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Aims. is study aimed to reveal the molecular characteristics and potential biomarker of immune-activated and immuno-
suppressive invasive thyroid carcinoma.Methods. Expression and clinical data for invasive thyroid carcinoma were obtained from
the TCGA database. Tumor samples were divided into immune-activated or immunosuppressive groups based on the immune
enrichment score calculated by ssGSEA. Di�erentially expressed genes (DEGs) between tumor vs. normal groups or between
immune-activated vs. immunosuppressive groups were screened, followed by functional enrichment. Immune in�ltration was
evaluated using the ESTIMATE, CIBERSORTx, and EPIC algorithms, respectively. A random forest algorithm and Lasso cox
analysis were used to identify gene signatures for risk model construction. Results. Totally 1171 DEGs were screened between
tumor vs. normal groups, and multiple tumorigenesis-associated pathways were signi�cantly activated in invasive thyroid
carcinoma. Compared to immune-activated samples, immunosuppressive samples showed higher tumor purity, lower immune/
stromal scores, and lower expression of immunemarkers, as well as lower in�ltration abundance of CD4+ Tcells and CD8+ Tcells.
A risk model based on a 12-immune signature (CCR7, CD1B, CD86, CSF2RB, HCK, HLA-DQA1, LTA, LTB, LYZ, NOD2,
TNFRSF9, and TNFSF11) was developed to evaluate the immune in�ltration status (AUC� 0.998; AUC of 0.958 and 0.979 in the
two external validation datasets), which showed a higher clinical bene�t and high accuracy. Immune-activated samples presented
lower IC50 value for bortezomib, MG.132, staurosporine, and AZD8055, indicating sensitivity to these drugs. Conclusion. A 12-
gene-based immune signature was developed to predict the immune in�ltration status for invasive thyroid carcinoma patients and
then to identify the subsets of invasive thyroid carcinoma patients who might bene�t from immunotherapy.

1. Introduction

yroid carcinoma is the most common malignant tumor of
the endocrine system, originating in the thyroid follicular
epithelium or parafollicular epithelium [1]. Global Cancer
Statistics indicate that there are an estimated 586,202 new
cases of thyroid carcinoma in 2020, accounting for 3.0% of
the global cancer burden [2]. In China, thyroid carcinoma
ranks the fourth most common type of cancer in females and
the ninth in males, accounting for 38% of global new cases of
thyroid carcinoma [3]. yroid carcinoma can be divided
into four histological types based on their tumor origin and
di�erentiation, including papillary, follicular, medullary, and
anaplastic thyroid carcinoma [4]. Of which, papillary thyroid

carcinoma (PTC) is the most frequent type, accounting for
85% to 90% of thyroid carcinoma. Due to relatively inert
clinical biological behavior, the prognosis of PTC is generally
excellent, with a 10-year-survival rate of over 90% [5].
However, about 5%–34% patients with di�erentiated thyroid
carcinoma present extrathyroidal extension, which nega-
tively a�ects the prognosis [6–8]. Extrathyroidal lesions may
implicate crucial structures in the central neck, and gross
residual lesions postoperatively may lead to recurrence [9].
Hence, it is necessary to propose e�ective approaches to
improve the prognosis of invasive thyroid carcinoma.

Reportedly, a risk predictive model contributes to make
corresponding decisions for treatment and management of
patients with thyroid carcinoma by dividing patients into
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different risk groups [10, 11]. Several risk models have been
established for thyroid carcinoma [12–14]. For example,
Shen et al. established a six-genotype genetic molecular
(involves mutations in RAS, BRAF V600E, and TERT
promoter) prognostic system for PTC, which helps to
identify the subsets of PTC patients with the highest risk of
invasion for personalized and precise treatment [15]. Wang
et al. constructed a risk predictive model based on the N6-
methyladenosine-related signature to predict the disease-
free survival for PTC patients [14]. However, few studies
focus on immune-related genes signature in the risk pre-
diction ofinvasive thyroid carcinoma.

Tumor cells escaping immune surveillance and de-
struction present a hallmark of tumors. Immune cells in the
tumor microenvironment affect the development and pro-
gression of tumors by secreting soluble cytokines to mediate
the proliferation of tumor cells [16]. Immunotherapy has
shown survival benefits by unleashing the immune system
and activating cytotoxic lymphocytes to kill cancer cells [17].
However, only part of patients benefit from immunotherapy.
+erefore, this study proposed a risk model based on im-
mune-related signature to evaluate the immune activation
and immunosuppression status for invasive thyroid carci-
noma patients. +is will help to identify the subsets of in-
vasive thyroid carcinoma patients who might benefit from
immunotherapy or not, so as to get personalized and precise
treatment.

2. Material and Methods

2.1. Data Acquisition and Preprocessing. Data of genes ex-
pression, clinical phenotype, mutation, and survival for
thyroid carcinoma in +e Cancer Genome Atlas (TCGA)
database were downloaded from UCSC Xena (https://
xenabrowser.net/datapages/). From which, invasive thy-
roid carcinoma samples (extrathyroid carcinoma present
extension status≥T3) were selected for analysis. Totally 176
samples with both expression data and clinical phenotype
were included, containing 154 tumor samples and 22 normal
samples. Two microarray datasets, GSE35570, and
GSE65074 were downloaded from the Gene Expression
Omnibus (GEO) database. +ese two microarray datasets
were used to validate the risk-score model.

2.2. Differential Expression Analysis. Principal component
analysis (PCA) dimension reduction was performed for the
expression data. +en, differential expression analysis was
performed using the Limma package in R to screen the
differentially expressed genes (DEGs) between tumor vs.
normal groups or between immune activation vs. immu-
nosuppression groups, respectively.+e DEGs were screened
with the cut-off value of |logFC|> 2 and adjusted P< 0.01.

2.3. Functional Enrichment Analysis. Enrichment analysis
for gene ontology (GO) annotation terms and KEGG
pathways was conducted using the clusterProfiler package
[18] in R to uncover the involved functions of DEGs. +e
significantly enriched GO terms and pathways were selected

with P< 0.05. Gene set enrichment analysis (GSEA) was also
performed using the clusterProfiler package in R to reveal
the differences in terms of pathways between groups.

2.4. Immune-Activated and Immunosuppressive Tumors.
Based on the 29 immune-related gene sets (Table S1), single-
sample GSEA (ssGSEA) was conducted using the GSVA
package [19] to calculate the enrichment score for each
tumor sample. +en, the 154 tumor samples were assigned
into immune-activated and immunosuppressive groups
using sparse hierarchical clustering. After PCA dimension
reduction, the DEGs between immune activation vs. im-
munosuppression groups were screened with the cut-off
value of |logFC|> 1.5 and adjusted P< 0.01.

2.5. Evaluation of Immune Infiltration. +e stromal-score,
immune-score, and tumor-purity of each tumor sample
were evaluated using the ESTIMATE package in
R. Composition and infiltration abundance of immune cells
of each tumor sample were evaluated using CIBERSORTx
and EPIC methods provided in TIMER 2.0 database [20].

2.6. Feature Genes Screening Using Machine Learning.
Immune-related genes (IRGs, Table S2) were obtained from
the ImmPort (https://immport.niaid.nih.gov) database [21].
+en, IRGs were merged with DEGs that screened between
immune activation vs. immunosuppression groups, and the
overlapped genes were considered as DEIRGs. DEIRGs were
then analyzed by a random forest algorithm provided in the
Boruta package [22] to screen feature genes. +e feature
genes were then uploaded to the STRING database to reveal
the interactions among their encoded proteins.

2.7. Construction of Risk-Score Model. +e optimal gene
signature was further identified from the feature genes using
the Lasso cox analysis provided in the glmSparseNet
package. +e gene signature identified by Lasso cox analysis
was used to construct a risk-score model. A receiver operator
characteristic (ROC) curve was plotted using the pROC
package [23] to evaluate the predictive performance of the
risk-score model. Decision curve analysis (DCA) and the
clinical impact curve were plotted using the DecisionCurve
package (version 1.3) to evaluate the clinical benefit. +e
GSE35570 and GSE65074 datasets were used as external
datasets for validation. +e invasive tumor samples in these
two datasets were divided into immune-activated and im-
munosuppressive groups based on the methods mentioned
above. Based on the identified gene signature, a risk-score
model was established based on these two datasets, followed
by evaluating the predictive performance using the ROC
curve, DCA, and clinical impact curve.

2.8. Mutation Analysis and Drug Sensitivity Analysis. In
order to investigate the possible causes of differential ex-
pression for signature genes, mutation analysis was con-
ducted using the maftools package [24] based on the somatic
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Figure 1: Continued.
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SNP data in the TCGA database. Based on the Genomics of
Drug Sensitivity in Cancer (GDSC) database, the drug
sensitivity of each sample was evaluated by calculating the
IC50 value using the OncoPredict package (version 0.2) to
investigate the degree of patient response to drugs.

2.9. Statistical Analysis. +e differences in stromal-score,
immune-score, tumor-purity, immune markers (including
T cell stimulators, T cell inhibitors, and histocompatibility
complexes) expression, gene mutation, and drug sensitivity
between immune-activated and immunosuppressive groups
were compared using the T-test. P< 0.05 shows the statis-
tical significance.

3. Results

3.1. Genes Differentially Expressed in Invasive �yroid Car-
cinomaCompared toNormalControl. In order to investigate
the differences between invasive thyroid carcinoma and
normal control at the molecular level, we screened the DEGs
between these two groups first. PCA indicated that samples
from the same group were clustered together, indicating that
gene expression in these two groups was significantly dis-
tinguished (Figure 1(a)). Totally 1171 DEGs were screened,
of which 471 genes were upregulated while 700 genes were
downregulated in invasive thyroid carcinoma compared to
normal control (Figure 1(b)). +e bidirectional clustering
heatmap confirmed that these DEGs could clearly distin-
guish the samples into two groups (Figure 1(c)). Enrichment
analysis was performed to investigate the involved functions

of these DEGs. +e results showed that DEGs were enriched
in GO annotation terms, including cell junction assembly,
synapse assembly, collagen-containing extracellular matrix,
extracellular matrix structural constituent, and glycosami-
noglycan binding (Figures S1A-C), and in KEGG pathways,
such as neuroactive ligand-receptor interaction, ECM-re-
ceptor interaction, and cell adhesionmolecules (Figure S1D).
+e DEGs might contribute to tumor invasion by these bi-
ological functions and pathways.

GSEA analysis revealed significant differences in terms
of pathways between tumor and normal groups. As shown in
Figures 1(d) and 1(e), various tumorigenesis-associated
pathways were significantly activated in invasive thyroid
carcinoma samples, including p53 signaling pathway, cell
adhesion molecules, cytokine-cytokine receptor interaction,
microRNAs in cancer, and transcriptional misregulation in
cancer. Multiple metabolism pathways, such as propanoate
metabolism, butanoate metabolism, and thyroid hormone
synthesis, were markedly inhibited in invasive thyroid
carcinoma samples.

3.2. Immune-Activated and Immunosuppressive Invasive
�yroid Carcinoma. +e immune enrichment score of each
tumor sample was calculated using ssGSEA, and then the
tumor samples were assigned into immune-activated and
immunosuppressive groups using sparse hierarchical clus-
tering (Figure 2(a)). Compared to immune-activated samples,
immunosuppressive samples showed lower immune, stromal
scores, and expression levels of immune-related gene sets,
while showinghigher tumorpurity (Figure2(b)).Additionally,
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Figure 1: Differential expression analysis between invasive thyroid carcinoma and normal control. (a) PCA score plot shows the samples
difference between two groups; (b) volcano plot shows the numbers of DEGs; (c) heatmap shows the expression pattern of DEGs between
the two groups; (d) bubble diagram shows the top 20 activated and suppressed pathways in GSEA analysis; (e) the top 10 pathways in GSEA
analysis ranked by NES value.

4 Evidence-Based Complementary and Alternative Medicine



expression levels of T cell stimulators, T cell inhibitors, and
histocompatibility complexes were all decreased compared to
immune-activated samples (Figures 2(c)–2(e)). +ese results
suggested that immune-activatedpatientsmightbemore likely
to benefit from immunotherapy.

3.3. Genes Differentially Expressed between Immune-Acti-
vated and Immunosuppressive Groups. Immune-activated

and immunosuppressive samples were distinguished in
PCA, indicating the practicability and successfulness of such
groups (Figure 3(a)). In total, 765 DEGs were screened
between immune-activated and immunosuppressive groups,
and the majority of genes (724 genes) were upregulated in
immune-activated groups (Figures 3(b) and 3(c)). Func-
tional enrichment indicated that these DEGs were involved
in multiple immune related biological function, including
T cell activation, leukocyte cell-cell adhesion, lymphocyte
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Figure 2: Immune-activated and immunosuppressive invasive thyroid carcinoma. (a) Sparse hierarchical clustering for all tumor
samples based on immune enrichment score calculated by ssGSEA; (b) heatmap shows the expression pattern of 29 immune-related
genes sets between immune-activated and immunosuppressive groups; expression of T cell stimulators (c), T cell inhibitors (d), and
histocompatibility complexes (e) between immune-activated and immunosuppressive groups.
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proliferation, MHC protein complex, cytokine activity, and
immune receptor activity. (Figures 3(d)–3(f )). +ese DEGs
also significantly enriched in cytokine-cytokine receptor
interaction, chemokine signaling pathway, and cell adhesion
molecules pathways (Figure 3(g)). GSEA analysis indicated
that cell adhesion molecules, cytokine-cytokine receptor
interaction, +17 cell differentiation, and chemokine sig-
naling pathways were markedly activated in immune-acti-
vated groups (Figure S2). +ese findings suggested that
immune-related genes and pathways were markedly upre-
gulated in immune-activated groups.

3.4. Immune Infiltration between Immune-Activated and
Immunosuppressive Groups. Immune cells composition for
all tumor samples was evaluated using CIBERSORTx.
Resting memory CD4+ T cells, CD8+ T cells, naive B cells,
and M0/M2 macrophages accounted for high composition
(Figure 4(a)). Infiltration abundance of follicular helper
T cells, resting NK cells, resting myeloid dendritic cells, and
M1 macrophages in immune-activated groups significantly
differed from immunosuppressive groups (Figure 4(b)).
Based on the EPIC tool, we found CD4+ T cells, CD8+
T cells, and endothelial cells showed higher composition in
tumor samples (Figure 4(c)). Of which, immune-activated
samples showed higher infiltration abundance of CD4+
T cells and CD8+ T cells compared to that of immuno-
suppressive samples (Figure 4(d)), indicating high antitumor
immunity in immune-activated samples.

3.5. Differentially Expressed Immune-Related Genes
(DEIRGs). From the ImmPort database, 1793 IRGs were

obtained. Of which, 183 DEIRGs were screened by filtrating
with the 765 DEGs between immune-activated and im-
munosuppressive groups (Figure 4(e)). +ese DEIRGs were
significantly enriched in various biological processes asso-
ciated with T cells (Figure 4(f)), including T cell activation/
proliferation/differentiation, T cell mediated immunity, and
Tcell mediated cytotoxicity. Various macrophage-associated
biological processes were also enriched (Figure 4(g)), in-
cluding macrophage activation/chemotaxis/migration/dif-
ferentiation, macrophage activation involved in immune
response, and macrophage cytokine production. +is was
consistent with the high infiltration composition of T cells
and macrophages in the tumor microenvironment.

3.6. Machine Learning and Model Construction. Using a
random forest algorithm provided in Boruta, we screened 81
feature genes from the 183 DEIRGs (Figures 5(a) and 5(b)).
+e protein-protein interactions were further predicted. Of
which, PTPRC, CSF2, CD86, CCR7, and CTLA4 were the
top five hub genes with higher degree (Figure 5(c)). Lasso
cox analysis identified 12 optimal genes signature
(Figure 5(d)), and a risk-score model was constructed
with the following formula: risk score� 47.21266778
-1.34308494∗CCR7 -0.57530764∗CD1B -0.03889928∗
CD86 -0.06197250∗CSF2RB -1.43837279∗HCK -0.0938
4775∗HLA-DQA1 -0.83051074∗ LTA-0.74620894∗ LTB
-0.61083543∗ LYZ -0.49800153∗NOD2 -0.13977936∗TNF
RSF9 -0.03725910∗TNFSF11. +e ROC curve indicated
that the risk-score showed a good performance to evaluate
the risk of immune-activated and immunosuppressive sta-
tus, with an area under curve (AUC) of 0.998 (Figure 5(e)).
All the 12 genes in model were highly expressed in immune-
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Figure 3: Differential expression analysis between immune-activated and immunosuppressive groups. (a) PCA score plot shows the
samples difference between two groups; (b) volcano plot shows the numbers of DEGs; (c) heatmap shows the expression pattern of DEGs
between the two groups; the top 20 enriched biological processes (d), cellular component (e), and molecular function (f) terms in gene
ontology annotation; (g) the top 20 enriched KEGG pathways.
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Figure 4: Continued.
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activated samples than immunosuppressive samples
(Figure 5(f )). DCA curve indicated that the risk score model
showed higher clinical benefit (Figure 5(g)). +e clinical
impact curve confirmed that the prediction result of risk-
score model was close to clinical reality, suggesting a high
accuracy (Figure 5(h)). +ese findings suggested that the
risk-score model had a good performance to evaluate the
immune-activated or immunosuppressive status for invasive
thyroid carcinoma.

3.7. Validation of Risk-Score Model by External Datasets.
To avoid overfitting of the model in the TCGA-cohort, two
external GEO datasets (GSE35570 and GSE65074) were used
to validate the model. First, the tumor samples in these two
datasets were clustered into immune-activated or immu-
nosuppressive groups, respectively (Figure 6(a)). Similarly,
immune-activated samples showed a high expression of
immune-related gene sets and a high immune score, but it
showed a low tumor purity (Figures 6(b) and 6(c)). Risk-
score models were constructed as the formula mentioned
above. As shown in Figure 6(d), the model had a good
performance to evaluate the risk of immune-activated and
immunosuppressive status, with an AUC of 0.958 in
GSE35570 dataset and AUC of 0.979 in GSE65074 dataset.
Consistently, all the 12 genes in model were highly expressed
in immune-activated groups (Figures 6(e) and 6(f )). Fur-
thermore, DCA curves (Figure 6(g)) and clinical impact
curves (Figure 6(h)) showed that the model showed higher
clinical benefit and a high accuracy to evaluate the risk of
immune-activated and immunosuppressive status.

3.8. Drug Sensitivity Analysis. In order to screen possible
drugs for the treatment of invasive thyroid carcinoma, the
drugs with IC50< 1 for all tumor samples were analyzed
(Figure 7(a)). From which, four drugs, including bortezo-
mib, MG.132, staurosporine, and AZD8055, showed sig-
nificant differences between immune-activated and
immunosuppressive groups (Figure 7(b)). All these four
drugs showed lower IC50 values in immune-activated
samples, suggesting that immune-activated patients were
more sensitive to these drugs. Immunosuppressive group
showed significant high-risk score than immune-activated
group (Figure 7(c)). +is also confirmed that immune-ac-
tivated patients might be more likely to benefit from drug
therapy.

3.9.MutationAnalysis andCorrelationAnalysis. Since all the
genes in the model were highly expressed in the immune-
activated group compared to immunosuppressive group, we
analyzed the possible reasons for the gene expression dif-
ferences from the perspective of gene mutation. +ere were
no differences on tumor mutation burden between immune-
activated and immunosuppressive groups (Figure 7(d)).
Missense mutation accounted for the majority of the vari-
ants (Figure 7(e)). Among the top 20 mutation genes,
mutation in BRAF gene accounted for 78% of tumor samples
(Figure 7(f )), suggesting that BRAF mutation might be
correlated with the development of invasive thyroid carci-
noma. Genes in the model were not found in the top 20
mutation genes, suggesting that the expression differences of
these genes might not be caused by gene mutation. We
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Figure 4: Evaluation of tumor immune microenvironment. (a) Landscape of 22 kinds of tumor-infiltrating immune cells evaluated by
CIBERSORTx; (b) infiltration abundance of 22 immune cells differed between immune-activated and immunosuppressive groups; (c)
landscape of 6 kinds of tumor-infiltrating immune cells evaluated by EPIC; (d) differences on infiltration abundance of 6 immune cells
between immune-activated and immunosuppressive groups; (e) Venn analysis for screening the DEIRGs between immune gene sets and
DEGs; (f ) the enriched T cells (f ) and macrophages (g) related biological processes for DEIRGs.
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Figure 5: Machine learning and model construction. (a, b) Screening of feature genes by importance calculated by Boruta algorithm; (c) the
protein-protein interaction network for feature genes; (d) the optimal gene signature identified by Lasso cox analysis to construct risk-score
model; (e) ROC curve shows the predictive performance of risk-score model; (f ) genes in model differentially expressed between immune-
activated and immunosuppressive groups; decision curve analysis (g) and clinical impact curve (h) show the clinical benefits and accuracy of
the model.
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Figure 6: Continued.
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further analyzed the correlations between genes in themodel
and tumor-infiltrating immune cells (Figure 7(g)), and we
found that most of the genes were significantly correlated
with the follicular helper T cells, activated NK cells, M1
macrophages, resting dendritic cells, and resting mast cells.

4. Discussion

Extrathyroidal extension of thyroid carcinoma has been
demonstrated to show an adverse impact on the prognosis of
patients [25]. In this study, we first investigated the genes
and pathways that dysregulated in invasive thyroid carci-
noma based on the data in the TCGA database (thyroid
carcinoma samples with extrathyroid carcinoma present
extension status≥T3). A large-scale of gene expression
pattern changed in invasive thyroid carcinoma compared to
control. Additionally, various tumorigenesis-associated
pathways were significantly activated, including the p53
signaling pathway, cell adhesion molecules, cytokine-cyto-
kine receptor interaction, and transcriptional misregulation
in cancer. +erefore, we suggested that these dysregulated
genes might mediate the development and progression of
invasive thyroid carcinoma by affecting tumorigenesis-as-
sociated pathways. Notably, the thyroid hormone synthesis
pathway was found to be inhibited in invasive thyroid
carcinoma samples. +yroid stimulating hormone (TSH) is
the most important hormone regulating thyroid gland
function. It activates the cAMP pathway and regulates
hormone synthesis and proliferation of thyroid follicular
cells by binding TSH receptor on the membrane of thyroid
follicular cells, thus affecting the onset or progression of
follicular cells-originated thyroid cancer [26, 27].

Based on the immune enrichment score, all the invasive
tumor samples were divided into immune-activated and
immunosuppressive groups. Immune-activated samples
showed lower tumor purity, but it showed higher immune/
stromal scores and higher expression of T cell stimulators,
T cell inhibitors, and histocompatibility complexes.

Moreover, immune-activated samples showed higher infil-
tration abundance of CD4+ T cells and CD8+ T cells. In-
creased studies have indicated that patients with high
immune infiltration (hot tumors) were more likely to benefit
from immunotherapy, while immunosuppressive (cold tu-
mor) tumors were prone to be resistant to immune check-
point blocker [28, 29]. Immune infiltration status and levels
in TME showed significant correlations with the prognosis of
tumor patients [30]. Tumor infiltrating lymphocytes (TIL) is
a heterogeneous lymphocyte group with CD8+ T cells as the
main effector cells, exert antitumor roles in TME [31, 32].+e
loss of TILs function in TME mainly responsible for the
tumor progression and failure of cellular immunotherapy
[33, 34]. CD4+ T cells have the dual function both in killing
tumor cells directly and inmaintaining and promoting CD8+
T cells survival [35]. Considering their importance in anti-
tumor immunity, we concluded that immune-activated pa-
tients might be likely to benefit from immunotherapy. In
addition, genes that are implicated in immune-related bio-
logical processes (such as T cell activation, leukocyte cell-cell
adhesion, lymphocyte proliferation, MHC protein complex,
cytokine activity, and immune receptor activity) were sig-
nificantly upregulated in immune-activated patients, indi-
cating that the immunological grouping is reasonable.

Based on an immune-related gene signature (CCR7,
CD1B, CD86, CSF2RB, HCK, HLA-DQA1, LTA, LTB, LYZ,
NOD2, TNFRSF9, and TNFSF11), a risk-score model was
established to evaluate the immune-activated or immuno-
suppressive status for invasive thyroid carcinoma.+e CCR7
chemokine axis not only mediates the trafficking of effector
cells that produce an immune response to growing tumors
(helping to combat the spread of cancer) but also controls
the migration and metastasis of tumor cells to the lymphatic
system (contributing to tumor expansion), and therefore,
CCR7 has been considered as a tumor therapeutic target
[36]. In PTC, CCR7 has been found to show strong cor-
relations with tumor aggressiveness indicators and tumor
size [37]. CD1B and CD86 both function in antitumor
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Figure 6: External validation for the model. (a) Sparse hierarchical clustering for all tumor samples in GSE35570 (left) and GSE65074
(right); heatmap shows the expression pattern of 29 immune-related genes sets between immune-activated and immunosuppressive groups
in GSE35570 (b) and GSE65074 (c) datasets; (d) ROC curve shows the predictive performance of risk-score model in GSE35570 (left) and
GSE65074 (right) dataset; genes in model differentially expressed between immune-activated and immunosuppressive groups in GSE35570
(e) and GSE65074 (f) datasets; decision curve analysis and clinical impact curve show the clinical benefits and accuracy of the model based
on GSE35570 (g) and GSE65074 (h) datasets.
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immunity by mediating the T cell function and NK cell
cytotoxicity [38, 39]. CSD2RB has been identified as a re-
current and oncogenic hotspot gain-of-function mutation
[40]. HLA-DQA1, a member of MHC Class II molecules, its
elevated expression has been identified as an adverse indi-
cator for worse prognosis for esophageal squamous cell
carcinoma patients [41]. Loss of NOD2 may promote po-
larization of tumor-associated macrophages into the M2
phenotype (protumorigenic phenotype) [42]. LTA and LTB
encode lymphotoxin alpha and beta proteins, which belong
to the tumor necrosis factor (TNF) family together with
TNFRSF9 and TNFSF11. Interaction between TNF-TNFR
superfamilies can initiate costimulatory signals that play
important roles in antitumor immune responses by accel-
erating the differentiation, survival, and clonal expansion of
antigen-primed CD8+ T and CD4+ cells [43]. All of these
genes were upregulated in immune-activated samples,
suggesting a higher antitumor immunity in these samples.
Additionally, several genes were found to be correlated with
tumor infiltrating abundance of follicular helper T cells
(B cell-help providers) [44], activated NK cells (antitumor
cytotoxic lymphocytes) [45], and M1 macrophages (anti-
tumor phenotype) [46], and these cells play important roles
in antitumor response. +is also confirmed the higher an-
titumor immunity in immune-activated samples.

We further analyzed the drug sensitivity to identify
possible drugs for the treatment of invasive thyroid

carcinoma. Bortezomib is an inhibitor for proto-oncogene
RET has been approved for treatment of medullary thyroid
cancer [47]. MG132 is a proteasome inhibitor that can in-
duce tumor cell apoptosis in thyroid carcinoma [48].
AZD8055 inhibits tumor progression in PTC by affecting
mTOR activity [49, 50]. Staurosporine is a bacterial alkaloid,
which can inhibit growth of TPC-derived cell line by the
synergy effect with rotenone [51]. Immunosuppressive
samples showed higher IC50 for bortezomib, MG.132,
staurosporine, and AZD8055, suggesting that patients with
immunosuppressive status may be resistant to bortezomib,
MG.132, staurosporine, and AZD8055 treatments.

High TMB has been proposed as a useful biomarker for
predicting the response to immune checkpoint blockade
[52]. However, high TMB has also been reported to be failed
to predict the response to immune checkpoint blockade in
all solid cancer types [53]. In this study, the TMB showed no
significant differences between immune-activated and im-
munosuppressive samples. Among the top 20 mutation
genes, mutation in the BRAF gene accounted for 78% of
tumor samples, suggesting that BRAF mutation might be
correlated with the development of invasive thyroid carci-
noma. +is was consistent with previous studies. BRAF
mutation is the most commonmutation in PTC, and tumors
with BRAF mutation showed significant correlations with
advanced T-stage and more frequently central neck dis-
section [54]. Genes in themodel were not found in the top 20
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Figure 7: Mutation analysis and drug sensitivity analysis. (a) +e drugs with IC50< 1 for all tumor samples in TCGA cohort; (b) heatmap
shows the differences on IC50 value (evaluation for drug sensitivity) for immune-activated and immunosuppressive patients; (c) risk score
significantly differed between immune-activated and immunosuppressive patients; (d) tumor mutation burden shows no differences
between immune-activated and immunosuppressive patients; (e) statistical result of somatic mutation for all tumor samples in TCGA
cohort; (f ) waterfall plot shows the top 20 mutation genes; (g) correlation analysis between tumor-infiltrating immune cells evaluated by
CIBERSORTx and genes in model.
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mutation genes, suggesting that the expression differences of
these genes might not be caused by gene mutation.

5. Conclusion

We identified a 12-gene-based immune signature, which
contributes to predicting the immune-activated or immu-
nosuppressive status for patients with invasive thyroid
carcinoma. Patients with immune-activated invasive thyroid
carcinoma are more likely to benefit from immunotherapy.
Immunosuppressive patients might be resistant to borte-
zomib, MG.132, Staurosporine, and AZD8055 treatments.
+ese findings will provide clues for improving the clinical
management of invasive thyroid carcinoma.
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“Cytotoxic CD8 (+) T cells in cancer and cancer immuno-
therapy,” British Journal of Cancer, vol. 124, no. 2,
pp. 359–367, 2021.

[33] B. Lin, L. Du, H. Li, X. Zhu, L. Cui, and X. Li, “Tumor-
infiltrating lymphocytes: warriors fight against tumors pow-
erfully,” Biomedicine & Pharmacotherapy, vol. 132, Article ID
110873, 2020.

[34] D. Zhang, W. He, C. Wu et al., “Scoring system for tumor-
infiltrating lymphocytes and its prognostic value for gastric
cancer,” Frontiers in Immunology, vol. 10, p. 71, 2019.

[35] J. Borst, T. Ahrends, N. Bąbała, C. J. M. Melief, and
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