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Background. Pyroptosis is a form of cell death characterized by cell swelling and plasma membrane bubbling in association with
in�ammatory and immune responses. To date, the association between pyroptosis and colorectal cancer remains unclear. We
aimed to establish a novel pyroptosis-associated model for the prognosis of colorectal cancer. Methods. Pyroptosis-related genes
were extracted using Gene Set Enrichment Analysis. A least absolute shrinkage and selection operator regression model was
constructed to identify a pyroptosis-related gene signature using the Cancer Genome Atlas and Gene Expression Omnibus
databases. �en, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology and GSEA were performed to better understand
the potential mechanisms and the functional pathways associated with pyroptosis involved in colorectal cancer. �e relationship
between the pyroptosis-related signature and immune in�ltration was investigated using Cell-Type Identi�cation by Estimating
Relative Subsets of RNA Transcripts and MCPcounter. Results. A 12 pyroptosis-related gene signature was identi�ed. �en,
patients were classi�ed into high- and low-risk groups. Kaplan–Meier and receiver operating characteristic analyses con�rmed
that the high-risk groups showed worse overall survival, progression-free survival, or relapse-free survival probability. Functional
enrichment analysis showed that pyroptosis was associated with extracellular matrix-related pathways. Furthermore, the
pyroptosis risk score was associated with immune in�ltration. �e low-risk group exhibited a higher percentage of plasma cells,
CD4 Tcells, activated dendritic cells, and activatedmast cells. M2macrophages andM0macrophages were positively related to the
risk score. Conclusion. Our research yielded a novel pyroptosis-related prognostic signature for colorectal cancer that was related
to immune cell in�ltration, and it provided an immunological perspective for developing personalized therapies.

1. Introduction

Colorectal cancer (CRC) is the third most common cancer
and the second major cause of cancer death worldwide in
2020 [1]. �e cornerstones of therapy for CRC include
surgery for primary and metastatic disease, neoadjuvant
radiotherapy for rectal cancer, and auxiliary chemotherapy
for phase III/IV and high-risk phase II colon cancer [2, 3].

Nevertheless, these new treatment options have limited
in�uence on cure rates and long-term survival. During the
past two decades, the interconnections between patient
prognosis and therapeutic response as well as the molecular
mechanisms underlying the development of CRC have
become increasingly apparent. In this regard, developing
novel prognostic gene signatures for CRC is urgently
required.
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Programmed cell death includes apoptosis, necroptosis,
ferroptosis, and pyroptosis [4]. Among the intrinsic forms of
cell death, pyroptosis has recently received increasing at-
tention. Pyroptosis is initiated by the gasdermin (GSDM)
family and characterized by cell swelling and plasma
membrane bubbling accompanied by inflammatory and
immune responses [5]. Except for PJVK, the members of the
GSDM superfamily (GSDMA, GSDMB, GSDMC, GSDMD,
GSDME, and PJVK) harbour an N-terminal pore-generating
domain and a C-terminal repressor domain as well as a linker
connecting them [6].)e association between pyroptosis and
cancer is complicated, and various tissues and genetic
backgrounds exhibit varied effects of pyroptosis on cancer.
On the one hand, the occurrence and growth of tumours can
be inhibited by pyroptosis [7]; on the other hand, as a type of
proinflammatory death, pyroptosis can generate a proper
microenvironment for tumour cell development and thus
drive tumour development [8]. )erefore, it is essential to
identify the effect of pyroptosis on the prognosis of CRC.

Currently, some studies have reported prognostic gene
signatures associated with pyroptosis in lung adenocarci-
noma [9], ovarian cancer [10], gastric cancer [11], and CRC
[12–16] based on data obtained from public databases. Our
study provides a new method to identify a pyroptosis-as-
sociated prognostic gene signature for CRC. )e above
articles excluded genes with no significance based on the
Cox regression model, which may ignore valuable infor-
mation. In the current study, a prognostic model based on
least absolute shrinkage and selection operator (LASSO)
analysis was built using pyroptosis-associated genes
without Cox regression model screening. We also deter-
mined the association of pyroptosis with the tumour im-
mune microenvironment in CRC. Our findings may offer
extra evidence on prognostic biomarkers and therapeutic
targets for CRC.

We present the following article in accordance with the
TRIPOD reporting checklist.

2. Methods

2.1. Patient Cohorts and Pyroptosis-Related Genes. UCSC
Xena provided the Cancer Genome Atlas (TCGA) database
(https://xena.ucsc.edu/) as a training cohort. )e GSE39582
and GSE87211 databases were downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/gds/?term�) for validation. )e extraction of
pyroptosis-associated genes was performed from curated
gene sets in Gene Set Enrichment Analysis (GSEA) (https://
www.gsea-msigdb.org/gsea/msigdb). Protein-protein inter-
action (PPIs) network functional enrichment analysis was
conducted in STRING (https://cn.string-db.org/cgi/input.
pl).

2.2. Pyroptosis-Related Signature in CRC. All of the pyrop-
tosis-related genes extracted from GSEA were included in
the LASSO regression model in the TCGA database. LASSO
was performed to identify the key signatures and the related
parameters using the glmnet R package.

Risk score � (gene Expression∗ gene coefficient). (1)

2.3. Genetic Mutations in Pyroptosis-Related Genes.
Information on genetic mutations was obtained from
cBioPortal (https://www.cbioportal.org/).

2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene
Ontology (GO) Analysis, and GSEA. Sangerbox tools, a free
online platform for information analysis, were employed to
performKEGG,GOanalysis, andGSEA.Briefly, sampleswere
categorized into high- and low-risk groups, and GSEA was
performed to identify the possible mechanisms associated
withpyroptosis.Here, |NES|>1,NOMpvalue<0.05, andFDR
q-value<0.25wereusedas the thresholdsof significance.)eR
software package clusterProfiler was applied for GO and
KEGG functional enrichment analyses to identify pathway
enrichment between the low-risk and high-risk groups.

2.5. Estimation of Tumour Microenvironment. Cell-Type
Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) and MCPcounter was employed
to forecast immune cell infiltration. )e relative proportion
of 22 immune cells was estimated with CIBERSORT, and
MCPcounter scores evaluated the composition of 8 immune
cells based on another algorithm. )en, correlation analysis
was performed using Pearson’s test.

2.6. Statistical Analysis. )e survival time difference was
measured by Kaplan–Meier analysis. )e “time ROC”
package in R was adopted to perform receiver operator
characteristic (ROC) analyses. A p value <0.05 was consid-
ered statistically significant, and all p values were two-tailed.

3. Results

3.1. Identification of a Pyroptosis-Related Prognostic
Signature. To date, 27 genes associated with pyroptosis have
been identified from GSEA. To understand the function of
the overall pyroptosis-related genes, univariate Cox analysis
was not performed. None of the pyroptosis-related genes
were excluded from the following analysis. LASSO regres-
sion analysis was performed using 27 pyroptosis-related
genes, and 12 genes with the best capacity were identified
using the LASSO regression model (Figures 1(a) and 1(b)).
)e description and parameters of the 12 pyroptosis-related
genes are shown in Table 1.

)e association network containing the 12 pyroptosis-
associated genes and risk scores is displayed in Figure 2(a)
(red: positive associations; blue: negative associations). For
further exploration of the mutual effects of these pyroptosis-
associated genes, PPIs between the 12 pyroptosis-related
genes were analysed by using the STRING platform
(Figure 2(b)).

Univariate and multivariate Cox analyses were performed
using data from the TCGA cohort (Table 2). Univariate analysis
indicated that risk score, age, and pathologic stage were related
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to the survival time of CRC patients. Multivariate analysis
identified the risk score, age, and pathologic T stage as inde-
pendent factors associated with CRC prognosis.

3.2. Landscape of Genetic Variation of Pyroptosis-Associated
Genes in CRC. At the genetic level, pyroptosis-related genes
were altered in 51 (23%) of the 220 patients/samples
(Figure 3(a)). Deep deletion was the most common variant
classification, and C > T is ranked as the top mutation. Of

these, TP63, IRF2, and CASP3 showed the highest frequency
of mutations, and only 1 sample (approximately 0.5%)
harboured IL1A missense mutations. Figure 3(a) also
presents the mutation count, survival status, survival time,
and expression heatmaps of these genes.

In the TCGA cohort, IL1A, HMGB1, and CHMP4C were
enriched in CRC samples, whereas the remaining pyroptosis-
related genes all showed decreased expression in CRC
samples (Figure 3(b)). For more effective verification of our
findings, the mRNA levels of pyroptosis-associated genes
among 32 pairs of tumour tissues and normal nearby tissue
samples were tested. Similarly, these pyroptosis-related genes
were downregulated in tumours (Figure 3(c)).

3.3.�ePrognostic Capacity of the Pyroptosis-AssociatedGene
Signature. CRC patients were separated into high- and low-
risk groups based on their median risk score. Figures 4(a)–
4(c) show the risk score allocation, survival status, and gene
profiles of the 12 genes in the training (TCGA) and veri-
fication (GSE39582 and GSE87211) cohorts. As the risk
score increased, the patients’ risk of death increased, and the
survival time declined. )e heatmaps showed that
CHMP2A, CHMP3, GSDME, HMGB1, IRF2, and TP63
were overexpressed, whereas downregulation of CHMP2B,
CASP3, CHMP4C, CHMP6, CHMP7, and IL1A was ob-
served in high-risk cases.

Next, the value of the risk score was further determined
by forecasting the prognosis of patients. Patients were
classified into high- and low-risk score groups based on the
best cut-off value. According to the Kaplan–Meier curve,
CRC patients with a high-risk score showed a worse total
survival, progression-free survival, or relapse-free survival
compared with those with a low-risk score (Figures 5(a)–
5(c)).)e number of patients at risk is displayed in the lower
portion of each graph.
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Figure 1: Screening of the pyroptosis-related prognostic signature by LASSO. (a) LASSO parameters of the pyroptosis-associated
prognostic genes in TCGA. (b) )e best fit profile was generated, and 12 pyroptosis-related genes were identified.

Table 1: )e list of of the 12 pyroptosis-related genes.

Gene
symbol Description Coefficient

CASP3 Caspase 3 −0.2358855894

CHMP2A Charged multivesicular body
protein 2A 0.1535683588

CHMP2B Charged multivesicular body
protein 2B −0.5961559646

CHMP3 Charged multivesicular body
protein 3 0.0867141558

CHMP4C Charged multivesicular body
protein 4C −0.0477902078

CHMP6 Charged multivesicular body
protein 6 −0.1967124331

CHMP7 Charged multivesicular body
protein 7 −0.2900477106

GSDME Gasdermin E 0.0820987643
HMGB1 High mobility group box 1 0.0099448303
IL1A Interleukin 1 alpha −0.0173466610
IRF2 Interferon regulatory factor 2 0.4575734946
TP63 Tumor protein p63 0.0662656359
Risk score� (−0.2359 ∗CASP3)+(0.1536 ∗ CHMP2A)+(−0.5962 ∗ CHMP2B)+
(0.0867 ∗ CHMP3)+ (−0.0478 ∗ CHMP4C)+(−0.1967 ∗ CHMP6)+ (−0.29 ∗
CHMP7)+ (0.0821 ∗ GSDME)+(0.0099 ∗ HMGB1)+ (−0.0173 ∗ IL1A)+
(0.4576 ∗ IRF2)+ (0.0663 ∗ TP63).
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)e sensitivity and specificity of the prognostic model
were assessed with time-dependent ROC analysis, and
area under curve (AUC) in the TCGA, GSE39582, and
GSE87211 cohorts predicting overall survival reached
0.78, 0.55, and 0.7 for 5-year survival (Figures 6(a)–6(c)).
AUC values predicting relapse-free survival or progres-
sion-free survival were also significant at >0.5
(Figures 6(a)–6(c)).

3.4. Functional Enrichment Analysis of Pyroptosis-Associated
Genes. To clarify the function of the pyroptosis-related
genes between the subgroups classified by the risk model, we
identified 512 differentially expressed genes (DEGs) with an
absolute value of log10 FDR <1 and |log2-fold change| <1
between the low- and high-risk groups in the TCGA cohort.
)e KEGG pathway analysis and GO enrichment analysis
were then conducted based on these 512 DEGs.

We found that these DEGs were mostly involved in the
ECM-receptor interaction, vascular smooth muscle

contraction, TGF-beta signalling pathway, dilated cardiomy-
opathy (DCM), and axon guidance based on KEGG pathway
analysis (Figure 7(a)). Moreover, GO analysis suggested that
these DEGs were mainly correlated with extracellular matrix,
extracellular structure organization, and extracellular matrix
structural constituent (Figures 7(b)–7(d)).

Subsequently, GSEA was performed between the high-
and low-risk groups. On the basis of the outcomes, the high-
risk group expressed all enriched gene sets. )ese gene sets
were involved in mechanisms associated with aminoacyl
tRNA biosynthesis, base excision repair, citrate cycle TCA
cycle, DNA replication, proteasome, homologous recom-
bination, terpenoid backbone biosynthesis, and nucleotide
excision repair (Figure 8).

3.5. Identification of the Association between Pyroptosis-Re-
lated Genes and the Tumour Immune Microenvironment.
To better assess how pyroptosis-related genes interact with
the immune microenvironment, the CIBERSORTalgorithm
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Figure 2: )e correlation between the 12 pyroptosis-related genes. (a) Association between the risk score and the chosen signature genes in
TCGA. Data were analysed using the Pearson coefficient. )e colour represents the p value and coefficient. (b) )e protein interaction
network of pyroptosis-associated genes in TCGA.

Table 2: )e univariate and multivariate cox regression of between high- and low-risk group in TCGA.

Variable
Univariate cox analysis Multivariate cox analysis

HR (95% CI) p value HR (95% CI) p value
Riskscore 3.278 (2.119–5.071) <0.001 2.621 (1.679–4.093) <0.001
Age 1.036 (1.015–1.059) <0.001 1.046 (1.023–1.07) <0.001
Gender 1.068 (0.657–1.738) 0.79 0.924 (0.561–1.522) 0.756
Pathologic stage 2.155 (1.624–2.861) <0.001 1.896 (0.783–4.589) 0.156
Pathologic T 3.292 (1.93–5.615) <0.001 2.013 (1.034–3.918) 0.04
Pathologic N 1.907 (1.428–2.548) <0.001 1.021 (0.598–1.742) 0.941
Pathologic M 3.685 (2.169–6.26) <0.001 1.361 (0.404–4.587) 0.619
MSI 0.959 (0.697–1.318) 0.795 0.773 (0.548–1.092) 0.144
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Figure 3: Genetic characteristics of pyroptosis-associated genes in CRC. (a) Genetic alteration, mutation spectrum, mutation count, overall
survival time, and expression heatmap from the cBioPortal database. (b) Expression of the 12 pyroptosis-associated genes between CRC and
normal tissues in TCGA. (c) Expression of the 12 pyroptosis-associated genes between CRC and paired normal tissues in TCGA.
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Figure 4: Overview of the pyroptosis-related gene signature. Allocation of risk markers, survival time, and expression heatmap of signature
genes in the TCGA (a), GEO GSE39582 (b), and GEO GSE87211 (c) cohorts.
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Figure 5: Kaplan–Meier curve of the pyroptosis-related gene signature. Overall, progression-free or relapse-free survival for CRC patients
with a high or low pyroptosis-related risk score in the TCGA (a), GEO GSE39582 (b), and GEO GSE87211 (c) cohorts.
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was adopted, and integrated comparisons with the risk
scores were conducted. Figures 9(a) and 9(b) show the
relative content allocation of tumour-infiltrating immune
cells in the TCGA cohort and the association between tu-
mour-infiltrating immune cells.

Next, whether the risk score would have guiding value
for clinical treatment, especially immunotherapy, was
investigated. )e infiltration of tumor microenvironment
(TME) cells was analysed in patients with various risk
scores (Figure 10(a)). Patients in the low-risk group
showed a higher percentage of antitumoural immune
cells, such as plasma cells, CD4 T cells, activated dendritic
cells (DC), and activated mast cells. Higher scores were
closely related to M2 macrophages and M0 macrophages.
Similarly, further analysis showed that the risk score was
positively related to M2 macrophages and M0 macro-
phages but negatively related to plasma cells, CD4 T cells,
activated dendritic cells, and activated mast cells
(Figures 10(b)–10(h)). Furthermore, Kaplan–Meier
analysis indicated that plasma cells conferred a significant
survival advantage (Figure 10(i)).

)e MCP-counter score showed the association between
the risk score and the monocytic lineage, fibroblasts, B
lineage, and endothelial cells in the TCGA cohort
(Figures 11(a)–11(d)). Conversely, Kaplan–Meier analysis
(Figures 11(e) and 11(f)) and univariate Cox regression
(Figure 11(g)) highlighted that CRC patients benefited from
myeloid dendritic cells, whereas fibroblasts impaired CRC
patient prognosis.

4. Discussion

)is research established a pyroptosis-related prognostic
signature for CRC patients. TCGA cohort data were assessed
using the LASSO regression model, and a 12-gene signature
associated with the outcome of CRC was produced. ROC
curve and Kaplan–Meier analyses among patients with
regard to high- and low-risk scores were validated in the
GEO cohort. Genetic variation analysis showed that TP63,
IRF2, and CASP3 presented the highest frequency of mu-
tations. In the following functional analysis, KEGG, GO, and
GSEA results indicated that the high-risk groups were
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related to extracellular matrix, TGF-beta signalling pathway,
and DNA replication. Immune cell infiltration data dem-
onstrated that the low-risk group exhibited more activated
immune cell infiltration, which may result in a better re-
sponse to immunotherapy. )is work will promote future
pyroptosis studies in CRC.

Consistent with our observations, other researchers also
identified pyroptosis-associated models and characterized
tumour microenvironment infiltration in CRC. Generally,
genes with no significance were excluded using the Cox
regression model before lasso analysis. However, the Cox
regression model failed to take advantage of genes that had

important biological functions without statistical signifi-
cance. Many valuable pieces of information, such as bio-
logical characteristics, have been ignored. In our study, the
threshold of Cox analysis was abolished. Based on the overall
trend of the dataset, our study provided a more reasonable
pyroptosis-related prognosis signature.

We identified a 12 pyroptosis-associated gene signature
for the prognosis of colorectal cancer, including CAS P3,
CHMP2A, CHMP2B, CHMP3, CHMP4C, CHMP6, CHMP7,
GSDME, HMGB1, IL1A, IRF2, and TP63. Activated caspase 3
could specifically cleave GSDME [17], which generated pores
in the plasma membrane and induced pyroptosis. In certain
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Figure 7: Functional enrichment analysis of pyroptosis-associated genes. KEGG (a) and GO (b–d) enrichment analyses of pyroptosis-
related genes in patients with high or low-risk scores in TCGA.
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cells, the switch from apoptosis to pyroptosis could be in-
duced by knocking out GSDME [17]. GSDME expression was
silenced in colorectal, gastric, and breast cancer [18], indi-
cating that GSDME may be a tumour suppressor gene.
Furthermore, GSDME-induced pyroptosis was an underlying
mechanism involved in the resistance to the toxicity of
chemotherapy drugs [17]. CHMP2A, CHMP2B, CHMP3,
CHMP4C, CHMP6, and CHMP7 are endosomal sorting
complexes necessary for transport (ESCRT)-III subunit [19].
ESCRT-III plays a key role in the degradation of trans-
membrane proteins in lysosomes, midbody abscission during
cytokinesis, and retroviral budding. In the pyroptosis process,
ESCRT-III is required for damaged plasma membrane repair
[20]. Given that EGFR is a cell membrane protein, inacti-
vation of the ESCRT-III machinery impairs EGFR degra-
dation [21], which may induce tumorigenesis. Furthermore,
CHMP4C has been frequently overexpressed in human
cancer tissue [22]. As a response to damage-associated mo-
lecular patterns (DAMPs), the nuclear-associated protein
HMGB1 and cytokine IL1A are released following exposure
to inflammatory stimuli [23]. HMGB1 overexpression was
confirmed in melanoma, colon cancer, prostate cancer,

pancreatic cancer, and breast cancer [24]. During pyroptosis,
caspase-1, which is activated by inflammasomes, promotes
the secretion of HMGB1 and IL1A [25, 26]. Subsequently,
HMGB1 and IL1A promoted the expression of vascular
endothelial growth and tumorigenesis. IRF-2 is a member of
the interferon regulatory factor (IRF) family, which was
originally identified based on its effects on innate and
adaptive immunity. IRF-2 targeted the interferon-stimu-
lated response element and was involved in the regulation
of the interferon system [27]. IRF2, which is overexpressed
in pancreatic cancer [28] and oesophageal squamous cell
carcinoma [29], acts as an oncogene. IRF2 sequentially
activates caspase-4 and GSDMD to induce pyroptosis [30].
TP63 is a member of the p53 family and exhibits diverse
biological functions, such as cellular proliferation, differ-
entiation, stem cell maintenance, cell death and survival,
DNA damage response, and metabolism. Furthermore,
multiple isoforms of TP63 played opposite roles in different
human tumours [31, 32]. Numerous studies have con-
firmed that TP63 can induce apoptosis and DNA damage
[33]. In CRC, knockdown of TP63 could cleave GSDME to
induce pyroptosis [34].
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More recently, immunotherapy and the tumour mi-
croenvironment have attracted increasing attention. Im-
mune cells, such as T lymphocytes and B lymphocytes,
infiltrated the tumour microenvironment and influenced
tumour progression. In our study, pyroptosis risk scores
were negatively related to plasma cells, CD4 Tcells, activated
dendritic cells, and activated mast cells and positively related
to M2 macrophages and M0 macrophages. Generally, M2
macrophages secrete cytokines, such as IL-10 and TGF-β,
which suppress the immune response and promote tu-
morigenesis [35]. Conversely, high proportions of infil-
trating CD4 T cells and dendritic cells, which are optimally
equipped antigen-presenting cells (APCs), were associated
with a favourable prognosis. Upon activation by tumour
antigens, DCs can internalize, process, and later show
processed epitopes to T cells and cause cytotoxic
T lymphocyte (CTL) immune responses [36]. CD4 T cells
were mainly helper T cells () cells) in our study. ) cells
play a role in antitumour immunity by assisting CD8 effector
T cells and functioning cytotoxic T cells [37, 38].

5. Conclusion

In our study, a new, reasonable pyroptosis-associated
prognostic signature for CRC was observed and an extensive
regulatory mechanism by which they affect the prognosis
was revealed. Genetic variation analysis presented the high
mutation frequency of pyroptosis-related genes. Moreover,
we identified that immune cell infiltration in the low-risk
group contributes to CRC patient prognosis. Our findings
highlight the crucial implications of pyroptosis-related
genes, which may be developed as a precise indicator for
individualized clinical prognostication.
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