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Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83
million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and
relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-
perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug.
FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their
chemosensitivity. �ere were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding
targets responsible for the pathological processes in LC. �ese FDY003 targets were functionally involved in regulating the
survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades
connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways.
Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.

1. Introduction

Liver cancer (LC) is the sixth-most frequently occurring and
the second-most fatal malignancy, responsible for 0.83
million deaths annually [1]. Molecular-targeted and immune
checkpoint therapies serve as the main treatment strategies
for LC in clinical settings [2]. However, such treatment
options and their e�cacy are largely restricted to a few
patients, which emphasizes the need to design and develop
e�ective therapeutics for LC treatment [2]. �ere is growing
recognition of herbal drugs as potent therapeutics for LC
treatment to augment treatment e�cacy while minimizing
the adverse e�ects of anticancer strategies [3–7]. Herbal
drugs possess bene¡cial properties, increasing survival and
tumor response rates, enhancing the treatment e�cacies and
immune functions, increasing the quality of life, and

inhibiting the development of side e�ects caused by anti-
cancer treatments in patients with LC [3–7].

FDY003 is an herbal drug composed of Cordyceps
militaris (Cm), Artemisia capillaris �unberg (AcT), and
Lonicera japonica �unberg (LjT). It has antiproliferative
and proapoptotic activities in cancer cells [8–11]. �ese
anticancer activities arise primarily from the functional
regulation of many oncogenes, tumor suppressors, and their
cancer-associated signaling cascades [8–11]. However, the
anticancer activity of FDY003 against LC and its mechanistic
characteristics from an integrated systems view remain
unclear.

Network pharmacology is a ¡eld that is e�cient for
dissecting synergistic mechanistic characteristics of herbal
drugs based on their related pharmacological and bio-
medical data [12–19]. �is strategy merges the herbal drug-
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associated comprehensive information into networks that
represent the interaction between herbal medicines, bioac-
tive components, and therapeutically targeted genes and
proteins [12–19]. Network pharmacology seeks the syner-
gistic mechanisms of herbal drugs by assessing the func-
tional, structural, and topological nature of their associated
networks [12–19]. Based on the network pharmacology, we
assessed the therapeutic role of FDY003 in LC and evaluated
the underlying systematic mechanisms.

2. Materials and Methods

2.1. Cell Culture. (e HepG2 human LC cell line was ob-
tained from the Korean Cell Line Bank (Seoul, Korea) and
cultured in Dulbecco’s modified Eagle medium (WELGENE
Inc., Gyeongsang, Korea) supplemented with antibiotics
(penicillin-streptomycin) ((ermo Fisher Scientific, Inc.,
Waltham, MA, USA) and 10% fetal bovine serum (FBS)
(WELGENE Inc.). (e cells were grown in a humidified
incubator at 37°C with 5% CO2.

2.2. Herbal Drug Preparation. For the preparation of
FDY003, dried raw AcT (150.0 g), LjT (150.0 g), and Cm
(100.0 g) were obtained from Hanpure Pharmaceuticals
(Pocheon, Korea), mixed, and ground. (e herbal mixture
was dispersed in 70% ethanol (500mL) and subjected to a 3 h
reflux extraction process at −80°C. After purifying the herbal
extracts with 80% and 90% ethanol solutions successively,
they were lyophilized at −80°C and the resulting 50.4 g of
freeze-dried extracts were stored at −20°C. We used distilled
water to dissolve the prepared FDY003 samples before
further experiments.

2.3. Analysis of Cell Viability upon Drug Treatment. (e
viability of the drug-treated cells was analyzed by water-
soluble tetrazolium salt (WST-1) experiments. Cells
(1.0×104) were seeded and cultured in 96-well plates and
treated with FDY003, sorafenib (Sigma-Aldrich, St. Louis,
MO, USA), or both for 72 h. Next, cells were incubated for
2 h with WST-1 solution (Daeil Lab Service Co. Ltd., Seoul,
Korea) at 37°C and 5%CO2.(e cell viability was assessed by
measuring the absorbance (450 nm) of the samples on an
xMark microplate absorbance spectrophotometer (Bio-Rad,
Hercules, CA, USA).

2.4. Screening for Bioactive Chemical Components. First, we
investigated comprehensive herbal medicine-related da-
tabases (e.g., a bioinformatics analysis tool for the mo-
lecular mechanism of traditional Chinese medicine [20],
an anticancer herbs database of systems pharmacology
[21], and the traditional Chinese medicine systems
pharmacology [22]) and acquired large-scale data for the
chemical composition of FDY003. For these components,
we used pharmacokinetic parameters, namely drug-like-
ness, Caco-2 permeability, and oral bioavailability, for the
screening of the bioactive chemical components, as pre-
viously described [14, 22, 23]. Drug-likeness determines

whether a given chemical component can adequately serve
as a drug based on its molecular structure and physico-
chemical properties [22, 24]. A chemical component with
a drug-likeness equal to or greater than 0.18 (the mean
drug-likeness based on the currently available drugs) is
considered to have adequate drug-like functions [22, 24].
(e Caco-2 permeability determines whether a given
chemical component has adequate intestinal absorption
and permeability [22, 25–27]; a chemical component with
Caco-2 permeability equal to or greater than −0.4 is
considered to have adequate intestinal permeability and
absorption activity [28, 29]. Oral bioavailability deter-
mines whether an orally administered chemical compo-
nent has an adequate delivery rate to reach the target sites
of drug action [22, 30]. A chemical component with an
oral bioavailability equal to or more than 30% is con-
sidered to have adequate absorption in the human body
[22, 30]. (us, chemical components with drug-like-
ness ≥ 0.18, Caco-2 permeability ≥−0.4, and oral bio-
availability ≥ 30% [14, 22, 23] were considered bioactive.

2.5. Target Screening. To screen the targets of the identified
bioactive chemical components of FDY003, we investigated
their simplified molecular input line entry system notation
using PubChem [28] and imported the information into the
diverse tools and databases used to evaluate the molecular
interactions between the chemical components and genes
and proteins as follows: PharmMapper [29], Similarity
Ensemble Approach [31], SwissTargetPrediction [32], and
Search Tool for Interactions of Chemicals 5 [33]. Among the
FDY003 targets, the genes and proteins significantly asso-
ciated with the LC pathological mechanisms were examined
using “liver cancer” and “hepatocellular carcinoma” as query
keywords in the following tools and databases: Pharmaco-
genomics Knowledgebase [34], Online Mendelian Inheri-
tance in Man [35], Human Genome Epidemiology
Navigator [36], DisGeNET [37], Comparative Tox-
icogenomics Database [38], (erapeutic Target Database
[39], GeneCards [40], and DrugBank [41].

2.6. Generation and Analysis of Herbal Drug-Associated
Networks. Herbal drug-associated networks consist of
nodes (which refer to the herbal components, chemical
components, targeted genes and proteins, and pathways)
and edges (which refer to the interactions among the net-
work nodes) [42]. (e node degree represents the number of
edges for a given node [42].(e herbal component–chemical
component–target (H-C-T) network uses herbal compo-
nents, chemical components, and targeted genes and pro-
teins of FDY003 as nodes and their molecular interactions
and associations as the edges. (e H-C-T-Pathway (H-C-T-
P) network was created by linking the targets of the H-C-T
network to their correspondingly enriched LC-related sig-
naling cascades. (e protein-protein interaction (PPI)
network used FDY003 targets as nodes and their interaction
information (interactions with high confidence obtained
from STRING [43]) as edges. Network generation and
analysis were performed using the Cytoscape tool [44].
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2.7. Analysis of Correlation between the Survival of Patients
with LC and the Expression Profiles of FDY003 Targets.
(ecorrelations between the survival of patientswith LC and the
expression profiles of LC-associated targets of FDY003 were
analyzed using the Kaplan–Meier Plotter [45], a commonly used
database for the survival analysis with large-scale gene expres-
sion profiles and survival information of patients with various
cancer types obtained from(e Cancer Genome Atlas (TCGA)
[46], the Gene Expression Omnibus (GEO) [47], and the Eu-
ropean Genome-phenome Archive (EGA) [48]. (e survival
analysis was performed using an auto-selected best cut-off and
the results with p< 0.05 (log-rank test) were regarded to be
statistically significant. (e clinical information of the included
patients for the survival analysis is provided in Supplementary
Table S1.

2.8. Exploration of Functional Enrichment of FDY003 Targets.
(e Gene Ontology (GO) and pathway enrichment of
FDY003 targets were analyzed using the Database for An-
notation, Visualization, and Integrated Discovery (DAVID)
[49] and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [50], respectively, and the results having p< 0.05
were regarded to be statistically significant.

2.9. Investigation of Binding Affinities between the Chemical
Components and Targets of FDY003. To assess the binding
affinities between the chemical components and corre-
sponding targets of FDY003, we calculated the binding
energies. First, we imported the molecular structures of the
bioactive components of FDY003 (obtained from the RCSB
Protein Data Bank [51]) and their targets (obtained from
PubChem [28]) into AutoDock Vina [52] and calculated the
resulting binding energies. As suggested earlier [53, 54], the
binding affinities between the chemical components and
targets were considered to be highly significant if their
corresponding binding energies were≤−5.0.

3. Results

3.1. Inhibitory Role of FDY003 in LC. To assess the action of
FDY003 against LC, HepG2 human LC cells were treated
with FDY003 and/or sorafenib (a first-line therapeutic
agent for LC treatment [2]), and the effects of the treat-
ment on the cells were monitored. FDY003 significantly
reduced the viability of HepG2 cells; the viability of the
cells was further inhibited upon treatment with a com-
bination of the herbal drug and sorafenib (Supplementary
Figures S1A and S1B). (ese observations suggest that
FDY003 exhibits inhibitory and chemosensitizing effects
on the LC cells.

3.2. Identification of Bioactive Components and Targets of
FDY003. As previously described, we selected FDY003
constituents with Caco-2 permeability ≥−0.4, drug-
likeness ≥ 0.18, and oral bioavailability ≥ 30%, and con-
sidered them as bioactive components (Supplementary
Tables S2 and S3) [8, 14, 22, 23]. Several components

having potent anticancer functions against LC were also
included in the list of bioactive components, despite their
failure to meet the inclusion criteria (Supplementary
Tables S2 and S3). Using the databases for examining the
molecular binding interactions between the chemical
components and genes and proteins, a total of 379 targets
were investigated. Among them, 91 were determined to
be associated significantly with the LC pathological
mechanisms based on previous cancer biology and on-
cological studies (Figure 1, and Supplementary Tables S4
and S5).

3.3. Network Analysis of Poly-Pharmacological Mechanisms
UnderlyingFDY003Effects inLCTreatment. For the network
pharmacology analysis, first, we united the FDY003-asso-
ciated data and knowledge into an H-C-Tnetwork (Figure 2,
and Supplementary Table S4 and S5). Among the targets in
this network, 20.1% (19 of 91 targets), 23.1% (21 of 91 tar-
gets), and 74.7% (68 of 91 targets) were linked to the
chemical components kaempferol, luteolin, and quercetin,
respectively (Figure 2 and Supplementary Table S4), which
demonstrated their key roles in exerting anti-LC effects of
FDY003. Moreover, 70.3% (64 of 91 targets) were linked to
two or more chemical components (Figure 2), which in-
dicated the synergistic poly-pharmacological nature of the
herbal drug.

Analytical investigation of complex interactions among
the therapeutic targets of a given drug is pivotal for un-
derstanding the underlying treatment mechanisms [55–59].
(us, we constructed a PPI network consisting of large-scale
interactions among the FDY003 targets to further dissect
their pharmacological features (Figure 3). For analyzing the
network topology of the PPI network, we identified the
network hubs having a relatively large number of interacting
partners as compared to the nonhubs; they had a high
probability of being effective drug targets [60, 61]. As de-
scribed previously, nodes with number of edges≥ 2× the
average node degree were considered hubs [62, 63]. As a
result, the identified hubs were AKT1, AR, EGFR, ESR1,
JUN, PIK3R1, SRC, TP53, and VEGFA (Figure 3), which
suggests that they were the primary nodes mediating the
therapeutic roles of FDY003 in LC. Additionally, the ex-
pression status of these hubs could estimate the survival rate
of patients with LC (Figure 4), which suggests their prog-
nostic roles.

To understand the mechanisms of action of FDY003 in
LC treatment, we evaluated the GO terms and pathways that
were functionally enriched for the targets. (e results
showed that the FDY003 targets were functionally involved
in the control of survival and proliferative behaviors, apo-
ptosis, and cell cycle of LC cells (Supplementary Figure S2),
which suggests the potential FDY003 mechanisms in the LC
treatment. Additionally, FDY003 could target key signaling
cascades connected to diverse LC pathological mechanisms
(Figure 5 and Supplementary Figure S2) as analyzed by the
KEGG pathway enrichment investigation, which demon-
strated that these pathways were important mediators of the
FDY003 drug activity against LC.

Evidence-Based Complementary and Alternative Medicine 3



3.4. Assessing the Binding Affinities of Chemical Components
of FDY003 and 
eir Targets. We performed a molecular
docking study to assess the binding affinities and active
binding sites between the chemical components of FDY003
and their targets. (e resulting binding energies of the
chemical component-target pairs were less than −5.0 kcal/
mol (Figure 6 and Supplementary Figure S3 and Supple-
mentary Table S6), which indicated their high pharmaco-
logical binding potentials.

4. Discussion

Globally, LC is the sixth-most frequently occurring and the
second-most fatal malignancy, responsible for 0.83 million
deaths annually [1]. Although the application of herbal drugs
in cancer therapies has increased, their anti-LC activity and
relevant mechanisms have not been fully studied from a
systems view [3–7]. To address these issues, we conducted a
system-perspective network pharmacological investigation
into the activity and mechanisms of action of the herbal

drug, FDY003, for LC treatment. Treatment with FDY003
significantly reduced the viability of human LC cells and
elevated their chemosensitivity. A total of 16 potential
bioactive chemical components of FDY003 and corre-
sponding 91 targets were identified for the pathological
process of LC. (e FDY003 targets were functionally in-
volved in the regulating survival, proliferation, apoptosis,
and cell cycle of LC cells. Additionally, we found that
FDY003 may target key signaling cascades connected to the
diverse LC pathological mechanisms, namely, phosphoi-
nositide 3-kinase (PI3K)-Akt, focal adhesion, interleukin
(IL)-17, forkhead box O (FoxO), mitogen-activated protein
kinase (MAPK), and tumor necrosis factor (TNF) pathways.
Overall, this study added to the integrative mechanistic
insights into the anti-LC potential of FDY003.

(e hub targets identified from the analysis of the
FDY003-associated PPI network modulate crucial LC
pathological mechanisms, and this targeting may result in
effective therapeutic effects against LC. AKT1 is an impor-
tant regulator of the tumorigenic processes, migration,
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spreading, therapeutic sensitivity, resistance, survival, and
proliferation of LC cells, and is a promising theragnostic
target [64–67]. AR expression and activity influence an-
giogenesis, stemness, invasion, angiogenesis, epithelial-
mesenchymal transition (EMT), migration, and oncogenesis
of LC cells, and it is a prognostic determinant and responsive
marker for anticancer therapies [68–73]. EGFR is respon-
sible for the modulation of proliferation, metastasis, mi-
gration, self-renewal potential, EMT, angiogenesis,
anchorage-independent growth, invasion, and drug sensi-
tivity of LC cells and tumors, and its expression and activity
are implicated in the initiation, recurrence, progression,
metastasis, and aggressiveness of LC in patients [74–83].
ESR1 is involved in the coordination of migration, angio-
genesis, cancer stem-like properties, mobility, proliferation,
and invasion of LC cells, and its genetic and expression
status correlate with cancer susceptibility, tumor growth,
metastasis, and prognosis of LC [84–89]. JUN is an onco-
genic transcription factor that promotes tumor formation,
chemoresistance, invasion, proliferation, migration, and
metastasis, and serves as a marker for evaluating chemo-
therapeutic responses [90–92]. PIK3R1 is highly expressed
and activated in LC cells and tumors, and it stimulates their
migration, proliferation, invasion, and survival [93, 94]. Its
elevated expression level is associated with poor prognostic
outcomes [93, 94]. Src is highly expressed in LC cells and
tumors, and its targeting can repress anoikis resistance,
metastasis, treatment resistance, growth, stemness, invasion,
tumorigenesis, migration, and mobility [95–101]. (e ex-
pression and mutations of TP53 serve as biomarkers of
prognosis, therapeutic response, aggressiveness, progression,
and survival in LC [102–107]. VEGFA contributes to the
malignant processes in LC by inducing angiogenesis, growth,
invasion, prosurvival, metastasis, lymphangiogenesis, and

migration of LC cells and tumors, and its expression and
polymorphisms are related to the therapeutic responsiveness,
prognosis, and cancer susceptibility of patients with LC
[108–113].

FDY003 may pharmacologically intervene in various
signaling cascades that are key factors in the LC patho-
physiology as well as potent treatment targets. (e che-
mokine pathway impacts the pathological processes of LC in
various aspects, including inflammation, immune response,
angiogenesis, metastasis, invasion, carcinogenesis, migration,
EMT, tumorigenic potential, tumor microenvironment
remodeling, and proliferation of LC cells and tumors [114–117].
Its activity is further associated with decreased survival and poor
prognosis in patients with LC [114–117]. (e abnormally
controlled function of the erythroblastic leukemia viral oncogene
homolog (ErbB), focal adhesion, hypoxia-inducible factor
(HIF)-1, MAPK, p53, PI3K-Akt, and vascular endothelial
growth factor (VEGF) pathways may contribute to the malig-
nant tumorigenic and progressive processes in LC by inducing
uncontrolled survival and proliferation, angiogenesis, EMT,
invasion, migration, and metastasis of LC cells and tumors
[118–121]. (us, they can function as key therapeutic targets
[118–121]. (e estrogen pathway exerts a protective role against
LC by inhibiting cancerous inflammation [122, 123]. (e FoxO
pathway is a tumor-suppressing cascade whose activation in-
duces antiproliferation and apoptosis of LC cells and confers the
pharmacological effects of anticancer therapeutics [124–127].
(e inflammatory IL-17, TNF, and toll-like receptor pathways
are responsible for the modulation of not only the protu-
morigenic inflammation but also the proliferation, invasion,
metastasis, migration, immune microenvironment, and treat-
ment sensitivity of LC cells and tumors [128–134]. (eir ac-
tivities correlate with poor prognostic outcomes in patients with
LC [128–134]. (e programmed death-ligand 1 (PD-1)/
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programmed cell death-ligand 1 (PD-L1) pathway drives the
immune escape of LC cells and tumors and is themajor target of
immune checkpoint therapies [135, 136]. (e activity of the
prolactin pathway is enhanced in LC tissues and is a marker for
disease stage, survival, and progression of LC [137–140].

(e herbal and bioactive components of FDY003 are
known to function as anti-LC pharmacological agents. AcT
represses survival, invasion, growth, angiogenesis, and mi-
gration of LC cells by blocking the PI3K/Akt and IL-6/signal
transducer and activator of transcription (STAT) 3 pathways
[141–144]. Cm exerts antisurvival, antigrowth, and anti-
angiogenic effects in LC cells [145, 146]. Cordycepin targets
integrin, focal adhesion kinase (FAK), c-Jun N-terminal

kinases (JNK), PI3K/Akt/mammalian target of rapamycin
(mTOR), nuclear factor erythroid-2-related factor 2 (Nrf2)/
heme oxygenase 1 (HO-1)/nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), IL-6, IL-1β, TNF-α,
extracellular-signal-regulated kinase (ERK), Fas, B-cell
lymphoma-2 (Bcl-2), caspase, and C-X-C motif chemokine
receptor (CXCR) 4 cascades, thereby leading to the re-
pression of angiogenesis, metastasis, EMT, proliferation,
viability, and invasion of LC cells [147–153]. Eriodyctiol
induces cell cycle arrest and apoptosis of LC cells by tar-
geting the poly ADP-ribose polymerase (PARP), Bcl-2, and
BCL2-associated X (Bax) signaling [154]. Isorhamnetin and
β-sitosterol suppress the survival, viability, and proliferation

(a)

(b)

(c)

Figure 6: Analysis of binding affinities between the bioactive chemical components of FDY003 and their targets. (a) Kaempferol–AR
(binding energy� −8.0 kcal/mol). (b) Kaempferol–EGFR (binding energy� −8.1 kcal/mol). (c) Kaempferol–ESR1 (binding
energy� −8.6 kcal/mol).
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of LC cells [155, 156]. Kaempferol enhances the efficacy of
anticancer agents whilst reducing the proliferative, migra-
tory, and invasive behaviors of LC cells by modulating PI3K/
mTOR/matrix metalloproteinase (MMP), endoplasmic re-
ticulum (ER) stress/CCAAT/enhancer binding protein
(CHOP)/autophagy, 5′ adenosine monophosphate-activated
protein kinase (AMPK), reactive oxygen species (ROS), and
caspase pathways [157–161]. Luteolin induces autophagy,
cell cycle arrest, growth suppression, chemosensitization,
proapoptosis, anti-invasion, antimigration, antiadhesion,
and antiangiogenesis effects on LC cells [162–170]. (ese
pharmacological effects are conferred through cyclin, p53,
JNK, death receptor, Akt/osteopontin, PARP, caspase,
myeloid cell leukemia 1 (Mcl-1), X-linked inhibitor of ap-
optosis protein (XIAP), Beclin-1, Bcl-2, Bax, BH3 interacting
domain death agonist (Bid), and the ER stress signaling
pathways [162–170]. Quercetin represses chemoresistance,
survival, growth, migration, and proliferation of LC cells by
perturbing the activities of p53, B-cell lymphoma-extra-large
(Bcl-xL), Janus kinase (JAK)/STAT, β-catenin, casein kinase
(CK) 2α, Notch1, hedgehog, cyclin, PI3K/Akt, protein ki-
nase C (PKC), cyclooxygenase-2 (COX-2), Bax, specificity
protein 1 (SP1), and mitogen-activated protein kinase
(MEK)/ERK pathways [171–180].

5. Conclusions

In conclusion, we performed a system-perspective network
pharmacological investigation into the activity and mech-
anisms underlying the effects of the herbal drug, FDY003, for
LC treatment. FDY003 could reduce the viability of human
LC cells and elevate their chemosensitivity. A total of 16
potential bioactive chemical components of FDY003 that
pharmacologically regulate diverse LC-related drug targets
and signaling cascades were identified. Further studies
should focus on enhancing the therapeutic potential of
herbal drugs as efficacious clinical agents for anticancer
treatment, including investigations into their mechanisms of
action in the modulation of a variety of cancerous and
protumorigenic phenotypes and therapeutic sensitivities.
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