inhibitory effects belong to flavonoids, and the subclasses
include flavones, flavonols, flavanols, flavonones, flavano-
nols, isoflavones, and xanthones. Figure 3 further summa-
rizes the structural formulas of these flavonoids.

3.1.1. Flavones. It can be seen in Figure 3 that flavones are
characterized by containing a double bond between positions 2
and 3 and a ketone in position 4 of the C ring [80]. Currently,
flavones with the inhibitory effect of URAT1 include chrysin,
apigenin, baicalein, nobiletin, and luteolin. +e structures of
these flavones are very similar, except for nobiletin (the sub-
stituents are all methoxy). +ey have hydroxyl groups at
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positions 5 and 7 of the A ring, and the differences are reflected
in the number of hydroxyl groups at positions 3, 4, and 5 of the
B ring. Chrysin is mainly derived from propolis, blue passion
flower, and honey [81]. In rats induced by high fructose corn

syrup hyperuricemia, chrysin (50–150mg/kg) could inhibit the
expression of URAT1 and promote uric acid excretion [44].
+e main sources of apigenin are the leafy herbs parsley and
dried chamomile flowers [82]. Cellular experiments showed
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that apigenin (3.125–100μM/l) could inhibit cellular uptake of
uric acid in HK-2 cells treated with uric acid by inhibiting
URAT1 expression [42]. Li et al. found that apigenin
(IC50� 0.64μM/l) not only competitively inhibited URAT1
activity in vitro, but also (100mg/kg) promoted uric acid
excretion by inhibiting URAT1 activity in potassium oxonate-
induced hyperuricemic nephropathy mice [43]. +e main
source of baicalein is the root of Scutellaria baicalensis. Bai-
calein (IC50� 31.56μM/l) could non-competitively inhibit
URAT1 activity in vitro and (200mg/kg) improved renal urate
excretion by inhibiting URAT1 expression in potassium
oxonate-induced hyperuricemiamice. Protein docking analysis
revealed that baicalein interacted with Ser35 and Phe241 of
URAT1 [41]. Nobiletin is a highly methoxylated flavone
compound, especially abundant in citrus [40]. Cell experiments
showed that nobiletin (IC50�17.6μM/l) could inhibit URAT1
expression and uric acid uptake in 293A cells expressing
URAT1 treated with uric acid [51]. Luteolin is widely found in
fruits and vegetables [83]. +e animal experiment showed that
both luteolin (3–10mg/kg) and luteolin-4′-O-glucoside
(20–100mg/kg) could inhibit URAT1 expression and promote
uric acid excretion in potassium oxonate-induced hyperuri-
cemia mice [45].

3.1.2. Flavonols. It can be seen in Figure 3 that flavonols are
characterized by containing a hydroxyl group at position 3 of
the C ring [84]. Current studies show that six flavonols are
promising as URAT1 inhibitors, which are gossypetin,
quercetagetin, quercetin, fisetin, morin, and rutin. Cellular
experiments showed that gossypetin (isolated from Hibiscus
sabdariffa flowers), quercetagetin (isolated from tagetes
flowers), and quercetin (widespread in vegetables and fruits)
could inhibit URAT1 expression and uric acid uptake in
293A cells expressing URAT1, and the IC50 values were
31.3 μM/l, 18.4 μM/l, and 12.6 μM/l, respectively [50, 85–87].
Rutin, also called rutoside, quercetin-3-rutinoside, and
sophorin, is abundant in vegetables and fruits, such as
passion flower, tea, apple, asparagus, blackberry, quince,
cherry, and red plum [88]. Fisetin is also widely found in
vegetables and fruits, such as strawberry, blueberry, apple,
grape, persimmon, kiwi, and cucumber [89]. +e source of
morin is mainly Moraceae plants [90]. Animal studies have
shown that fisetin (50–100mg/kg), morin (10–40mg/kg),
and rutin (25–100mg/kg) could inhibit URAT1 activity and
promote uric acid excretion in potassium oxonate-induced
hyperuricemia mice [46–49].

3.1.3. Flavanols. Compared to flavonol, the structural
characteristic of flavanol is that the C ring has no carbonyl
group and the double bond at positions 2 and 3 is hydro-
genated [91]. Flavanols are divided into flavan-3-ols and
flavan-3,4-diols according to the position of the hydroxyl
group in the C-ring. Current research has shown that only
epigallocatechin-3-gallate, the main component of green tea
polyphenols, has a URAT1 inhibitory effect [92]. As can be
seen from the structure, epigallocatechin-3-gallate is an ester
formed by epigallocatechin and gallic acid and belongs to the
flavan-3-ols.+e animal study showed that epigallocatechin-

3-gallate (10–50mg/kg) inhibited the expression of URAT1
and promoted uric acid excretion in hyperuricemia mice
induced by potassium oxonate [53].

3.1.4. Flavonones. It can be seen in Figure 3 that the
structural characteristic of flavonone is that the double bond
at positions 2 and 3 of the C ring is hydrogenated [93].
Current research shows that flavonones with the inhibitory
effect of URAT1 include hesperetin, naringenin, and iso-
bavachin [94]. Both hesperetin and naringenin derive
mainly from citrus fruits such as oranges and lemons [95].
Isobavachins are derived from the seeds of Psoralea cor-
ylifolia L. [96]. Hesperetin (IC50 �17.6 μM/l) and naringenin
(IC50 �16.1 μM/l) could inhibit URAT1 expression and uric
acid uptake in URAT1-expressing 293A cells [51]. Iso-
bavachin could also inhibit URAT1 expression and uric acid
uptake in URAT1-expressing HEK293 cells (IC50 � 0.39 μM/
l) and promote uric acid excretion in potassium oxonate-
induced hyperuricemia mice (10mg/kg) [52].

3.1.5. Flavanonols. It can be seen in Figure 3 that flavanonol
is produced by hydrogenation of the double bond at posi-
tions 2 and 3 of the C ring of flavonol [97].+e current study
showed that only astilbin, a flavanonol glucoside of Smilax
glabra, has the inhibitory effect of URAT1 [98]. In potassium
oxonate-induced hyperuricemia mice, astilbin (5–20mg/kg)
inhibited URAT1 expression and promoted the excretion of
uric acid [54, 55].

3.1.6. Isoflavones. Compared to flavone, the structural
characteristic of isoflavone is that the B ring is attached to the
3-position of the C ring [99]. Current research has shown
that only genistein derived from plants of Leguminoseae has
the inhibitory effect of URAT1 [100]. In potassium oxonate-
induced hyperuricemia mice, genistein (10–20mg/kg)
inhibited URAT1 expression and promoted uric acid
excretion [56].

3.1.7. Xanthones. Xanthones (dibenzo-c-pyrones) consti-
tute an important class of oxygenated heterocycles and occur
as secondary metabolites in plants and microorganisms.
Xanthones do not conform to the basic skeleton of C6-C3-C6,
but are also classified as flavonoids due to their benzo
c-pyranone structure [101]. Current research has shown that
xanthones with the inhibitory effect of URAT1 include
mangiferin and mangiferin aglycon, and they mainly derive
from Mangifera indica L. [102]. +e animal experiment
showed that mangiferin (1.5–24.0mg/kg) and mangiferin
aglycon (10–30mg/kg) inhibited URAT1 expression and
promoted uric acid excretion in potassium oxonate-induced
hyperuricemia mice [57, 58].

3.2. Terpenoids. Terpenoids consist of isoprene units and
can be divided into hemiterpenes, monoterpenes, sesqui-
terpenes, diterpenes, disesquiterpenes, triterpenes, and
polyterpenes according to the number of units containing
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isoprene [103].+e current study shows that terpenoids with
an URAT1 inhibitory effect include monoterpenes and
triterpenes (Figure 4).

Only two iridoids among monoterpenes show the
URAT1 inhibitory effect, including loganin and geniposide.
Loganin is a common iridoid glycoside derived from Cornus
officinalis [104]. Geniposide is also an iridoid glycoside and
an important active ingredient of Gardenia jasminoides
[105]. Studies have shown that both loganin (20–40mg/kg)
and geniposide (100–200mg/kg) could inhibit URAT1 ac-
tivity and promote uric acid excretion in potassium oxonate-
induced hyperuricemia mice [63, 65].

Triterpenoids with URAT1 inhibitory effect are mainly
a series of quassinoids extracted from Eurycoma longifolia,
including eurycomanol, eurycomanone, 13β,18-dihy-
droeurycomanol, Δ4,5,14-hydroxyglaucarubol, 13β,21-
dihydroxyeurycomanol, 13β,21-dihydroxyeurycomanone,
and 13α(21)-epoxyeurycomanone [66]. +e structural

differences of these quassinoids are reflected in the dif-
ferences of the substituents of the 2 and 21 positions. +e
cellular experiment showed that these quassinoids (50 μM/
l) decreased urate uptake in HEK293T cells expressing
URAT1 by inhibiting URAT1 activity [66]. Furthermore,
emodinol, a triterpenoid extracted from Elaeagus pungens,
also had the inhibitory effect of URAT1, which (25–100mg/
kg) inhibited the expression of URAT1 and promoted uric
acid excretion in potassium oxonate-induced hyperurice-
mia mice [67, 106].

3.3. Coumarins. Coumarin is a general term for a class of
natural compounds with benzo-α-pyrone core, which can be
regarded as lactones formed by the dehydration of cis-o-
hydroxycinnamic acid [107]. Currently, studies have shown
that a variety of coumarins have an inhibitory effect on
URAT1 (Figure 5), including psoralen and isopsoralen
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(extracted from Cullen corylifolium) [108], imperatorin and
isoimperatorin (extracted from Angelica dahurica and An-
gelica sinensis) [109], xanthotoxin (extracted from Zan-
thoxylum bungeanum) [110], fraxetin and fraxin (extracted
from Fraxinus chinensis) [111], and osthol (extracted from
Clinopodium megalanthum) [112]. Osthol, fraxetin, and
fraxin are simple coumarins characterized by the 7-position
hydroxyl group not forming a furan or pyran ring with the 6-
or 8-position isopentenyl group. Studies have shown that
osthol (IC50 � 78.8 μM/l) could non-competitively inhibit
URAT1 activity in vitro, and both fraxetin and fraxin
(20–40mg/kg) could negatively regulate URAT1 expression
in potassium oxonate-induced hyperuricemia mice [60, 61].
Xanthotoxin, psoralen, imperatorin, and isoimperatorin are
linear furocoumarins formed by the condensation of the 7-
position hydroxyl group with the 6-position isopentenyl
group. Isopsoralen is an angular furocoumarin formed by
condensation of the 7-position hydroxyl group with the 8-
position isopentenyl group. Animal studies have shown that
these furocoumarins (20–40mg/kg) inhibited URAT1 ac-
tivity and promoted uric acid excretion in mice with po-
tassium oxonate-induced hyperuricemia nephropathy
[59, 60].

3.4. Stilbenes. Stilbenes refer to the general term of
monomers with a 1,2-diphenylethylene skeleton and their
polymers [113]. Current studies show that stilbenes with
URAT1 inhibitory effects include resveratrol, polydatin, and
mulberroside A (Figure 6). Resveratrol is a well-known
stilbene compound present in grapes, soybeans, berries,
pomegranate, and peanuts [114]. Animal experiments have
shown that resveratrol (10–40mg/kg) could promote uric
acid excretion by inhibiting URAT1 activity in potassium
oxonate-induced hyperuricemia mice. Furthermore, the
researchers believed that this was related to inhibiting the
activation of the inflammatory response, namely inhibiting
the NLRP3 (NOD-like receptor family, pyrin domain-
containing 3) inflammasome and TLR4 (toll-like receptor
4)/MyD88 (myeloid differentiation factor 88)/NF-κB (nu-
clear factor-κB) signaling pathway [62]. In addition to
resveratrol, Chen et al. found that the resveratrol tetramer
(20–60mg/kg) could also inhibit URAT1 activity and
promote uric acid excretion in mice with potassium
oxonate induced hyperuricemia mice [77]. Polydatin and
mulberroside A are two stilbene compounds with a very
similar structure derived from Polygonum cuspidatum and
Morus alba L., respectively [115, 116]. In potassium oxonate-
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induced hyperuricemia mice, polydatin (20–40mg/kg) and
mulberroside A (10–40mg/kg) could down-regulate the
expression of URAT1 in the kidney and promote uric acid
excretion [63, 64].

3.5. Alkaloids. Alkaloids are a class of nitrogen-containing
organic compounds derived primarily from plants [117].
Current studies show that alkaloids with URAT1 inhibition
include betaine, nuciferine, berberine, and dihydroberberine
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(Figure 6). Betaine is a quaternary ammonium-type alkaloid
derived from beet [118]. Nuciferine is an aporphine alkaloid
extracted from Nelumbo nucifera [119]. Berberine and
dihydroberberine are two isoquinoline alkaloids derived
from Coptis chinensis and Phellodendron chinense [119, 120].
Animal experiments showed that betaine (5–40mg/kg),
nuciferine (5–40mg/kg), berberine (6.25–25.0mg/kg) and
dihydroberberine (25–50mg/kg) could inhibit URAT1 ex-
pression and promote the excretion of uric acid in potassium
oxonate-induced hyperuricemia mice [68–71].

3.6. Steroids. Steroid is a general term for a large class of
compounds with the basic skeleton structure of
perhydrocyclopentano-phenanthrene [121]. Current studies
have shown that steroids with an inhibitory effect of URAT1
include withaferin A, dioscin, and tigogenin (Figure 6).
Dioscin is an isospirostane glycoside mainly extracted from
the fenugreek plant [122]. Su et al. found that dioscin
(319.22–1276.86mg/kg) could negatively regulate URAT1
expression in potassium oxonate-induced hyperuricemia
mice [72]. Tigogenin is a spirostane glycoside extracted from
Agave sisalana [123]. Zhang et al. found that tigogenin
(10–100 μM/l) could decrease uric acid uptake in URAT1-
expressing HCT116 cells by inhibiting URAT1 activity [73].
Withaferin A extracted from Withania somnifera, is a ste-
roidal lactone [124]. In potassium oxonate-induced hyper-
uricemia mice, withaferin A (3–10mg/kg) negatively
regulated URAT1 expression in the kidney and promoted
uric acid excretion [74].

3.7. Other Natural Products. Chlorogenic acid is an organic
acid derived from honeysuckle [125]. In vitro research
showed that chlorogenic acid (0.75mmol/l) could inhibit
uric acid reuptake in URAT1 expressing-HEK293T cells by
inhibiting URAT1 expression [75]. Liang et al. isolated 2,5-
dihydroxyacetophenone from Ganoderma applanatum,
which (20–80mg/kg) could inhibit URAT1 activity in mice
induced by potassium oxonate hyperuricemia [76]. Li et al.
isolated a pure polysaccharide ULP from Ulva lactuca
consisting of rhamnose, glucuronic acid, galactose and xy-
lose at a molar ratio of 32.75 : 22.83 :1.07 : 6.46 with a mo-
lecular weight of 2.24×105Da. In potassium oxonate-
induced hyperuricemia mice, ULP (10–50mg/kg) inhibi-
ted the expression of URAT1 and promoted uric acid ex-
cretion [126].

4. Review and Speculation of the Structure-
Activity Relationship

Currently, most studies have focused on finding natural
products with inhibition of URAT1 and have not explored
their activities and mechanisms toward URAT1. +erefore,
in addition to exploring the mechanism of action, exploring
the structure-activity relationship will be another important
research direction in the future. By reviewing the few
existing studies on the structure-activity relationship studies
and analyzing common features of natural products with
URAT1 inhibition, we speculate that the rigid ring structure

and negative charge may be the keys for natural products to
produce URAT1 inhibition. We hope that the analysis and
speculation in this chapter can broaden the current un-
derstanding and trigger further interest in exploring the
relationship between structure and URAT1 inhibition of
natural products.

First, natural products may need to contain rigid
structures. It can be found that among these natural
products with URAT1 inhibition, almost all of them have
a rigid ring structure. For example, one third of natural
products with URAT1 inhibition are flavonoids. It can be
seen from the structure of the flavonoid that two benzene
rings connected to an oxygen-containing pyranyl group are
a typical rigid plane molecular structure [127]. Polycyclic
terpenoids, such as quassinoids, also contain unique rigid
ring backbones [128]. In addition, other compounds also
contain rigid ring structures, such as the benzene ring, the
naphthalene ring, or the pyridine ring. +erefore, the
presence of a rigid structure may be one of the elements that
natural products must use to inhibit URAT1.

Second, natural products may require anions to act as
URAT1 inhibitors. Wempe et al. evaluated the inhibitory
effect of a series of (2-ethylbenzofuran-3-yl) (substituted-
phenyl) methanone compounds on URAT1 activity in oo-
cytes expressing hURAT1. +e experimental data indicated
that a potent hURAT1 inhibitor requires an anion (that is,
a formal negative charge) to interact with the positively
charged URAT1 binding pocket [129]. +e C-ring of fla-
vonoids is an electron-rich region with a strong negative
charge. +is partially explains the inhibitory activities of
flavonoids in URAT1 [130]. Furthermore, most natural
products with URAT1 inhibition also contain phenolic
hydroxyl groups, so that these compounds can show acidity
and generate anions [131]. However, alkaloids including
betaine, nuciferine, berberine, and dihydroberberine also
show inhibition of URAT1, so the presence of anions may
not be a determinant of whether a natural product has
inhibition of URAT1.

5. Conclusion and Prospects

In summary, current studies have shown that many natural
products have a URAT1 inhibitory effect and are expected to
be developed as URAT1 inhibitors, including flavonoids,
terpenoids, alkaloids, coumarins, stilbenes, steroids, organic
acids, and polysaccharides. +e number of flavonoids is the
largest among them, including many subtypes. Animal
experiments have shown that these natural products can
inhibit URAT1 activity in hyperuricemia mice and promote
uric acid excretion. By reviewing the few existing studies on
the structure-activity relationship studies and analyzing
common features of natural products with URAT1 in-
hibition, we speculate that the rigid ring structure and
negative charge may be the keys for natural products to
produce URAT1 inhibition.

Although studies have confirmed that natural products
are promising as URAT1 inhibitors, there are still some
issues that need to be addressed in the future. First, the
mechanism by which these natural products inhibit URAT1
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is unclear. +erefore, more research is needed to explore the
mechanism of action. Second, current research is still in the
experimental study stage and it is necessary to carry out
clinical research to further explore its therapeutic effects.
+ird, the relationship between structure and URAT1 in-
hibitory activity requires further investigation. In addition to
the rigid ring structure and negative charge, what other
structural features are essential for the URAT1 inhibitory
effect of natural products? Fourth, structural modification is
a commonmethod to improve the therapeutic effect of drugs
and reduce side effects. +erefore, structural modification
based on clarifying the structure-activity relationship of
natural products to improve the inhibitory activity of
URAT1 may be a key research direction in the future.
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