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�is study was intended to identify the shifts in the metabolomics pro�le of the hepatic tissue damaged by alcohol consumption and verify
the potential restorative action of �os carthami (the �owers of Carthamus tinctorius, FC) in the protection of alcohol-induced injury by
attenuating the level of identi�ed metabolites. Rats were treated with FC and subsequently subjected to alcohol administration.�e serum
samples were subjected to liquid chromatography-mass spectrometry (LC-MS)-based metabolomics followed by statistical and bio-
informatics analyses.�e clustering of the samples showed an obvious separation in the principal component analysis (PCA) plot, and the
scores plot of the orthogonal partial least squares-discriminant analysis (OPLS-DA)model allowed the distinction among the three groups.
Among the 3211 total metabolites, 1088 features were signi�cantly di�erent between the control and alcohol-treated groups, while 367
metabolites were identi�ed as di�erential metabolites between the alcohol- and FC-treated rat groups. Time series clustering approach
indicated that 910metabolites in pro�le 6 were upregulated by alcohol but subsequently reversed by FC treatment; among them, the top 10
metabolites based on the variable importance in projection (VIP) scores were 1-methyladenine, phenylglyoxylic acid, N-acetylvaline,
mexiletine, L-fucose, propylthiouracil, dopamine 4-sulfate, isoleucylproline, (R)-salsolinol, and monomethyl phthalate. �e Pearson
correlation analysis and network construction revealed 96 hubmetabolites thatwere upregulated in the alcohol liver injurymodel group but
were downregulated by FC. �is study con�rmed the hepatoprotective e�ects of FC against alcohol-induced liver injury and the related
changes in the metabolic pro�les, which will contribute to the understanding and the treatment of alcohol-induced acute liver injury.

1. Introduction

Acute hepatic failure is a syndrome characterized by the
sudden and severe loss of normal liver function [1–3]. �e
prevalence of acute liver failure in the international pop-
ulation is high [1–3]. Acute liver failure is often the direct or
secondary consequence of drugs, toxins, and infections with
hepatitis viruses [1–3]. Alcohol drinking is the foremost
cause of the disease and death from liver damage [4–6].
Despite the e�orts of so many years of research, the path-
ogenesis and physiopathology of acute alcoholic liver failure

still remain unclear; this makes its diagnosis and prognosis
di¦cult and requires careful studies from di�erent angles
and aspects. Moreover, the management of liver failure
remains an enormous challenge in hospitals; options o�ered
include supportive measures, N-acetylcysteine for para-
cetamol poisoning and, in the most extreme cases, liver
transplantation [7, 8]. �erefore, it is necessary to �nd re-
placement therapeutic approaches.

Flos carthami (the �owers of Carthamus tinctorius, FC)
is a group of bioactive compounds that have been shown to
be of therapeutic bene�t in traditional Chinese medicine
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[9–12]. FC has been primarily used for the treatment of
cardiovascular diseases like thrombosis and coronary artery
disease and improves blood flow in the bloodstream [13, 14].
Research also potentiates FC as a key adjuvant for reversing
drug resistance in cancer therapy [12]. FC has been also
demonstrated to be efficient in treating liver diseases, liver
damage, and liver metabolic disorders, demonstrating its
probable value in the treatment of liver failure [15]. How-
ever, how FC works in the treatment of hepatic failure re-
mains unknown, requiring further studies.

Metabolomics is a science that emerged in recent de-
cades [16–19]. It makes it possible to image at a given
moment all the metabolites present or secreted in an organ
or tissue under given conditions [16–19]. /e application of
the metabolomics helped to clarify the metabolic disorders
that occur in various diseases [16–19]. With regard to liver
diseases, metabolomics was applied to find the metabolites
involved in acute liver injury and hepatotoxicity [20–23].
However, no studies demonstrating the effect of FC on the
metabolic profile involved in alcoholic acute liver injury
have yet been reported elsewhere.

/us, our present study aims to explore the metabolic
profile responsive to the treatment of acute liver injury by
FC, the ultimate objective being to elucidate the mechanism
of action of FC in the treatment of hepatic injury and po-
tentially in the treatment of acute hepatic failure.

2. Materials and Methods

2.1. Chemicals and Reagents. FC was acquired from the
Mongolian Medicine Manufacturing Room of the Affiliated
Hospital of Mongolia University for the Nationalities
(Tongliao, China). FC is a well-characterized traditional
Chinese medicine, and its content in ingredients has been
deposited in the Traditional Chinese Medicine Database and
Analysis Platform (TCMSP) database (https://tcmsp-e.com/
). /e list of ingredients contained in FC was downloaded
from TCMSP and is supplemented in Additional File S1. FC
(1 g) was soaked in 10mL water for 30min and extracted at
60°C for three times, 30min each time. /e solutions were
filtered using a filter with a membrane pore size of 0.22 μm.
/e filtrates were combined, recovered, and concentrated at
65°C, and the extract was obtained by freeze-drying. Ethanol
(56°) was provided by the Niulanshan distillery of Beijing
Shunxin Agriculture Co., Ltd. (Beijing, China). Formic acid
and methanol (Fisher Scientific, UK) were of HPLC grade.
/e kits for ALT, AST, and TG were purchased from Roche
Diagnostics Co., Ltd. (Shanghai, China).

2.2. Ethanol-Induced Acute Liver InjuryModel Establishment
andTreatment. /e study obtained approval from the Ethics
Committee of the Medicine College of Inner Mongolia
Minzu University (IMMNMCEC20210722 [1]). YiSi Labo-
ratory Animal Technology Co., Ltd. (Changchun, China)
provided maleWistar rats weighing 200± 10 g./e rats were
kept in the Affiliated Hospital under standard conditions at
21± 2°C with daily exposure to sunshine for 14 hours and
had free access to water and rodent chow. /e acclimation

was achieved for 1 week in metabolism cages prior to ex-
periment. Eight rats were assigned to each of the following
groups: control group (CG), model group (MG), FC
treatment groups (FC-low (0.4767 g/kg), FC-medium
(1.4301 g/kg), and FC-high (4.2903 g/kg) groups), and
control drug (paeonol at 60mg/kg bw orally [24]) group./e
dose of 4.2903 g/kg was calculated by extrapolation from the
daily human dose of FC. According to the book of Qi Chen
[25], the daily human dose of FC is 15 g, the extraction rate
of FC is 37.08%, and the daily human dose of FC extract is
5.562 g for the human body weight of 70 kg./e body surface
area of rats is 6 times larger than that of humans./us, using
the following conversion formula, we were able to calculate
the dose for rats: dose administered to rats� dose admin-
istrated to human/rat body weight× 6 times. /is dose is the
clinical equivalent, that is, 15 g× 37.08%/
70 kg× 6� 0.4767 g/kg./e dose of 4.2903 g/kg is 9 times the
clinically equivalent amount.

On day 1, the rats in the CG and MG were given normal
saline, while the rats in the FC groups were given FC extract
orally once a day at low, medium, and high doses for 14
successive days. On day 15, the rats in the MG, FC-low, FC-
medium, FC-high, and control drug groups were given al-
cohol by gavage at doses of 8mL/kg to establish the acute
alcoholic liver injury model of rats. After 20 hours, the
animals were euthanized prior to blood collection from the
hepatic portal vein and subsequent centrifugation at 4°C for
10min at 3500 rpm. /e collected supernatants were frozen
instantly, conserved at −80°C, and thawed prior to analysis.
/e right lobe of liver was fixed in 10% formaldehyde so-
lution for HE pathological section.

2.3. Biochemical Indexes. /e determination of ALT, AST,
and TG was performed in strict conformity with the in-
struction provided by the vendor of the kits.

2.4. Detection of Oxidation Markers in Hepatocytes. /e
hepatic tissue was mixed in PBS buffer using a Teflon ho-
mogenizer (Tissue-Tearor; BioSpec Products Inc.). /e
homogenate was centrifuged 10min at 4°C at 1800 × g, and
the supernatants were collected for subsequent assays. /e
hepatic ROS level was determined by incubating 2′,7′-
dichlorofluorescin (DCF) diacetate (Sigma-Aldrich; Merck
KGaA) with 50 μL of the homogenate mixed with 4.85mL of
potassium phosphate buffer (100mmol/L) (Cayman
Chemical) in methanol at 37°C for 15min. /e ROS content
was calculated as the level of DCF deduced from an
established DCF standard curve. /e malondialdehyde
(MDA) content and the activity of superoxide dismutase
(SOD) and alcohol dehydrogenase (ADH) and glutathione
(GSH) levels were detected using kits purchased from
NanJing JianCheng Bioengineering Institute in accordance
with the provided manual.

2.5. UPLC-MS Conditions. After thawing of the stored se-
rum samples, an aliquot of 100 μL was taken and put in
400 μL acetonitrile. Next, after vortexing for 30 s, the aliquot
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was centrifuged for 10min at 12,000 rpm at 4°C and the
supernatant was finally passed through filter membrane
(0.22 μm). Metabolomics analysis was achieved using a
/ermo Dionex UltiMate 3000 UHPLC system associated
with a Q Exactive Focus Orbitrap mass spectrometer
(/ermo, USA). /e elution was done at 40°C with a flow
rate of 0.3mL·min−1 using the Waters Acquity UPLC BEH
C18 column (1.7 μm, 2.1mm× 50mm; Waters, UK). /e
mobile phase A composed of 0.1% formic acid in deionized
water and the mobile phase B constituted of methanol were
used. /e program of gradient elution using mobile phase B
was as follows: 0–0.5min with 8% B, 0.5–1.5min with 8–60%
B, 1.5–6min with 60–100% B, 6–8min with 100% B, 8–9min
with 100–8% B, and 9–10min with 8% B. /e volume of
sample injected was 10 μL.

For the UHPLC high-definition MS (HDMS) analysis,
the sheath used was nitrogen, while the aux gas flow rates
were 40 and 5 bar, respectively. /e aux gas and capillary
heater temperature values were 320°C and 300°C, respec-
tively. /e spray voltage was fixed to 4.0 kV.

/e MS data were acquired by switching between neg-
ative and positive spectra, and the mass range was
100–1000Da. /e full-MS resolution was 70,000. /e res-
olution in the dd-MS2 detection mode was 17,500 with an
isolation gap of 3.0m/z. /e MS2 collision energy of 35 eV
was applied.

2.6. Data Analysis. A pooled quality control (QC) sample
was obtained by combining 20 μL of respective samples for
controlling instrument steadiness. Daily, six QC samples
were examined to evaluate the steadiness of the device. /e
peak discovery, normalization, and alignment of peak areas
were achieved using Compound Discoverer 2.0 software.

2.7. Bioinformatics Analysis. /e R package ROPL was used
for principal component analysis (PCA), OPLS-DA, and
PLS-DA of the samples. /e permutation test and cross-
validation tests including the root mean square error of cross
validation (RMSECV) were performed for the validation of
the OPLS-DA and PLS-DA models. /e permutation tests
were at least 100 iterations of permutation. /e variable
importance in the projection (VIP) values were obtained
from the PLS-DA model for the identification of important
metabolites./e edgeR package in Rwas used for differential
metabolite expression analysis. Significant differential me-
tabolites were obtained with the following criteria: log2 (fold
change)> 1.2 and adjusted pvalue <0.05. /e complex
heatmap and ggplot2 packages were used for the heatmap
and volcano plot visualization of the metabolites’ expression
profiles. MetaboAnalyst software was used for functional
enrichment and pathway analysis. /e Hmisc R library was
used for correlation analysis and generation of the network
nodes. Cytoscape software was used for network visuali-
zation, and the plugin MCODE in Cytoscape was used for
identification of hub metabolites. Detailed information of
each metabolite can be retrieved by searching with its name
as keyword at https://hmdb.ca/metabolites/HMDB0008642.

3. Results

3.1. FC Pretreatment Alleviates Acute Ethanol-Induced Liver
Damage. To explore the action of FC on acute liver injury, a
model of acute alcoholic liver injury was established in rats
pretreated with FC. Latency to drunkenness (Figure 1(a))
and sleep time (Figure 1(b)) were significantly decreased in
the model group (MG) compared with the control group
(CG). Pretreatment with different doses of FC was ac-
companied by an increase in latency to drunkenness
(Figure 1(a)) and a reduction in sleep time (Figure 1(b)) in
the FC group compared with the MG in a dose-dependent
manner, indicating that FC might mitigate the alcoholic
hangover effect. Detection of markers of liver damage (ALT
and AST) in serum indicated that induction with ethanol
(MG) led to a remarkable elevation of serum ALT and AST
levels, which was counteracted by treatment with different
doses of FC (Figures 1(c) and 1(d)). H&E staining for
histopathologic examination of liver tissue showed the oc-
currence of fatty liver characterized by disorganization of
liver tissue, disordered structure of hepatic lobules, ex-
panded liver sinus, liver cell swelling, and incomplete ne-
crosis and steatosis in rats with acute liver damage (MG)
compared with the CG, but this effect was attenuated by
pretreatment of FC in the FC group (Figure 1(e)). In ad-
dition, the detection of TG in blood (Figure 1(f)) and liver
(Figure 1(g)) showed a considerable dose-dependent de-
crease in TG in rats pretreated with FC and subjected to
ethanol gavage (FC group) compared with rats with acute
liver injury (MG). /ese observations show that FC can
inhibit acute liver injury induced by ethanol.

3.2. FC Regulates Oxidative Stress Induced by Ethanol. As
shown in Figure 2(a), compared with the control group, the
gavage of rats with ethanol was followed by an increase in the
level of ROS in liver tissue, while the pretreatment of FC was
followed by a palpable decrease in ROS compared with the
ethanol group. Similarly, compared with the model group of
liver damage, pretreatment of FC was accompanied by a
significant decrease in malondialdehyde (MDA) in liver
tissue and serum (Figure 2(b)). /e activation of alcohol
dehydrogenase (ADH), an important enzyme involved in
the first oxidation reaction, was also tested, and the results
showed that FC had significantly decreased the activation of
ADH induced by the ethanol (Figure 2(c)). In addition,
detection of antioxidant enzymes indicated that the activities
of SOD and GSH were decreased by the gavage of ethanol
compared with the control groups, but this effect was ab-
rogated by treatment with FC (Figures 2(d) and 2(e)). /ese
observations suggest that FC can significantly alleviate lipid
peroxidation in liver tissue and improve antioxidant ca-
pacity to enable resistance to alcohol exposure.

3.3. FC Restored the Alcohol-Altered Metabolic Profile of Rat
Serum. After confirmation of ethanol-induced acute liver
injury and the protective effects of FC, we performed
metabolomics analysis to uncover changes in the global
metabolic profile. /e PCA (Figure 3(a)) and the PLS-DA
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(Figures 3(b)–3(e)) of the serum metabolomics showed a
neat separation among the CG, MG, and FC groups
(Figure 3(e)), indicating that the metabolic patterns of the
three groups were completely separated. In the permuta-
tion test of the PLS-DA, we found that the R2Y value was
0.991, while the Q2 value was 0.905 (Figure 3(c)). /e PLS-
DA results were further confirmed in the cross-validation
(CV) analysis (Figure 3(f )). Next, pairwise comparisons
were performed. /e OPLS-DA indicated complete sepa-
ration between the CG and MG with the R2Y value of 1 and
the Q2 value of 0.938 in the permutation testing, showing
that alcoholic liver injury altered the metabolic profile
(Figures 4(a)–4(e)). /is result was confirmed by the results
of the cross-validation test as indicated in Figure 4(e)
showing root mean square error of cross validation

(RMSECV) of >0.73 in the first five components. Moreover,
as shown in Figures 4(f )–4(i), treatment of the model rats
with FC was followed with significant alteration of the
metabolic profile, which was reflected by the complete
separation of metabolites from both the groups in the
OPLS-DA (Figure 4(i)); the OPLS-DA result was also
confirmed by the results of the RMSECV test showing
RMSECV >0.72 (Figure 4(j)). No result was obtained in the
comparison between the CG and the FC groups in the
OPLS-DA; this might be due to the similarity of the me-
tabolite profiles of these groups. Further, differential ex-
pression analysis of the metabolites indicated that 1088
metabolites were differentially expressed between the CG
and MG, with 573 of them being downregulated
(Figures 5(a) and 5(b), Additional File S2). As shown in
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Figure 1: FC pretreatment alleviates acute ethanol-induced liver damage. (a) Effect of FC on the latency to drunkenness. (b) Effect of FC on
the reduction in sleep. (c) Effect of FC on the serum level of ALT. (d) Effect of FC on the serum level of AST. (e) H&E staining for
histopathologic examination of liver tissue. (f ) Effect of FC on the serum level of TG. (g) Effect of FC on the liver tissue level of TG.
ns�nonsignificant, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001 among the compared groups. Scale bar� 100 μm.
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Additional Figure S1, the enrichment analysis of the dif-
ferential metabolites between the control and model groups
indicated that the most overrepresented pathways were
“phenylalanine, tyrosine, and tryptophan metabolism,”
linoleic acid metabolism, terpenoids and other terpenoid-
quinone metabolism, and thiamine metabolism. In the MG,
the top ten upregulated and top ten downregulated me-
tabolites with their metabolic profiles are presented
Figure 5(b). Among the model and FC treatment groups,
we identified 367 differentially expressed metabolites
encompassing 224 downregulated and 143 upregulated
metabolites (Figures 5(c) and 5(d), Additional File S3). /e
top 20 differentially expressed metabolites and their profiles
are presented in Figure 5(d). /e enrichment analysis in-
dicated that the metabolites differentially expressed be-
tween the model and FC treatment groups were prevalently
enriched in thiamine metabolism, sphingolipid meta-
bolism, and “ubiquinone and other terpenoid-quinone
metabolism” (Additional Figure S2).

3.4. Identification of FC-Responsive Metabolites in Alcoholic
Liver Injury. To identify the metabolites that were altered by
the alcoholic liver injury and restored by the FC treatment,
we performed the time series clustering analysis. A shown in
Figures 6(a) and 6(b), the metabolites could be clustered into
eight profiles with 3 of them being significant. Profile 6 was
the most significant and was characterized by the upregu-
lation of the metabolites in the model group followed by
their downregulation by the FC treatment. /is profile
contained 910 metabolites (Additional File S4). /e top 20
most important metabolites on the basis of their VIP scores
obtained from the PLS-DA were 1-methyladenine, phe-
nylglyoxylic acid, N-acetylvaline, mexiletine, L-fucose,
propylthiouracil, dopamine 4-sulfate, isoleucylproline, (R)-
salsolinol, monomethyl phthalate, asymmetric dimethy-
larginine, carbimazole, 1,1-dimethylethyl heptanoic acid, 5-
hydroxyphenylpropionylglycine, biotin sulfone, 3-methyl-
adenine, D-xylulose, PC(22 : 4 (7Z, 10Z, 13Z, 16Z)/20 :
1(11Z)), and PC(15 : 0/15 : 0) (Figure 6(c)). It is worth noting
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Figure 2: FC regulates oxidative stress induced by ethanol. (a) ROS production in the liver tissue of rats. (b) MDA level in the serum and
liver tissue of rats. (c) ADH activity in the liver tissue of rats. (d) SOD activity in the liver tissue of rats. (e) GSH activity in the liver tissue of
rats. ns� nonsignificant, ∗p< 0.05, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001 among the compared groups.
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that 1-methyladenine and phenylglyoxylic acid were the
metabolites with the highest VIP scores considering all the
metabolites. Functional analysis of the metabolites in profile
6 indicated their enrichment in metabolic pathways of
lactose degradation, de novo triacylglycerol biosynthesis,
pyruvaldehyde degradation, glucose-alanine cycle, and
glycerol phosphate shuttle (Figure 7).

3.5. Metabolic Correlation Network of FC-Responsive Me-
tabolites in Alcoholic Liver Injury and Identification of Hub
Metabolites. In order to identify the interactions between

the FC-responsive metabolites clustered in profile 6 and the
hub metabolites, the Pearson correlation analysis was per-
formed. /e correlation result is summarized in Additional
File S5. /e metabolites with a correlation coefficient ab-
solute value higher than 0.8 were selected as the interaction
network, which was visualized in Cytoscape. /e con-
structed network (Additional Figure S3) contained 634
nodes and 13,549 edges. /e average number of neighbors
was 45.379, while the network diameter and radius were 10
and 5, respectively. Using the MCODE plugin, we identified
22 hub clusters. /e cluster with the highest score contained
103 metabolites, which were considered as the hub
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metabolites that are deregulated in alcoholic liver injury and
responsive to FC (Figure 8(a)). /e enrichment analysis of
hub metabolites indicated their involvement in the pathways
of nicotinate and nicotinamide metabolism, retinol meta-
bolism, “alanine, aspartate, and glutamate metabolism,”
tryptophan metabolism, and aminoacyl tRNA-biosynthesis
(Figure 8(b)).

4. Discussion

In the present study, we established a rat model of acute
alcoholic liver injury and explored the hepatoprotective
effect of FC on the injured liver. Moreover, we performed
metabolomics analysis to uncover the metabolites that are
deregulated in alcohol-induced liver injury and the FC-re-
sponsive metabolites in these conditions. We found that
alcohol induced significant damage in the liver of rats as
indicated by deregulation of liver function markers and
histopathological analysis. Alcohol also induced ROS pro-
duction in the liver of rats. All these deleterious effects were
attenuated by FC treatment, indicating the protective role of
FC on the hepatocyte. Furthermore, we uncovered a set of
910 metabolites that were upregulated in alcohol-induced

injury rats but subsequently downregulated by FC treat-
ment. In addition, 621 of FC-responsive metabolites were
involved in a robust interaction network and 96 of them
were identified as hub metabolites that were involved in
amino acids-related metabolism. /ese results suggested
that FC can alleviate alcohol-induced liver injury and the
protective effect might be partly driven by restitution of
metabolic homeostasis.

It is well known that TG, AST, ALT, and ASTare credible
markers of liver diseases and alcohol-induced liver damages.
Here, we found that TG, AST, ALT, and ASTwere increased
in the alcohol-treated rats, indicating that the alcohol-in-
duced acute liver injury model was successfully established.
FC is known for its multifarious therapeutic and preventive
effects against diverse human diseases [11, 12]. However, the
effect of FC on the alcohol-induced acute liver injury has not
been systematically demonstrated before. Here, we found
that FC could improve the liver function by downregulating
TG, AST, ALT, and ROS in the alcoholic acute liver injury
model, suggesting that FC exerts therapeutic and preventive
effects against alcohol-induced liver injury.

Alcohol-induced liver injury is generally followed by
metabolic disorders due to the shift in the metabolite profile
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[26, 27]. Several metabolomics studies have indicated a
drastic change in the liver and blood metabolite profiles in
alcohol-induced liver injury [28–30]. Here, we found that
alcohol induced significant changes in the metabolite pro-
files of rat serum. /ese metabolites can serve as metabolic
biomarkers for alcohol-induced acute liver injury. /e
metabolites deregulated by alcohol treatment were those
significantly related to amino acid metabolism, lipid
metabolism, and terpenoid metabolism. Our study cor-
roborated with previous studies indicating that amino acid
metabolism is subjected to disturbances in liver injury
[31–33]. Other studies indicated that the regulation of amino
acids plays a significant role in the attenuation of deleterious
features in the injured liver [34]. Studies have also indicated
that lipid metabolism is significantly shifted in the acute liver
injury [35–37]. As antioxidant compounds, terpenoids play
a significant role in the homeostasis of human tissue. /e
disturbance of terpenoid metabolism in the present study
may be one of the causes of deleterious phenotypes observed
in the present study. More importantly, we found that most
of the metabolites upregulated in the liver injury model were
downregulated by FC treatment, indicating that FC may
exert its protective effect via modulation of the metabolite
profile. A significant cluster of 96 hub metabolites was
identified, which also regulated the metabolism of amino
acids. /is further confirmed that FC was able to correct the
metabolic disorders induced by alcohol treatment.

Up to date, the metabolic pathways involved in the
pathogenesis of the alcoholic liver injury are not well
elucidated. In the present study, we identified the path-
ways associated with the metabolites upregulated in al-
coholic acute liver injury and that could be reversed by FC.
As a result, we found that these pathways were involved in
multiple metabolic pathways with lactose degradation as
the most enriched. /ough the involvement of lactose
degradation pathway has not been reported in acute liver
injury as demonstrated in the present study, previous
studies have indicated that the lactose degradation
pathway, as well as other carbohydrates-related pathways,
is induced in the plasma and tissues and may be a target
for the protective effect of the traditional Chinese med-
icine Achyranthes bidentata Blume in ovariectomia rats
[38]. Another important pathway that was found upre-
gulated was the “de novo triacylglycerol biosynthesis.”
Previous studies have indicated that the upregulation of de
novo triacylglycerol biosynthesis is conductive to in-
creased oxidative stress in the liver cells, which causes liver
damage [39, 40]. /us, our results suggested that alcoholic
injury of the liver was followed by increased oxidative
stress, which could be reversed by the treatment with FC.
/is observation was also in corroboration with our re-
sults of increased ROS production in the MG and its
reversal by FC treatment. Previous studies have indicated
that de novo lipogenesis is involved in the multiple

6

3e-19

2

5e-15

7

3e-9

1

0.3

5

1.0

4

1.0

3

1.0

0

0.8

Profiles ordered according to p-value significance

(a)

6

910

7

797

2

435

1

269

3

140

4

182

5

232

0

246

Profiles ordered according to the number of metabolites assignes

(b)

3 4 5

VIP_score

6 7

20

15

10

Ra
nk

5

VIP_score

6
5
4
3

1-[2-METHYL-3-(METHYLTHIO)ALLYL]CYCLOHEX_2-ENOL

DOPAMINE 4-SULFATE

L-FUCOSE

1-METHYLADENINE

PHENYLGLYOXYLIC ACID
N-ACETYLVALINE

MEXILETINE

PROPYLTHIOURACIL

ISOLEUCYLPROLINE

MONOMETHYL PHTHALATE

ASYMMETRIC DIMETHYLARGININE

1,1-DIMETHYLETHYL HEPTANOIC ACID

5-HYDROXYPHENYLPROPIONYLGLYCINE

(R)-SALSOLINOL

CARBIMAZOLE

BIOTIN SULFONE

3-METHYLADENINE

3-XYLULOSE

PC(15:0/15:0)

PC(22:4(7Z,10Z,13Z,16Z)/20:1(11Z))

(c)

Figure 6: Time series clustering for the identification of FC-responsive metabolites in alcoholic liver injury. (a) Profiles ordered by p values.
(b) Profiles ordered by number of metabolites assigned. (c) Bubble chart indicating the top 20 metabolites in profile 6 containing FC-
responsive metabolites based on their VIP scores as obtained from the PLS-DA.

10 Evidence-Based Complementary and Alternative Medicine



0.00

Lactose Degradation

De Novo Triacylglycerol Biosynthesis

Pyruvaldehyde Degradation

Glucose-Alanine Cycle

Glycerol Phosphate Shuttle

Degradation of Superoxides

Cardiolipin Biosynthesis

�yroid hormone synthesis

Vitamin K Metabolism

Glutathione Metabolism

Mitochondrial Electron Transport Chain

Ethanol Degradation

Phosphatidylinositol Phosphate Metabolism

Estrone Metabolism

Transfer of Acetyl Groups into Mitochondira

Glycolysis

Alpha Linolenic Acid and Linoleic Acid

Androstenedione Metabolism

Sulfate/Sulfite Metabolism

Nucleotide Sugars Metabolism

Catecholamine Biosynthesis

Vitamin B6 Metabolism

Ubiquinone Biosynthesis

Lactose Synthesis

Glycine and Serine Metabolism

0.05 0.10
Enrichment Ratio

0.15 0.20

1e+00

P value

Enrichment Overview (top 25)

Figure 7: Enrichment analysis of metabolites in profile 6 containing FC-responsive metabolites.

(a)

Nicotinate and nicotinamide metabolism

Retinol metabolism
P value

Alanine, aspartate and glutamate metabolism

Tryptophan metabolism

Aminoacyl-tRNA biosynthesis

Metabolite Sets Enrichment Overview

5e-01

7e-01

9e-01

0.0 0.2 0.4 0.6
Enrichment Ratio

0.8 1.0 1.2 1.4

(b)

Figure 8: Identification of the hub metabolites and metabolites network in profile 6 containing FC-responsive metabolites. (a) Hub
metabolite network containing metabolites with node degree equal or higher than 100. (b) Enrichment of hub metabolites.

Evidence-Based Complementary and Alternative Medicine 11



conditions associated with the liver, for example, fatty
liver disease [41]. /e pyruvaldehyde degradation path-
way is the main pathway involved in the degradation of
pyruvaldehyde, a toxic metabolite that interacts with
proteins and nucleic acids [42]. Here, we found that the
pyruvaldehyde degradation metabolic pathway was dys-
regulated in the alcoholic liver injury and was reversed by
the FC treatment. /is is the first study to report the effect
of FC on this pathway in alcoholic liver injury. /e glu-
cose-alanine cycle metabolic pathway was also found to be
regulated by FC in the treatment of alcoholic liver injury
animals. In a previous study, it was found that the dys-
regulation of the glucose-alanine cycle may be responsible
for the increased levels of glucose and lactate in the blood
in hepatotoxicity conditions [43]. /is observation was
also in corroboration with the dysregulation of lactose
degradation stated above. Glycerol phosphate shuttle is
involved in the transfer of reducing equivalents from the
cytoplasm to the mitochondria. /is pathway was im-
paired in the alcoholic liver injury and could be targeted
by FC treatment. /e impairment of the glycerol phos-
phate shuttle was involved in the impairment of oxidative
stress in the experimental model of diabetes [44]. /e
enrichment analysis of the hub metabolites indicated their
involvement in nicotinate and nicotinamide metabolism,
retinol metabolism, “alanine, aspartate, and glutamate
metabolism,” and tryptophan metabolism. A previous
study found that nicotinate and nicotinamide metabolism
was impaired in acute liver failure and could be reversed
by mahuang decoction [45], which similarly corroborates
with our present findings. Altered retinol metabolism has
been incriminated in diverse liver conditions such as
hepatic fibrosis and nonalcoholic fatty liver disease [46];
here, we also found similar results. Our findings of altered
“alanine, aspartate, and glutamate metabolism” pathway
were also in corroboration with previous studies indi-
cating that “alanine, aspartate, and glutamate meta-
bolism” is impaired in acute liver injury [47] and
nonalcoholic fatty liver [48]. Numerous studies have also
indicated the dysregulation of tryptophan metabolism in
liver injury [49, 50], which was in conformity with our
findings. /us, our study indicated the involvement of
numerous pathways in alcohol-induced liver injury and
these changes could be reversed by the treatment of FC.

5. Conclusions

/e present study identified a cluster of metabolites that are
activated in alcohol-induced liver injury. In addition, FC was
proven efficient to correct these metabolic disturbances. /e
obtained results potentiate FC as a candidate therapeutic for
preventing or treating alcohol-induced acute liver injury.
/e results are to be considered with reservation because of a
number of shortcomings: (1) although the experimental
conditions and instrument stability were good, the number
of samples remains small, which impinges on the relevance
of the results obtained; and (2) the identification of me-
tabolites in this study requires additional metabolite vali-
dation work.
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