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Objective. Tis study aimed to explore the mechanisms of Baishi tablets (BSTs) in the treatment of vitiligo through network
pharmacology-based identifcation and experimental validation. Methods. In brief, the compounds and related targets of BST
were extracted from the TCMSP database, and disease information was obtained from the OMIM, GeneCards, PharmGkb,
TTD, and DrugBank databases. A Venn diagram was generated to visualize the common targets of BST and vitiligo. GO and
KEGG analyses were performed to explore the potential biological processes and signaling pathways.Te PPI network and core
gene subnetwork were constructed using STRING and Cytoscape software. In addition, the measurement of apoptosis in PIG1
cells and intracellular reactive oxygen species were measured using quercetin (QU), luteolin (LU), and kaempferol (KA) to
protect melanocytes from oxidative stress. Results. A total of 55 compounds with 236 targets and 1205 vitiligo-related genes
were obtained from the TCMSP database. GO and KEGG analyses were performed to explore the potential biological processes
and signaling pathways, revealing that BSTmay cure vitiligo by infuencing the biological processes of cellular oxidative stress
and related signaling pathways. A critical subnetwork was obtained with 13 core genes by analyzing the PPI network, which
includes HMOX1, CXCL8, CCL2, IL6, MAPK8, CASP3, PTGS2, AKT1, IL1B, MYC, TP53, IFNG, and IL2. Furthermore,
a molecular docking analysis was conducted to simulate the combination of compounds and gene proteins, refecting that QU,
LU, and KA can strongly bind the core genes. Trough a series of experimental validations, we found that QU, LU, and KA
could attenuate H2O2-induced apoptosis in melanocytes. Further evidence revealed that QU, LU, and KA could enhance the
scavenging of intracellular reactive oxygen species (ROS). Conclusion. Based on the results of network pharmacology analysis
and experimental verifcation, QA, LU, and KA can be utilized to protect PIG1 cells by inhibiting oxidative stress and reducing
the intracellular level of ROS. Tis may explain the underlying mechanism of BST therapy and provide a novel strategy for the
treatment of vitiligo.

1. Introduction

Vitiligo is an acquired, chronic depigmenting disorder of the
skin. It results from the selective destruction of melanocytes
[1]. Approximately 0.5%–1% of the global population is af-
fected by vitiligo. Vitiligo prevalence is not associated with sex
or ethnicity [1–3]. Vitiligo is considered to be a multifactorial

disease. In addition to genetic and environmental factors,
other factors (autoimmune, neural, and oxidative stress) have
been suggested to have an efect on vitiligo [4].

Management of vitiligo includes the topical use of glu-
cocorticoids, calcineurin inhibitors, and phototherapy. A
small number of patients who meet the indications can also
choose surgical transplantation of pigments or decolorization
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treatment [5]. However, due to the complexity of the primary
pathogenesis of vitiligo, the treatment methods stated above
cannot cure it; they provide only short-term benefts, and the
long-term efects are often unsatisfactory. Moreover, such
treatments often introduce toxic side efects (e.g., skin at-
rophy, phototoxic reactions, and skin cancer).

Traditional Chinese medicine (TCM) is a powerful and
far-reaching system of medical treatment. From the view-
point of compatibility of TCM and the interaction of various
traditional Chinese medicines, TCM formulations have
relatively low toxicity and few side efects and have shown
curative efects in the treatment of several diseases [6].
Studies have shown that TCM formulations have great
potential in vitiligo treatment [7, 8].

Baishi tablets (BSTs) consist primarily of Chaihu
(bupleurum), Chishao (red peony), Zhixiangfu (rhizome
cyperi), Baishao (white peony), and Zhishi (citrus aur-
antium). BSTcan replenish qi, promote stagnation, aid blood
circulation and detoxifcation, and dispel wind. Te der-
matology department of our institution has used BST to treat
vitiligo for many years, and excellent outcomes have been
achieved. Our research group conducted a clinical ran-
domized trial in 2015, and the Vitiligo Disease Activity
(VIDA) score of the patients treated with BST was signif-
cantly reduced [9]. Nevertheless, the components of TCM
formulations have a wide range of functions and complex
active ingredients, and the targets and mechanisms of their
regulation have not been fully studied.

Network pharmacology is a promising method that
combines pharmacology and computer science to construct
and visualize the interaction network of multiple genes,
targets, and signaling pathways. It is highly suitable for
researching drugs with complex ingredients (e.g., TCM
formulations) and is a cost-efective method of drug de-
velopment [10–12].

Herein, we applied network pharmacology to identify the
active ingredients and examine the core targets and signaling
pathways of BST for vitiligo treatment. We also undertook
molecular docking studies to ascertain how BST binds to its
predicted targets. Subsequently, we conducted a series of
in vitro experiments on immortalized human melanocytes.
Te fowchart of our study is shown in Figure 1.

2. Materials and Methods

2.1. Identifcation of theActiveCompounds inBSTandRelated
Target Genes. Te compounds Chaihu, Chishao, Xiangfu,
Baishao, and Zhishi were searched and obtained from the
Traditional Chinese Medicine System Pharmacology Data-
base (TCMSP; http://tcmspw.com/tcmsp.php/) [13], as were
their related gene targets and other biological information.
Specifcally, to evaluate the characteristics of absorption,
distribution, metabolism, and excretion, we used oral bio-
availability (OB) and drug likeness (DL) to flter candidate
active compounds with thresholds of OB≥ 30% and
DL≥ 0.18 [14]. Moreover, the targets of the active com-
pounds were transformed into gene symbols via the UniProt
database (http://www.uniprot.org/) by limiting the species to
Homo sapiens for further analyses [15].

2.2. Identifying the Target Genes Related to Vitiligo.
Vitiligo-related targets were extracted by screening the
Online Mendelian Inheritance in Man (OMIM; https://
omim.org/) [16], Genecards (http://www.genecards.org/)
[17], PharmGkb (http://www.pharmgkb.org/) [18], Tera-
peutic Target Database (TTD; http://db.idrblab.net/ttd/) [19]
and Drugbank (http://www.drugbank.ca/) [20] databases
using the keyword “vitiligo.” After removing duplicates,
a vitiligo-related gene set was established by combining the
search results.

2.3. Establishment of a Compound–Target–Vitiligo Network
and Functional Analyses. Having prepared two sets of target
lists for the gene targets of compounds and vitiligo-related
targets, screening for drug–disease crossover was carried
out. A Venn diagram was generated with R (R Institute for
Statistical Computing, Vienna, Austria) using the Venn
Diagram package to show the intersection sets. A com-
pound–target–disease network diagram was established
using Cytoscape 3.8.0 (https://cytoscape.org/) to show the
relationship among vitiligo, BST, and the related gene
targets [21].

Subsequently, analyses of functional enrichment and
enrichment of signaling pathways were undertaken using the
gene ontology (GO; http://geneontology.org/) and Kyoto
Encyclopedia of Genes and Genomes (KEGG; http://www.
genome.jp/kegg/) databases, respectively. Te “clusterpro-
fle” and “bioconductor” packages within R were employed
to assess the biological process (BP), cellular component
(CC), molecular function (MF), and key signaling pathways.
Signifcantly enriched terms were identifed, and p< 0.05
and q< 0.05 indicated a strong association with related BPs
[22, 23].

2.4. Protein–Protein Interaction (PPI) Networks and Critical
Subnetworks. Te Search Tool for the retrieval of interacting
genes/proteins (STRING) (http://string-db.org/) database
[24] was used to identify the biological interactions among
the potential gene targets. Intersecting PPIs were obtained
through the intersecting gene sets of BST and vitiligo. After
importing the results of PPIs into Cytoscape, a diagram of
critical subnetworks was established, and core genes were
investigated using the CytoNca plugin [25]. Eligible genes
were selected if each score was higher than the median value
of betweenness, closeness, degree, the eigenvector, the local
average connectivity-based method, and network scores.
After displaying this analytical process twice, the fnal results
of the core genes were utilized to establish a critical
subnetwork.

2.5. Molecular Docking. Compounds with the top-three
highest numbers of related critical genes and their com-
mon core genes were selected for molecular docking. After
downloading the two-dimensional (2D) molecular struc-
ture of ligands from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) [26], the 3D structure with
the minimum energy was calculated and exported via
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ChemBio 3D (http://www.adeptscience.co.uk/products/
lab/chembio3d/). Moreover, the 3D structure of the re-
ceptor proteins encoded by the core genes was searched in
the UniProt database and downloaded from the Research
Collaboratory for Structural Bioinformatics Protein Da-
tabase (https://www.rcsb.org/) [27].

After preparing the fles for the 3D structure, the re-
ceptor proteins were dehydrated, and ligands were removed
using PyMOL (https://pymol.org/2/). AutoDock (https://
autodock.scripps.edu/) was utilized to modify the receptor
protein as well as carry out the hydrogenation and charging
calculations of proteins [28]. Subsequently, the parameters
of the docking site of the receptor protein were set to include
the sites of the active pocket. Molecular docking between
compounds and receptors was investigated via Vina within
AutoDock [29].

2.6. Cells and Cell Culture. An immortalized human mela-
nocyte cell line (PIG1) was purchased from the American
Type Cell Collection (Manassas, VT, USA). PIG1 cells were
cultured in Dulbecco’s modifed Eagle’s medium (Gibco,
Grand Island, NY, USA) supplemented with 10% fetal bo-
vine serum (Gibco). PIG1 cells were cultured in a 37°C
incubator in an atmosphere of 5% CO2.

2.7. Apoptosis Measurement. PIG1 cells were cultured in
60mm petri dishes after treatment with 50 μmol/L QU, LU,
or KA for 24 h. Ten, H2O2 (fnal concentration: 1mmol/L)
was added to each well, and incubation was undertaken for
an additional 2 h. Simultaneously, we set up simple
compound-treatment groups and a control group (without

any treatment). After the previous treatment, we digested
PIG1 cells with EDTA-free trypsin, collected them in tubes,
washed them twice with phosphate-bufered saline (PBS),
and resuspended them in PBS. According to the protocol,
PIG1 cells were stained with an Annexin V-FITC Apoptosis
Detection Kit (Liankebio, Hangzhou, China) and detected
by fow cytometry. FlowJo (http://www.fowjo.com/) was
used to measure the percentage of apoptotic cells.

2.8. Measurement of Levels of Intracellular Reactive Oxygen
Species (ROS). QU, LU, and KA were purchased from
Aladdin (purity ≥98.5%; Shanghai, China). QU, LU, and KA
were dissolved in dimethyl sulfoxide (DMSO; Millipore
Sigma‒Aldrich, Burlington, Massachusetts MA, USA) for
further use. PIG1 cells were cultured in six-well plates after
being treated with diferent concentrations (25 or 50 μmol/L)
of QU, LU, and KA for 24 h. H2O2 was added (fnal con-
centration: 1mmol/L) to each well and incubated for an
additional 2 h. After the corresponding treatment, we washed
cells twice with serum-free medium. According to product
instructions, cells were stained with dichlorodihydro-
fuorescein diacetate using a reactive oxygen species kit
(Shanghai Biyuntian Biotechnology, Shanghai, China) and
photographed under an inverted fuorescence microscope
(Olympus, Tokyo, Japan).

2.9. Statistical Analyses. Te data are the mean± SD. Sta-
tistical analyses were carried out using Prism 7.0 (GraphPad,
San Diego, CA, USA) or SPSS 22.0 (IBM, Armonk, NY,
USA). Te Student’s t- test or one-way analysis of variance
was used for multiple group comparisons. Te experiments
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Figure 1: Te fowchart for the mechanism exploration of the Baishi tablet. OB, oral bioavailability; DL, drug likeness. GO, gene ontology;
KEGG, Kyoto encyclopedia of genes and genomes.
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were repeated at least three times. p< 0.05 was considered
signifcant.

3. Results

3.1. Active Compounds and Potential Targets. Using the
criteria of DL≥ 0.18 and OB≥ 30%, 55 main and efcacious
compounds of the fve herbs were retrieved and selected
(Supplementary Table 1). Subsequently, the compound-
related targets were annotated into a gene-symbol set us-
ing the UniProt database. After removing duplicates, a set of
1205 vitiligo-related targets (Supplementary Table 2A) were
established by extraction from the OMIM, GeneCards,
PharmGkb, TTD, and DrugBank databases (Figure 2(a),
Supplementary Table 2B). Moreover, an intersection of the
compound targets and vitiligo-related genes, which con-
tained 71 target proteins (Supplementary Table 2C), was
obtained (Figure 2(b)).

3.2. Network Analysis of Targets. A com-
pound–disease–target interaction network (Figure 3) was
visualized using the Cytoscape to refect the relationship
among the compounds in BST, vitiligo, and their inter-
secting genes. Te number of possible efcacious com-
pounds of BSTrelated to vitiligo treatment was 43. Te top
fve active ingredients infuencing the most genes were
QU (50 genes), LU (25 genes), KA (24 genes), iso-
rhamnetin (15 genes), and baicalein (15 genes). Te top
fve related gene proteins in the intersecting genes were
PTGS2 (38 compounds), CALM1 (20 compounds), DPP4
(18 compounds), F2 (18 compounds), and PRSS1 (16
compounds).

3.3. Enrichment Analyses. Analyses of functional enrich-
ment using the GO database revealed the underlying BPs,
CCs, and MFs of the 71 target genes. Using p< 0.05 and
q< 0.05 as criteria, 2112 signifcantly enriched GO terms
were obtained: 1975 BPs, 26 CCs, and 111MFs. Te top 10
terms is shown in Figure 4(a).

Te top 10 BPs were responses to metal ions; nutrient
levels; lipopolysaccharide; molecules of “bacterial origin,”
“radiation,” “oxidative stress,” “aging,” “antibiotics,”
“drugs,” and “reactive to oxygen species.”

Te top 10CCs were “cyclin-dependent protein kinase
holoenzyme complex,” “membrane raft,” “membrane
microdomain,” “membrane region,” “caveola,” “serine/
threonine-protein kinase complex,” “transcription factor
complex,” “nuclear chromatin,” “mitochondrial outer
membrane,” and “plasma membrane raft.”

Te top 10MFs were “cytokine activity,” “cytokine re-
ceptor binding,” “receptor ligand activity,” “phosphatase
binding,” “transcription cofactor binding,” “RNA poly-
merase II basal transcription factor binding,” “heme bind-
ing,” “protein phosphatase binding,” “tetrapyrrole binding,”
and “transcription coactivator binding.”

Using p< 0.05 and q< 0.05 as criteria, analyses of
signaling-pathway enrichment using the KEGG database
were performed. We found that 165 potential signaling
pathways were enriched (Supplementary Table 3), and the
top 30 signaling pathways are shown in Figure 4(b). Bubble
plots demonstrated that these gene targets afected signaling
pathways related to the “biological process of oxidative stress
such as lipid and atherosclerosis,” “AGE-RAGE signaling
pathway in diabetic complications,” “fuid shear stress,” and
“atherosclerosis.”
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Figure 2: Identifcation of the drug-target interaction. (a) Venn diagram of vitiligo-related genes. (b) Venn diagram of gene intersections
between BST and vitiligo BST, Baishi tablet.
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3.4. PPI Diagram and Core Subnetwork. Seventy-one over-
lapping genes associated with vitiligo and BSTwere inputted
into the STRING database, and a PPI network diagram was
established after selecting Homo sapiens. Te PPI network
contained 71 nodes and 821 edges (Figure 5(a), Supple-
mentary Table 4). After importing the results from the PPI
network into Cytoscape and using the CytoNCA plugin,
these related genes were identifed twice to establish a core-
gene subnetwork. Te median values of betweenness,
closeness, degree, eigenvector, local average connectivity-
based method, and network scores in the calculations were
17.06899034, 0.584745763, 22.5, 0.109364353, 15.794871795,
and 18.691161565, respectively, in the frst identifcation and
5.78362403, 0.8170634925, 22.5, 0.180951178, 18.09090909,
and 20.229612495, respectively, in the second identifcation.
A further core subnetwork containing 13 nodes and 77 edges
was obtained. Tese 13 core gene targets were HMOX1,
CXCL8, CCL2, IL6, MAPK8, CASP3, PTGS2, AKT1, IL1B,
MYC, TP53, IFNG, and IL2 (Figure 5(b)). Te results from
the analyses of functional enrichment and enrichment of
signaling pathways using the GO and KEGG databases,
respectively, revealed that the core genes were involved in
the “cellular response to oxidative stress” and had critical
roles in signaling pathways. Detailed information on these
compounds is summarized in Supplementary Table 5.

3.5. Molecular Docking. Referring to the results of the core
gene network, we selected the top-three compounds (QU,
LU, and KA) that infuenced most vitiligo-related genes as

ligands. Ten, we conducted molecular docking on these
core genes. According to our previous analyses, QU infu-
enced 12 core genes (PTGS2, AKT1, IL6, CASP3, TP53,
HMOX1, MYC, IL1B, CCL2, CXCL8, IL2, and IFNG), LU
afected eight core genes (PTGS2, AKT1, IL6, CASP3, TP53,
HMOX1, IL2, and IFNG) and KA regulated fve core genes
(PTGS2, AKT1, CASP3, MAPK8, and HMOX1). Sub-
sequently, an additional calculation was made to simulate
the molecular docking of three compounds with four
common protein receptors: PTGS2 (protein database (PDB)
code: 5KIR), AKT1 (PDB code: 6HHG), CASP3 (PDB code:
3PD0) and HMOX1 (PDB code: 1N45). Te results of
molecular docking and afnity values are listed in Figure 6. A
greater absolute value for the docking afnity indicates
a stronger binding ability between the active site of a protein
receptor and a compound.Te docking results indicated that
QU, LU, and KA could enter and bind the active pocket of
the four core target proteins, could form hydrogen bonds
with amino acid residues, and exhibited high binding
afnity.

3.6. Experimental Validation

3.6.1. QU, LU, And KA Reduced H2O2-Induced PIG1
Apoptosis. We wished to verify the prediction results of the
previous compound–disease–target interaction network.
We screened out the three compounds with the most ex-
tensive targets for vitiligo for experimental verifcation: QU,
LU, and KA. Te role of QU, LU, and KA in melanocytes

Figure 3: BST-compounds-genes-vitiligo network diagram. Te annotation of compounds is summarized in Supplemental Table 1. BST,
Baishi tablet.
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under oxidative stress was explored by treating PIG1 cells
with H2O2 to mimic the environment of cellular oxidative
stress. We used fow cytometry to measure H2O2-induced
apoptosis in PIG1 cells. H2O2 induced apoptosis, but pre-
treatment with QU, LU, or KA signifcantly reduced apo-
ptosis. PIG1 cells treated with QU, LU, or KA alone did not
induce signifcant apoptosis. Tere was a signifcant dif-
ference in the percent apoptosis between the pure H2O2-
treated group and compound-pretreated groups (p< 0.05
and p< 0.01) (Figure 7).

3.6.2. QU, LU, And KA Scavenged H2O2-Induced In-
tracellular ROS in PIG1 Cells. First, PIG1 cells in the
treatment groups were pretreated with diferent concen-
trations (25 or 50 μmol/L) of QU, LU, or KA. Subsequently,

PIG1 cells were treated with H2O2 to simulate the envi-
ronment of cellular oxidative stress, and we measured ROS
production by fuorescence staining. Compared with PIG1
cells in the pure-H2O2 environment, ROS levels in PIG1 cells
decreased in all three groups that were pretreated with 25 or
50 μmol/L of compounds. ROS levels decreased in the same
treatment group with increasing concentrations of the
compound, respectively (Figure 8). Tese results suggested
that QU, LU, and KA could reduce ROS in melanocytes and
protect melanocytes from oxidative stress to a certain extent.

4. Discussion

Vitiligo is caused by melanocyte destruction. Vitiligo
pathogenesis could be due to heredity, autoimmunity,
neurochemical factors, or oxidative stress [1, 2]. Oxidative
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Figure 4: GO (a) and KEGG (b) enrichment analyses of the target genes. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes.
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stress may be the initial event leading to vitiligo development
[30]. Melanocytes from patients with vitiligo are inherently
defective and susceptible to oxidative stress [31]. ROS
generation occurs during melanin synthesis by melanocytes.
Te stress status of melanocytes can also lead to an excessive
accumulation of ROS, which results in changes to the an-
tioxidant system. Te imbalance of oxidative and antioxi-
dant systems in vitiligo patients increases the sensitivity of
melanocytes to external oxidants, thereby resulting in pre-
mature aging and apoptosis [32, 33]. Excessive accumulation
of ROS can also cause cellular DNA damage and lipid
peroxidation, which afect cellular function [34, 35].
Terefore, reducing oxidative stress in melanocytes should
be a rational strategy for vitiligo treatment.

BST has a satisfactory efect in the clinical treatment of
vitiligo. However, due to the complex components of TCM
formulations, a more accurate and systematic study of their
possible targets and mechanisms is needed. We used net-
work pharmacology to explore the mechanism of action of
BST for vitiligo treatment. QU, LU, KA, baicalein, nobiletin,
and isorhamnetin were screened out as the main active
ingredients of BST. QU, LU, and KA had the most extensive
targets in vitiligo, so we selected them for experimental
verifcation.

QU is a polyphenolic favonoid found widely in on-
ions, cabbage, apples, and tea [36, 37]. In recent years,
scholars have revealed that QU has powerful antioxidant
efects. It has a preventive efect on osteoporosis, certain
tumor types, and certain cardiovascular diseases. Te
antioxidant activity of QU occurs mainly through the
direct induction of glutathione (GSH) synthesis in the
body. GSH acts as a hydrogen donor for redox reactions in
the body, while superoxide dismutase captures O2 mol-
ecules and transforms them into H2O2, thereby having an
antioxidant efect [38]. In addition, the -OH group in QU
can bind to the active sites of oxidative enzymes, such as
acetylcholinesterase and butyrylcholinesterase, to inhibit
their activity and elicited an antioxidant efect [39]. QU
can also regulate the NRFB, 5′ adenosine
monophosphate-activated protein kinase, and mitogen-
activated protein kinase signaling pathways [40, 41].
Studies have shown that QU increases the tyrosinase
activity and synthesis of melanoma cells and normal
melanocytes to promote melanogenesis [42]. QU has
a weakening and protective efect on H2O2-induced en-
doplasmic reticulum stress in melanocytes [43]. Here, we
demonstrated that a certain concentration of QU reduced
the ROS level in human immortalized melanocytes in-
duced by H2O2 and had a certain degree of protection
against oxidative stress in melanocytes. Combined with
the results of network pharmacology, we showed that QU
had the most extensive binding targets in BST.

LU is a favonoid found in vegetables and fruits and is
used in Chinese herbal medicines [44, 45]. TCM formula-
tions containing LU have been employed to treat high blood
pressure, infammation, and cancer [44]. LU can inhibit the
release of interleukin (IL)8, a critical proinfammatory
chemokine in vitiligo and may have the potential to treat
vitiligo [46].

KA is a natural favonoid found in tea, fruits, and
vegetables. Lee and colleagues found that KA could inhibit
ultraviolet B-induced expression of cyclooxygenase-2 (COX-
2) release in mouse skin epidermal (JB6P+) cells and at-
tenuate ultraviolet B-induced COX-2 release and activator
protein-1 transcriptional activity [47]. KA can also improve
the skin fbrosis induced by bleomycin by reducing oxidative
stress and infammation [48]. Our experimental study
revealed that a certain concentration range of KA could
reduce ROS levels and protect melanocytes.

Hence, QU, LU, and KA are favonoids that have anti-
infammatory and antioxidant efects. Terefore, we spec-
ulated that they could afect the oxidative stress of mela-
nocytes. We conducted experiments to verify that under
oxidative stress (mimicked by H2O2 use), melanocyte ap-
optosis and ROS production were reduced under pre-
treatment by QU, LU, or KA. Terefore, BST may have
a specifc protective role in the oxidative stress pathway of
melanocytes.

In the PPI network analysis of BST, HMOX1, CXCL8,
CCL2, IL6, MAPK8, CASP3, PTGS2, AKT1, IL1B, MYC,
TP53, IFNG, and IL2were screened out, all of which are core
targets in the treatment of vitiligo. PTGS2 is also known as
COX2, which plays an essential part in producing prosta-
glandin (PG)E2 and is made by epidermal keratinocytes in
response to ultraviolet radiation [49, 50]. PGE2 is essential
for the proliferation and melanogenesis of melanocytes, the
loss of which can lead to vitiligo. In addition, studies have
shown that the functional polymorphisms ofCOX2 afect the
risk of vitiligo [51]. Heme oxygenase-1 (HMOX1) is themost
highly induced antioxidant gene in H2O2-treated PIG1 cells.
HMOX1 has been demonstrated to protect human mela-
nocytes from oxidative damage via the E2-related factor 2
(Nrf2)-antioxidant response element (ARE) pathway [52].
AKT1 is a RAC-alpha serine/threonine protein kinase. Te
phosphorylation of AKT1 could promote the accumulation
of β-catenin, thereby activating the microphthalmia-
associated transcription factor and tyrosinase family,
eventually leading to melanogenesis of melanocytes [53].
Overexpression of cellular tumor antigen P53 (TP53) could
protect the pigmentation around hair follicles in vitiligo
patients after ultraviolet-B treatment, change the migration
ability of melanocytes, and improve pigmentation in vitiligo
patients [54]. IL-6 is a vital immune factor involved in
autoimmune infammation in vitiligo. Its increased ex-
pression in serum and a skin lesion could trigger an immune
response that targets and kills melanocytes and leads to
vitiligo [1, 55]. Tese results suggest that QA, LU, and KA
could protect melanocytes, promote melanogenesis, inhibit
melanocyte death, and protect melanocytes from oxidative
damage through various mechanisms.

Our study had three main limitations. First, experi-
mentally validated targets were the predicted results of
network pharmacology, but there were certain deviations
compared with the actual targets. Second, we revealed that
the main compounds QU, LU, and KA could protect me-
lanocytes from oxidative stress; however, how they regulate
targets and afect downstream signaling pathways to have
a role in vitiligo treatment was not tested. Tird, our study
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was based on network pharmacology, so the compounds
with the most targets were selected for experimental veri-
fcation according to the results of network pharmacology,
but their concentration in BST could not be determined.

5. Conclusions

Under the prediction obtained using network pharmacol-
ogy, we clarifed the active compounds in BSTand their main
targets in vitiligo treatment. Based on network pharma-
cology and in vivo experiments, QA, LU, and KA can be
utilized to protect PIG1 cells. Tis phenomenon was
achieved thanks to the inhibition of oxidative stress by re-
ducing the intracellular level of ROS. Tis may explain the
underlying mechanism of action of BST therapy and could
provide a novel strategy for the treatment of vitiligo.
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