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Background. Myocardial fibrosis caused by myocardial infarction (MI) is the key factor leading to cardiac remodeling; nod-like
receptor family pyrin domain-containing 3 (NLRP3) plays an important role in regulation of myocardial injury; however, its
relationship with TLR4/MyD88/NF-κB signaling pathway is largely unreported. In recent years, traditional Chinese medicine
(TCM) prevention and treatment of cardiovascular diseases has shown its unique advantages and broad application prospects.
LuQi Formula (LQF) has been used for more than 20 years in Shuguang Hospital (Shanghai, China), and it was confirmed that it
can improve the clinical symptoms of patients after MI. Here, we investigated the mechanism of LQF by suppressing NLRP3
inflammasome activation and TLR4/MyD88/NF-κB pathway in mice withMI. Purpose. ,e purpose of this study was to verify the
positive effects of the LQF in ameliorating myocardial fibrosis and inflammasome infiltration in the MI mice in vivo. Methods.
Forty mice were randomized into four groups: the sham group, the MI group, the LQF group, and the perindopril group (n� 10
per group). Left anterior descending (LAD) coronary artery ligation was performed in all groups except the sham group.,emice
were treated with LQF after MI. After 4 weeks, LDH, cTnI, IL-1β, and IL-18 were measured by enzyme-linked immunosorbent
assay (ELISA) kit, and cardiac function was evaluated by echocardiography. Hematoxylin and eosin (H&E) and Masson staining
were used to evaluate the myocardial injury and fibrosis. Western blot was used to evaluate the expression of collagen I, α-SMA,
NLRP3 inflammasome, and TLR4/MyD88/NF-κB signaling pathway. Immunohistochemical analysis was used to further detect
the expression of Fibronectin, α-SMA, collagen I, collagen III, NLRP3, and NF-κB in myocardial tissue. Results. Compared with
theMI group, the ejection fraction (EF) and fractional shortening (FS) in the LQF group were significantly improved, while the left
ventricular end diastolic diameter (LVEDd) and left ventricular internal dimension systole (LVIDs) were significantly decreased.
,e representative staining of H&E and Masson showed that treatment with LQF could effectively reduce myocardial injury and
fibrosis. ELISA results showed that serum LDH, cTnI, TNF-α, IL-18, and IL-1β in LQF group were significantly lower than those in
MI group. ,e western blot results showed that the expressions of collagen I and α-SMA were decreased significantly in the LQF
group. Moreover, the expressions of NLRP3 inflammasome and TLR4/MyD88/NF-κB signaling pathway were downregulated in
the LQF treatment group. Conclusion. Our results suggested that LQF could significantly improve cardiac function and ameliorate
myocardial fibrosis. In addition, we found that LQF could downregulate the TLR4/MyD88/NF-κB signaling pathway and then
inhibit the activation of NLRP3 inflammasome, suggesting that LQF alleviated cardiac fibrosis by decreasing the TLR4/MyD88/
NF-κB signaling pathway and then inhibited NLRP3 inflammasome activation in MI mice, which indicates potential therapeutic
effect of LQF on patients with MI.
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1. Introduction

MI is one of the most common causes of death across the
globe; percutaneous coronary intervention therapy can ef-
fectively reduce the mortality of patients with MI and hence
becomes the most important treatment strategy for MI.
However, the patients with MI still have an increased in-
cidence of heart failure (HF) [1, 2]. ,e cardiomyocyte is
nonrenewable [3]; however, there is still a lack of specific
drugs for the treatment of myocardial tissue injury after MI.
Analyzing the mechanism of myocardial injury after MI and
looking for new therapeutic drugs and key therapeutic
targets to guide clinical treatment have attracted extensive
attention of researchers.

A large number of studies have shown that inflammatory
response is an important cause of myocardial injury, which
is across the whole process of MI [4, 5]. NLRP3 inflam-
masome is an important part of the innate immune system.
It is a macromolecular protein complex composed of
NLRP3, apoptosis-associated speck-like protein containing a
caspase recruitment domain (ASC), and effector protein
cysteine aspartate protease-1 precursor (pro-caspase 1).
NLRP3 mediates caspase-1 activation after inflammasome
activation and then promotes interleukin-1β (IL-1β) and
interleukin-18 (IL-18) maturation and secretion, as well as
simultaneous lysis of gasdermin D (GSDMD) induced cell
pyroptosis [6]. ,e classical NLRP3 inflammasome activa-
tion pathway includes two stages: initiation and activation.
In the initiation stage, toll-like receptor 4 (TLR4) mainly
recognizes extracellular pathogen associated molecular
patterns (PAMPs) or danger associated molecular patterns
(DAMPs), and nuclear factor kappa B (NF-κB) is activated
by the downstream signaling molecule myeloid differenti-
ation factor 88 (MyD88), finally inducing the expression of
NLRP3 and IL-1β precursors. ,e activation phase is
characterized by multiple stimuli that promote assembly and
activation of the NLRP3 inflammasome [7]. ,us, TLR4/
MyD88/NF-κB pathway is crucial for NLRP3 inflammasome
activation. In recent years, a large number of studies have
shown that TLR4/MyD88/NF-κB pathway and NLRP3
inflammasome mediate the occurrence of inflammatory
response inMI, resulting inmyocardial injury [8].,erefore,
inhibition of the TLR4/MyD88/NF-κB signaling pathway
and NLRP3 inflammasome can reduce the inflammatory
response and improve ischemia/reperfusion injury [9, 10].

LQF is a traditional Chinese medicinal formula to treat
myocardial fibrosis (Chinese national patent no.
ZL2014102933164), and it has been used for 20 years in the
clinic. Previous experimental studies showed that LQF
significantly improved cardiac function and downregulated
the expression of NLRP3 inflammasome in the MI mice;
however, the upstream mechanism of activating NLRP3
inflammasome is still unclear [11]. Angiotensin-converting
enzyme (ACE) inhibitors are one of the main treatment
options for patients with MI, which can effectively improve
the cardiac function of patients with MI, so we chose per-
indopril as the positive control [12, 13]. In this study, we
aimed to investigate the effects of LQF on myocardial fi-
brosis after MI and its underlying mechanisms. We

demonstrated that LQF can efficiently inhibit TLR4/MyD88/
NF-κB signaling pathway activation and thereby inhibit
NLRP3 inflammasome activation and alleviate myocardial
fibrosis in MI mice.

2. Materials and Methods

2.1. Animals and Drugs. Male C57BL/6J mice (20 g–25 g)
were obtained from experimental animal center of Shanghai
University of TCM (Shanghai, China). Our experimental
procedures were conducted in accordance with safe animal
testing specifications (Safety Certificate Number: SYXK-
HU-2020-0009; Animal Ethics Code: PZSHUTCM20080
7012).,emice were kept in a humanized environment with
favorable temperature (23± 2°C), humidity (50± 5%), and
12 h/12 h light/dark cycle and fed with normal diet and water
ad libitum. LQF is composed of antler, safflower, Astragalus
membranaceus, Codonopsis pilosula, Cassia Twig, and Se-
men Lepidii. ,e raw herbs were purchased from Shanghai
Kangqiao Chinese Medicine Tablet Co., Ltd. (Shanghai,
China) and identified by Dr. Zhengtao Wang from Phar-
macy Department, Shanghai University of TCM. LQF
consists of nine traditional Chinese herbal medicines. ,e
six herbs were dissolved in distilled water and concentrated
to 1.78 g/kg. Perindopril tablets (4mg/tablet) were pur-
chased from Servier Pharmaceuticals Co., Ltd. (Tianjin,
China) and used as a positive control. Perindopril was
dissolved and diluted by saline with a concentration of
0.06mg/mL of solution.

2.2. Mouse Model of MI and Grouping. Forty mice were fed
adaptively for one week before modeling. First, the mice
were anesthetized with 2% isoflurane (RWD Life Science
Co., Guangdong, China) and fixed in supine position. ,en,
the mice were ventilated with a ventilator (Harvard Ap-
paratus) and the thoracic cavity was opened (respiratory
rate, 110/min). ,e LAD coronary artery was ligated with
7–0 surgical suture, and the thoracic cavity was closed and
sutured. ,e mice in sham operation group were only
threaded without ligation. After operation, whether the “J
point” of ECG was raised was observed and the myocardium
below the ligation site was obviously white, which can be
used as a sign of successful model. After modeling, except
the sham operation group, all the mice were randomly
placed in each cage. A total of 40 mice were randomly di-
vided into the sham group, the MI group, the LQF group,
and the perindopril group. ,e mice in the sham group and
the MI group were given normal saline (0.1ml/10 g), and the
mice in the LQF group (1.65 g/ml) and the perindopril group
(0.06mg/ml) were, respectively, administered orally. All
mice underwent treatment for four weeks at the same time
every day.

2.3. Ultrasound Echocardiography. Anesthetized mice were
maintained by inhalation of 2.5% isoflurane. Echocardiog-
raphy was detected by high-resolution small animal ultra-
sound echocardiography (Netherlands Philips IE33). ,e
parasternal short axis section of the left ventricle and the left
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ventricular motion was recorded by M-mode ultrasound,
LVIDs and LVEDd were measured, and EF and FS were
calculated to evaluate cardiac function.

2.4. Western Blotting. Left ventricular tissues were ho-
mogenized in tissue grinder in lysis buffer supplemented
with protease and phosphatase inhibitors, and the myo-
cardial homogenate was prepared using tissue homogenizer.
,e homogenate was lysed in ice for 30min and centrifuged
at 8000×g and 4°C for 10min, and the supernatant, namely,
total myocardial protein, was collected. ,e protein con-
centration was determined by BCA (,ermo Fisher Scien-
tific, Waltham, MA, USA; A53225) method, and the sample
buffer was added and boiled at 95°C for 10min. ,e protein
bands were transferred to PVDF membrane after SDS-
PAGE gel electrophoresis. ,e protein bands were blocked
with 5% skim milk powder at room temperature for 1 h and
then incubated overnight with primary antibody at 4°C. On
the next day, they were incubated with different secondary
antibodies. ,e protein images were detected by ECL
method after washing the membranes (Tanon Science and
Technology Co., Shanghai, China). In the present study, the
primary antibodies included collagen I (1 :1000, Abcam,
ab270993), α-SMA(1 :1000, Abcam, ab5694), TLR4 (1 : 200,
ABclonal, A17436), MyD88 (1 :1000, Affinity, AF5195),
P-NF-KB (1 :1000, CST, 3033T), ASC (1 :1000, CST,
67824S), NLRP3 (1 :1000, CST, 15101S), and caspase-1
(1 :1000, Abcam, ab179515). GAPDH (1 : 20000, Bioworld,
AP0066) was used as loading control, and ImageJ (NIH,
Bethesda, MD, USA) software was used to analyze the
relative expression of target protein.

2.5. Histological Staining. ,e myocardial tissue of mice
fixed with formaldehyde was embedded in paraffin and cut
into 5 μm sections. H&E and Masson staining (Beyotime,
Shanghai, China) were performed as previously reported
[11]. After sealing with neutral gum, the myocardial path-
ological changes were observed under the microscope
(Pannoramic 250/MIDI, 3DHISTECH, Budapest, Hungary).

2.6. Immunohistochemical (IHC) Analysis. Paraffin sections
were deparaffinized, and then tissue sections were put in
sodium citrate antigen repair buffer for high-temperature
antigen repair. After cooling, they were washed in PBS for 3
times and then put in 3% hydrogen peroxide solution to
block endogenous peroxidase with 5% BSA, followed by
adding the prepared primary antibody, overnight incubation
at 4°C, adding the secondary antibody, and then washing
with PBS for 3 times, adding the diaminobenzidine (DAB),
and finally using hematoxylin counterstaining and neutral
gum sealing. Images were observed and collected under a
microscope (Pannoramic 250/MIDI, 3DHISTECH, Buda-
pest, Hungary).

2.7. ELISA. Blood collected from mice was incubated in
room temperature for 30 min and then was centrifuged at
2500xg for 15 minutes. ,e concentrations of LDH (SG-

30229, Sinogene, China), cTnI (H149-2, Nanjing Jiancheng
Bioengineering Institute, China), TNF-α (70-EK282/4-96,
Multisciences, China), IL-1β (70-EK201B/3-96, Multi-
sciences, China), and IL-18 (70-EK218-96, Multisciences,
China) were quantified with the indicated kits according to
the manufacturer’s instructions. In brief, all reagents and
samples were restored to room temperature. 100 μl HRP-
conjugated secondary antibodies were added to 50 μl of the
standard substance or protein samples in the wells of the
plates and then incubated at room temperature for 1 h. After
that, the wells were washed with 300 μl washing buffer for six
times and incubated with the 100 μl TMB solution in dark
for 30min. Finally, the optical density (OD) value was
quantified under 450 nm within 30min.

2.8. Statistical Analysis. All data are expressed as the
mean± standard deviation (SD); statistical analyses between
two groups were carried out using Student’s t-tests and data
comparison amongmultiple groups was done using one-way
ANOVA analysis. All statistical analyses were conducted
using SPSS version 20.0 software (IBM Corp., Armonk, NY,
USA). ,e P value less than 0.05 was considered as statis-
tically significant.

3. Results

3.1. LQF Alleviates Cardiac Dysfunction of MI Mice.
Echocardiography is an important method to evaluate the
changes of cardiac structure and function. In this study,
echocardiography was used to explore the effect of LQF on
MI mice. ,e results showed that, compared with the sham
group, EF and FS in the MI group were significantly de-
creased, while LVEDd and LVIDs were significantly in-
creased, suggesting that the left ventricular wall contraction
ability of mice in the MI group was decreased. Compared
with MI group, EF and FS in LQF group and perindopril
group were significantly increased, while LVEDd and LVIDs
were significantly decreased, indicating that LQF and per-
indopril can improve cardiac function in MI mice
(Figures 1(a)–1(g)). Myocardial injury markers are usually
used as diagnostic indicators of MI; among them, LDH and
cTnI are commonly used to reflect the severity of myocardial
injury. ,e ELISA results showed that (Figures 1(f) and
1(g)), compared with the sham group, the serum levels of
LDH and cTnI of MI group mice were significantly in-
creased. Compared with MI group, the levels of LDH and
cTnI in LQF group and perindopril group were significantly
reduced, indicating that LQF and perindopril can reduce the
myocardial injury of MI mice.

3.2. LQF Improved Myocardial Injury and Inflammatory
Response of MI Mice. 4 weeks after MI, H&E staining
showed that the cardiomyocytes morphology in the sham
group was normal, and muscle fibers were arranged orderly,
while in the MI group, myocardial cells were edema, muscle
fibers were arranged disorderly and broken, and intercellular
edema and inflammatory infiltration were also observed.
Compared with the MI group, LQF group and perindopril
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Figure 1: LQF alleviates cardiac dysfunction of MI mice. (a) Representative M-mode images of each group. (b–e) EF, FS, LVEDd, and
LVIDs in each group. n� 10 per group. ∗P< 0.05 versus sham group. #P< 0.05 versus MI group. ΔP< 0.05 versus the perindopril group.
P> 0.05 versus the perindopril group.
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group contained significantly fewer swollen cells, and the
arrangement of muscle fibers was regular (Figure 2(a)).
Masson staining showed that there were only a few collagen
fibers in the sham group, and the MI group had a large
number of blue collagen fibers distributed around car-
diomyocytes, while collagen fibers in LQF group and per-
indopril group were significantly lower than those in MI
group (Figure 2(b)). Inflammatory response plays an im-
portant role in MI [14]. ,erefore, we detected the effect of
LQF on myocardial inflammatory factors in MI mice. ELISA
results showed that serum levels of inflammatory cytokines
TNF-α, IL-1β, and IL-18 in MI group were significantly
higher than those in sham group.,e levels of TNF-α, IL-1β,
and IL-18 in LQF and perindopril groups were significantly
less than those in the MI group (Figures 2(d)–2(f )), sug-
gesting that LQF can alleviate myocardial inflammation
induced by MI.

3.3. LQF AlleviatedMyocardial Fibrosis of MIMice. It is well
established that inflammation response aggravates myo-
cardial fibrosis; therefore, we detected the expression of
fibrotic protein in myocardial tissue. ,e protein expression
levels of collagen I and α-SMA in the MI group were sig-
nificantly upregulated; strikingly, LQF and perindopril
markedly reduced the expressions of collagen I and α-SMA
in myocardium (Figures 3(a)–3(c)). Furthermore, immu-
nohistochemical staining showed that the expressions of
Fibronectin, α-SMA, collagen I, and collagen III were de-
creased in the LQF group and the perindopril group, which
further confirmed the antifibrosis effect of LQF and the
perindopril.

3.4. LQF Inhibited the Activation of NLRP3 Inflammasome of
MIMice. It is well known that the NLRP3 inflammasome is
extensively involved in myocardial fibrosis [15]. ,erefore,
to clarify whether the effect of LQF in reducing myocardial
fibrosis is related to inhibited NLRP3 inflammasome, next,
we observed the expression of NLRP3 inflammasome in
myocardial tissue of MI mice. As displayed in Figures 4(a)–
4(d), the NLRP3, ASC, and cleaved caspase-1 were signifi-
cantly upregulated in MI group, which indicated that MI
promoted the activation of NLRP3 inflammasome. Ad-
ministration of LQF and perindopril could significantly
decrease the expressions of NLRP3, ASC, and cleaved cas-
pase-1 in MI mice. What is more, immunohistochemical
analysis also demonstrated that LQF and perindopril could
inhibit the expression of NLRP3 after MI (Figure 4(e)).
,ese findings indicate that the effect of LQF on myocardial
fibrosis is associated with inhibition of NLRP3
inflammasome.

3.5. LQF Inhibits TLR4/MyD88/NF-κB Pathway of MI Mice.
TLR4/MyD88/NF-κB signaling pathway is one of the im-
portant mechanisms to activate NLRP3 inflammasome; to
further explore the mechanism by which LQF inhibits
NLRP3 inflammasome activation, we examined the effect of
LQF on TLR4/Myd88/NF-κB signaling pathway. Our

western blot results showed that TLR4, MyD88, and p-p65
were significantly increased in the MI group. Strikingly, the
levels of TLR4, MyD88, and p-p65 were markedly reduced in
the LQF and perindopril groups. ,ese observations illus-
trated that LQF and perindopril could via downregulating
the TLR4/MyD88/NF-lB signaling pathway inhibit the
activation of NLRP3 inflammasome (Figures 5(a)–5(d)).
Moreover, immunohistochemical analysis also demon-
strated that LQF and perindopril markedly suppressed the
NF-κB expression (Figure 5(e)). All these results indicate
that LQF inhibited NLRP3 inflammasome activation after
MI, at least partly, through inhibiting the TLR4/MyD88/NF-
κB signaling pathway.

4. Discussion

Here, we verified that LQF could downregulate TLR4/
MyD88/NF-κB signaling pathway and inhibit NLRP3
inflammasome activation of MI mice. ,ese changes could
reduce the expressions of collagen I and α-SMA, thus re-
ducing myocardial fibrosis and improving cardiac function.
Together, these findings in the present study indicate that
LQF alleviated myocardial fibrosis owing to inhibiting
TLR4/MyD88/NF-κB signaling pathway and inhibited
NLRP3 inflammasome activation. In addition, we also
showed that perindopril has the same mechanism of ame-
liorate myocardial fibrosis. ,ese findings suggest the po-
tential clinical application of LQF to treat myocardial
fibrosis.

Myocardial fibrosis refers to the excessive accumulation
of collagen fibers in the normal tissue structure of myocar-
dium and the significant increase of collagen concentration in
heart tissue, resulting in the increase of cardiac stiffness and
the decrease of cardiac function; myocardial fibrosis is the
main pathophysiological process of MI, which can lead to
cardiac remodeling and gradually develop into chronic HF
[16]. Several mechanisms are involved in the pathogenesis of
myocardial fibrosis; among them, inflammatory response
plays an important role in the occurrence and development of
myocardial fibrosis, which leads to cardiac fibrosis by pro-
moting collagen deposition [17]. Myocardial ischemia in-
duces an inflammatory response, and a moderate
inflammatory response facilitates the removal of necrotic cell
debris from the infarct area. If there is no appropriate anti-
inflammatory treatment, it will aggravate this inflammatory
response and induce the release of various proinflammatory
factors and profibrotic mediators, such as interleukin-1
(IL-1), tumor necrosis factor-α (TNF-α), transforming
growth factor-β1 (TGF-β1), and platelet derived growth
factor (PDGF). Mei Sun et al. found that TNF-α mediates
cardiac remodeling and cardiac dysfunction under a pressure
overload mice model, while TNF-α knockout mice showed
decreased inflammatory response and alleviated myocardial
fibrosis [18]. Kraft et al. demonstrated that IL-1β antibodies
can reduce virus induced myocardial injury, inflammation
response, and subsequent myocardial fibrosis [19]. ,era-
peutic strategies for different inflammatory response show
that it can effectively reduce MI area and myocardial fibrosis
[20]. ,erefore, inhibiting inflammatory response has
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Figure 2: LQF improved myocardial injury and inflammatory response of MI mice. (a) Representative H&E staining. Scale bar� 200 μm;
n� 4 per group. (b) Representative Masson staining. Scale bar� 200 μm; n� 4 per group. (c) ,e percentage of fibrosis area in the groups.
((d)–(f )) Serum TNF-α, IL-1β, and IL-18 levels of mice in each group. n� 4 per group. ∗P< 0.05 versus sham group. #P< 0.05 versus MI
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become an important strategy to reduce cardiac injury and
improve myocardial fibrosis [21–23]. Consistent with this
notion, our study found that EF and FS in LQF group were
significantly increased, while LVEDd and LVIDs were sig-
nificantly decreased. LDH and cTnI, which have high sen-
sitivity to evaluate myocardial injury, both reduced in the
LQF group. Moreover, the cytokine levels of TNF-α, IL-1β,
and IL-18 were significantly reduced in LQF group, sug-
gesting that LQF can alleviate myocardial inflammation in-
duced by MI, thereby improving the cardiac function.

NLRP3 inflammasome is a key regulator of immune
response. As a sensor, NLRP3 can recognize a variety of
danger signals and trigger inflammatory response and
pyroptosis. In the past decade, NLRP3 inflammasome has
been demonstrated to be widely involved in myocardial
fibrosis [15, 24, 25]. ,e underlying mechanism may be
related to regulation with pyroptosis [26], mitochondrial
function [27], and myofibroblast differentiation [28]. It is

well established that NLRP3 inflammasome is upregulated in
the process of MI [29, 30]. MCC950, a specific NLRP3 in-
hibitor, can effectively decrease the deposition of collagen I,
collagen III, and α-SMA [31]. Inhibition of ASC and caspase-
1 could decrease inflammatory responses and myocardial
fibrosis [32]. ,erefore, NLRP3 inflammasome may be a
potential target for the treatment of myocardial fibrosis. In
the present study, we observed that α-SMA, collagen I,
collagen III, and Fibronectin, the markers of cardiac fibrosis,
were decreased in LQF group, suggesting that treatment with
LQF reduced myocardial fibrosis. Moreover, LQF group
inhibited the protein expressions of NLRP3, ASC, and
cleaved caspase-1; these data supported the notion that LQF
alleviates myocardial fibrosis by inhibiting the activation of
NLRP3 inflammasome.

TLR4/MyD88/NF-κB signaling pathway is the main
regulatory pathway of NLRP3 inflammasome activation
[33]. TLR4 is an important pattern recognition receptor in
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Figure 4: LQF inhibited the activation of NLRP3 inflammasome of MI mice. (a) Representative western blots of NLRP3 (n� 5 per group).
((b)–(d)) ,e relative expression levels of these proteins in each group. ∗P< 0.05 versus the sham group. #P< 0.05 versus the MI group.
▪ΔP> 0.05 versus the perindopril group. (e) Representative images of immunohistochemical localizations of NLRP3. Scale bar� 200 μm.
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the nonspecific immune system. It is activated by PAMPs or
DAMPs in the body and then starts MyD88 dependent
signal transduction pathway to activate NF-κB signal path
[34]. In the resting state, NF-κB binds to inhibitory factor
IκB as a dimer and is inactive. When activating the MyD88
dependent signaling pathway, MyD88 activates the IκB
kinase through downstream bridging molecules and phos-
phorylates and degrades IκB, and NF-κB is activated and
translocated into the nucleus [35], initiating transcription
and expression of NLRP3 and IL-1β precursors. Subse-
quently, PAMPs or DAMPs induce the activation of NLRP3
inflammasome, leading to a series of inflammatory cascades.
,erefore, TLR4/MyD88/NF-κB pathway plays a crucial role
in NLRP3 inflammasome mediated inflammatory response.
Studies have shown that tanshinone IIA can inhibit TLR4/

NF-κB/NLRP3 signaling pathway reducing myocardial in-
jury [36]. In addition, intervention with TLR4 specific in-
hibitor TAK-242 can inhibit NLRP3 inflammasome
activation caused by coronary microembolization [37, 38],
suggesting that TLR4/MyD88/NF-κB pathway and NLRP3
inflammasome mediate the occurrence of inflammatory
response in myocardial injury. In the current study, the
results showed that LQF downregulated the TLR4/MyD88/
NF-κB signaling pathway. Taken together, these studies
strongly implicate that LQF inhibited TLR4/MyD88/NF-κB
signaling pathway and NLRP3 inflammasome activation.

In conclusion, LQF may downregulate TLR4/MyD88/
NF-κB pathway and inhibit the activation of NLRP3
inflammasome, thereby reducing inflammatory response
and myocardial fibrosis. ,is study deepened the
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Figure 5: LQF inhibits TLR4/MyD88/NF-κB pathway of MI mice. (a) Representative western blots of TLR4, MyD88, and p-p65 (n� 5 per
group). ((b)–(d)) ,e relative expression levels of these proteins in each group. ∗P< 0.05 versus the sham group. #P< 0.05 versus the MI
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understanding of the anti-inflammatory mechanism and
improving myocardial injury of LQF, provided a foundation
for further in-depth study of LQF, and also provided new
targets and new ideas for the clinical prevention and
treatment of MI.

4.1. Limitations. In the present study, we just demonstrated
that LQF can downregulate TLR4/MyD88/NF-κB pathway
and inhibit NLRP3 inflammasome activation in MI mice,
but no further cell experiments were carried out.
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