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Background. Annexins family (ANXAs), as a Ca2+-dependent phospholipid-binding protein superfamily, participates in a wide
variety of biological activities and has been reported to be dysregulated in numerous types of human cancers. Evidence from cell
lines and human tissues indicates that ANAXs are involved in kidney clear renal cell carcinoma (KIRC) tumorigenesis. However,
their prognostic value and expression pattern associated with KIRC remain to be elucidated.Methods. We visited public databases,
including ONCOMINE, Gene Expression Pro�ling Interactive Analysis (GEPIA), Kaplan–Meier plotter, cBioPortal, and
GeneMANIA, to conduct comprehensive bioinformatics analysis and tried to detect basic relationships between each Annexins
family member and KIRC. Results. We found that the expression level of ANXA1/2/4/5/6/7/8/13 in clear renal cell carcinoma
tissue was higher than that in the kidney tissue, while the expression level of ANXA3/9/11 in the former was lower than that in the
latter. �e expression level of ANXA7/8/13 is related to the stage of the tumour. Survival analysis using the Kaplan–Meier plotter
database showed that a high transcription level of ANXA2/5/8/10 is related to a low overall survival rate (OS) in predicting KIRC
patients. In contrast, high ANXA3/4/7/9/11/13 levels are associated with a high OS in these patients. Conclusions. Our study
implies that ANXA4/8/13 are potential targets of precision therapy for patients with KIRC and that ANXA2/5/8/10 are new
biomarkers for the prognosis of KIRC.

1. Introduction

Renal cell cancer (RCC) is one of the most common ma-
lignancies, and approximately 73,820 patients were diag-
nosed in 2019 [1]. �e majority of RCC patients have kidney
clear renal cell carcinoma (KIRC) histology (75–80%), and
the other common histological types include papillary,
chromophobe, hereditary leiomyomatosis-associated RCC,
and collecting duct carcinoma. �ese are called “nonclear
cell cancers” [2]. Despite advancements in diagnostic

methods and operative techniques that have allowed for
more eªective treatment of KIRC, the 5-year overall survival
rate of metastatic KIRC remains less than 20% [1].�erefore,
it is necessary to investigate molecular markers to re�ne
prognostic prediction and identify potential treatment
targets.

Annexins are a Ca2+ dependent, phospholipid-binding
protein superfamily, with members expressed in the zoology
and botany cell. Annexins, including 12 family members,
play a major role in the regulation of a broad range of
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physiological processes linked to cellular membranes [3].
Previous studies have revealed that the aberrant expression
of ANXAs is frequently observed in various types of cancer,
including cervical cancer [4], bladder cancer [5, 6], breast
cancer [7–9], gastric cancer [10], lung cancer [11, 12], oral
squamous cell carcinoma [13], hepatocellular carcinoma
[14, 15], and cholangiocarcinoma [16]. ANXAs may func-
tion as either oncogenes or suppressors depending on tu-
mour biology.

ANXA1/2/3/4/5/7 have been reported to be dysregulated
in KIRC [17–20]. However, the majority of these studies only
focused on the changes in expression levels and a few
prognostic data available. .e expression patterns, potential
biological functions, and prognostic value of Annexins in
KIRC have yet to be fully elucidated.

To the best of our knowledge, no bioinformatics
analysis of Annexins profiles has been applied to investigate
KIRC. .e use of large-scale DNA/RNA sequencing has
undergone revolutionary development and has become an
integral part of biomedical research. In the present study,
we performed a collective analysis of thousands of gene
expression or variation in copy-number analyses published
online to investigate the expression of Annexin family
members in the database to determine its clinical value in
KIRC.

2. Materials and Methods

2.1. Ethics Statement. .is study was approved by the Ac-
ademic Committee of ChuiYangLiu Hospital affiliated with
Tsinghua University and performed in accordance with the
ethical principles expressed in the Declaration of Helsinki.
All data were collected from published literature.

2.2. ONCOMINE Analysis. .e transcription levels of
ANXAs in different cancers were analysed using the online
tumour microarray database ONCOMINE (https://www.
oncomine.org/). Comparison of ANXAs mRNA expres-
sion levels between tumour and normal samples was per-
formed using Student’s t-test. .e P value and fold change
were used as cut-off points at 0.0001 and 2, respectively.

2.3. Gene Expression Profiling Interactive Analysis (GEPIA)
Dataset. We used the online database Gene Expression
Profiling Interactive Analysis (GEPIA, https://gepia.cancer-
pku.cn/) to analyse ANXAs mRNA sequencing expression
data [21]. GEPIA could provide mRNA differential ex-
pression analysis according to cancer stage and patient
survival data using one-way ANOVA. .e analysis setting is
|log2(FC)|≥ 1 and P≤ 0.01.

2.4.$eKaplan–Meier Plotter. We examined the prognostic
value (OS and RFS) of ANXA mRNA expression in KIRC
using the Kaplan–Meier plotter database [22] (https://www.
kmplot.com/). We only selected the JetSet best probe set and
automatically chose the best cut-off to perform the analysis.

2.5. cBioPortal. We examined the mutations and putative
copy number alterations (CNA) of ANXAs in KIRC using
cBioPortal (https://www.cbioportal.org/), an online database
on 30 different cancers collected from .e Cancer Genome
Atlas [23]. A total of 317 KIRC cases with pathology reports
were selected in our study. .e online tools and data sources
are provided by cBioPortal.

2.6. GeneMANIA. To explore interactive functional associa-
tions among ANXAs, we used GeneMANIA (https://www.
genem/ ania.org) to create an interactive functional-association
network. .e online tools and data sources are provided by
GeneMANIA.

3. Results

3.1. Transcriptional Levels of ANXAs in Patients with KIRC.
Twelve ANXA factors have been found in mammalian cells.
We used the ONCOMINE database to compare the tran-
scription levels of ANXA in cancer with those in normal
samples (Figure 1). .e mRNA expression levels of ANXA4
were significantly upregulated in patients with KIRC in
twelve datasets. In Higgins’s dataset [24], ANXA4 was
overexpressed compared with that in normal samples in
KIRC, with a fold change of 3.662. In Gumz’s dataset [25],
ANXA4 was also overexpressed in KIRC with a fold change
of 13.931. .e transcription levels of ANXA4 in KIRC are
higher than those in normal tissues in Yusenko [26] and
Jones’s datasets [27], and their fold changes are 4.763 and
2.598, respectively (Table 1).

Higgins [24] showed another mRNA expression factor
with increased expression; that is, ANXA2 has a fold change
of 2.358 in patients with kidney renal clear cell carcinoma
compared with that in patients with normal kidney tissues.
ANXA2 overexpression is also found in kidney renal clear
cell carcinoma, with a fold change of 2.444 in Gumz’s dataset
[25] and 2.383 in Jones’s dataset [27] (Table 1).

.e mRNA expression levels of ANXA1 and ANXA7
were upregulated in patients with KIRC. .e transcription
level of ANXA1 in KIRC is higher than that in kidney tissues,
and their fold changes are 4.853, 5.348, and 3.26 in Yusenko
[26], Gumz [25], and Beroukhim’s datasets [28], respec-
tively. In Jones’s datasets [27], the mRNA expression of
ANXA7 in KIRC increased by 2.565-fold.

3.2. Relationship between the mRNA Levels of ANXAs and the
Clinicopathological Characteristics of Patients with KIRC.
Using the GEPIA (Gene Expression Profiling Interactive
Analysis) dataset (https://gepia.cancer-pku.cn/), we com-
pared the mRNA expression of ANXAs factors between
KIRC and kidney tissues. .e results indicated that the
expression levels of ANXA1, ANXA2, ANXA4, ANXA5,
ANXA6, ANXA8, and ANXA13 were higher in KIRC tissues
than in kidney tissues, whereas the expression levels of
ANXA3, ANXA7, ANXA9, and ANXA11 were lower in the
former than in the latter (Figure 2). We also analysed the
expression of ANXAs with tumour stage for KIRC. .e
ANXA7, ANXA8, and ANXA13 groups significantly varied,

2 Evidence-Based Complementary and Alternative Medicine

https://www.oncomine.org/
https://www.oncomine.org/
https://gepia.cancer-pku.cn
https://gepia.cancer-pku.cn
https://www.kmplot.com
https://www.kmplot.com
https://www.cbioportal.org/
https://www.genem
https://www.genem
http://ania.org
https://gepia.cancer-pku.cn/


whereas the ANXA1, ANXA2, ANXA3, ANXA4, ANXA5,
ANXA6, ANXA9, ANXA10, and ANXA11 groups did not
significantly differ (Figure 3).

3.3. Association of the Increased and Decreased mRNA Ex-
pression of ANXAs with the Improved Prognosis of Patients
with KIRC. We further explored the critical efficiency of

ANXAs in the survival of KIRC patients. We applied the
Kaplan–Meier plotter tool using a publicly available dataset
(https://kmplot.com/analysis/index.php?
p�service&cancer�pancancer_rnaseq) to analyse 530 KIRC
patients for ANXAs correlation between mRNA levels and
survival. Analysis by Kaplan–Meier curve and log-rank test
revealed that increased levels of ANXA2/5/8/10 mRNA and
decreased levels of ANXA3/4/7/9/11/13 mRNA in KIRC
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Figure 1:.e transcription levels of ANXAs in different types of cancers (ONCOMINE)..e threshold was set to following parameters: fold
change� 2 and P-value� 0.0001. .e cell number indicates the number of datasets that meets the thresholds. .e color red or blue directly
indicates up- or downregulation, respectively.

Table 1: .e ANXA expression between different types of renal clear cell carcinoma and kidney tissues.

GENE Cancer tissue vs normal tissue Fold change t-test P-value Dataset

ANXA1
Renal clear cell carcinoma vs kidney 4.853 11.741 1.18E− 12 Yusenko et al.
Renal clear cell carcinoma vs kidney 5.348 11.22 7.71E− 10 Gumz et al.
Renal clear cell carcinoma vs kidney 3.26 6.477 4.53E− 06 Beroukhim et al.

ANXA2
Renal clear cell carcinoma vs kidney 2.358 10.276 3.49E− 10 Higgins et al.
Renal clear cell carcinoma vs kidney 2.444 9.038 2.17E− 08 Gumz et al.
Renal clear cell carcinoma vs kidney 2.383 10.586 9.99E− 14 Jones et al.

ANXA3 NA NA NA NA NA

ANXA4

Renal clear cell carcinoma vs kidney 3.662 12.691 2.99E− 12 Higgins et al.
Renal clear cell carcinoma vs kidney 3.577 13.931 2.23E− 11 Gumz et al.
Renal clear cell carcinoma vs kidney 4.763 9.538 5.94E− 08 Yusenko et al.
Renal clear cell carcinoma vs kidney 2.598 8.071 1.12E− 09 Jones et al.

ANXA5 NA NA NA NA NA
ANXA6 NA NA NA NA NA
ANXA7 Renal clear cell carcinoma vs kidney 2.565 7.775 5.98E− 07 Jones et al.
ANXA8 NA NA NA NA NA
ANXA9 NA NA NA NA NA
ANXA10 NA NA NA NA NA
ANXA11 NA NA NA NA NA
ANXA13 NA NA NA NA NA
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patients were significantly associated with decreased overall
survival (OS) (P< 0.05) (Figure 4). KIRC patients with
higher levels of ANXA1/4/5/6 mRNA or lower levels of
ANXA10 mRNA were predicted to have lower relapse-free
survival (RFS) (P< 0.05) (Figure 5).

3.4. Amplification, Deletion, Mutation, and Fusion of ANXAs
in KIRC. Genetic variations of Annexins in 317 cases re-
trieved from four studies, including 35 cases from Dana-
Farber Cancer Institute [29] (DFCI), 98 cases from Beijing
Genomics Institute [30] (BGI), 78 cases from Cancer Re-
search UK London Research Institute [31] (IRC), and 106
cases from the University of Tokyo [32] (Utokyo), were

analysed using the cBioPortal database (Figure 6). We found
varying degrees of genetic variation among the 12 ANXA
family members, of which ANXA6 has the highest incidence
of genetic variation. Most genetic variations in Annexins
were amplifications, although ANXA3, ANXA4, and
ANXA10 had higher probabilities of mutation events. Deep
deletions were found in ANXA5 and ANXA10. In addition,
no gene fusion events were found in the four datasets.

3.5. Correlations betweenANXAs andConstruction of aGene-
Gene Interaction Network. .e constructed functional net-
work based on the gene function predictions of the 12
ANXAs through the GeneMANIA database is shown in
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Figure 2: .e mRNA expression levels of ANXAs in clear renal cell carcinoma and normal kidney tissues (GEPIA). .e plots show mRNA
expression of Annexins in kidney tumour (red plot) and the corresponding expression in normal tissues (green plot).
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Figure 7. .e 12 central nodes representing ANXAs were
surrounded by genes that were strongly correlated with
physical interactions, coexpression, predictions, colocaliza-
tion, and genetic interactions.

We established a gene-gene interaction network of 12
Annexin genes and analysed their functions through the
GeneMANIA database (Figure 7). .e top 5 genes repre-
senting the most relevant ones with the ANXAs included
STXBP2 (syntaxin binding protein 2), RACK1 (receptor for
activated C kinase 1), S100A10 (S100 calcium binding
protein A10), NDRG1 (N-myc downstream regulated 1),
and HARS (histidyl-tRNA synthetase). STXBP2 was cor-
related with ANXA3 in terms of colocalization and physi-
cally interacted with ANXA3 and ANXA11. RACK1
physically interacted with ANXA2. S100A10 was correlated
with ANXA2 in terms of physical interactions, colocalized
with ANXA5, and coexpressed with ANXA11, ANXA2,
ANXA6, ANXA7, ANXA8, ANXA9, ANXA10, and
ANXA11. NDRG1 physically interacted with ANXA5 and
was coexpressed with ANXA3, ANXA4, and ANXA6. In
addition, HARS was correlated with ANXA5 in terms of
physical interactions and correlated with ANXA6 in terms of
coexpression.

We also found that ANXAs had the greatest correlation
with calcium-dependent phospholipid binding. Addition-
ally, they were also correlated with specific granules,
phospholipid binding, S100 protein binding, lipase inhibitor
activity, secretory granules, regulation of vesicle-mediated

transport, postGolgi vesicle-mediated transport, calcium-
dependent protein binding, and enzyme-inhibitor activity.

4. Discussion

ANAXs, as a Ca2+-dependent, phospholipid-binding protein
superfamily, have been reported in numerous types of hu-
man cancer and have participated in a wide variety of bi-
ological activities, such as tumorigenesis, progression, and
resistance to chemotherapeutic agents [3, 33]. However, a
further comprehensive bioinformatics analysis of ANAXs in
KIRC has yet to be performed. In the present study, we
analysed the relationship between the expression of different
ANAX factors and prognoses (OS and RFS) of KIRC for the
first time. We hope that our findings may help create a
foundation to better understand and improve current
therapies and prognostic accuracy for patients with KIRC.

ANXA1 is known as an anti-inflammatory protein but is
recognized to have a broader role in tumour cell biology
beyond inflammation alone. ANXA1, located on human
chromosome 9q21.13, is the first characterized member of
the superfamily [12]. Transposition of ANXA1, which was
found in oesophageal cancer, could affect the activities of
arachidonic acid metabolism [34]. However, it is more likely
a double-edged sword due to its numerous and sometimes
opposite functions. Yamanoi et al. [18] found that knock-
down of ANXA1 inhibits the proliferation, migration, in-
vasion, and adhesion of kidney carcinoma cells. We first
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Figure 3: Correlation analysis of the ANXAs expression and clinical stages in clear renal cell carcinoma (GEPIA). Spearman’s correlation
analysis between gene and clinical stages is based on the entire clinical stages.
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used the Oncomine database to reveal that ANXA1 mRNA
expression levels were significantly higher in KIRC tissues
than in normal tissues. However, its expression did not
correlate with specific clinical features in KIRC. Using the
Kaplan–Meier plotter, we estimated the prognostic value of
ANXA1 in patients with KIRC. Patients with KIRC with
high mRNA levels of ANXA1 were predicted to have a lower
RFS.

.e ANXA2 monomer exists in the cell cytoplasm, and
the heterotetramer complexed with S100A10, which exists
on cell membranes. Sadashiv et al. [35] reported that
moderate immune expression of ANXA2 was found in the
proximal convoluted tubules, which were considered the
origin of KIRC. Yang et al. [20] demonstrated that the
migration and invasion abilities of tumour cells were sup-
pressed by silencing ANXA2 expression, whereas tumour
cell proliferation was not affected. In our study, the ex-
pression of ANXA2 in KIRC tissues was higher than that in
normal tissues. We also demonstrated that high ANXA2
expression was significantly correlated with poor OS in

patients with KIRC. However, its expression was not cor-
related with tumour stage.

Bianchi et al. [36] cultured primary cells from human
renal cell carcinoma and observed two spliced isoforms of
ANXA3. However, one spliced isoform of ANXA3 was
downregulated in KIRC, and the other was upregulated. .e
total ANXA3 protein was downregulated in KIRC cultures
based on microarray analysis. In our report, we demon-
strated that the expression of ANXA3 was not significantly
different between tumour and normal tissues, which seemed
inconsistent with Bianchi et al. However, we found that high
ANXA3 expression was significantly correlated with
favourable OS in patients with KIRC.

A data-independent acquisition-mass spectrometry
proteomic approach demonstrated that ANXA4 expression
levels are higher in KIRC than those in normal tissues [37].
In our research, we proved for the first time that ANXA4
mRNA expression was higher in KIRC tissues than in
normal tissues, but this expression did not correlate with
tumour progression stage. Additionally, low ANXA4
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Figure 4: Prognostic values of ANXAs in clear renal cell carcinoma (overall survival in Kaplan–Meier plotter)..e P-values were calculated
using the log-rank test.
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expression was remarkably associated with poor OS in KIRC
patients. .is study suggests that ANXA4 acts as a tumour
suppressor gene.

ANXA5 was upregulated in KIRC, and high expression
was associated with a higher clinical stage and histological
grade [19]. We found a similar result in our study; that is, the
expression of ANXA5 in KIRC tissues was higher than that
in normal tissues. Higher ANXA5 expression was signifi-
cantly related to poor OS in patients with KIRC.

ANXA6 is highly expressed in a variety of tumours, such
as acute myeloid leukaemia [38], bladder cancer [39], and
breast carcinoma [40]. However, its expression and prog-
nostic role in KIRC have not been reported. In the present
study, we confirmed that ANXA6 expression was higher in
KIRC tissues than that in normal tissues, but this expression
was not related to the stage of the tumour. Higher ANXA6
expression was significantly correlated with poor RFS in
patients with KIRC. Moreover, ANXA6 displayed the
highest incidence rate of genetic variations among the super
family members, which might be related to kidney tumour
progression.

ANXA7 GTPase is considered a tumour suppressor
frequently inactivated by genomic alterations at 10q21 in a
variety of human malignancies, including KIRC [41]. In this
report, we demonstrated that the expression of ANXA7 in
KIRC tissues was higher than that in normal tissues in
Jones’s dataset [27], but we also obtained the opposite result
from the GEPIA dataset. It was discovered that high-stage
KIRC exhibited significantly reduced ANAX7 expression.
Moreover, decreased ANXA7 mRNA levels were signifi-
cantly associated with lower OS, which conformed to its role
as a tumour suppressor.

ANXA8 is highly expressed in patients with several
malignancies, such as ovarian cancer [42] and bladder
cancer [43]. Harumi et al. [44] found that cotransfection
with an expression vector for ANXA8 and a reporter gene
vector containing the HIF-1α promoter enhanced the ac-
tivity of the HIF-1α promoter. It might play a role in calcium
fluctuation-mediated HIF-1α transcriptional activation in
pancreatic cancer. However, ANXA8 expression and its
prognostic role in KIRC have not been reported. In this
report, we found that the expression of ANXA8 in KIRC
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Figure 5: Prognostic values of ANXAs in clear renal cell carcinoma (relapse-free survival in Kaplan–Meier plotter). .e P-values were
calculated using the log-rank test.
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tissues was higher than that in normal tissues, and high-stage
KIRC exhibited significantly increased ANAX8 expression.
Increased ANXA8 mRNA was significantly associated with
poor OS.

ANXA9 and ANXA11 expression and prognostic roles
in KIRC have not been reported. Yu et al. [45] demonstrated

that ANXA9 promoted the invasion and metastasis of co-
lorectal cancer and predicted poor prognosis. ANXA9
showed high expression in head and neck squamous cell
carcinomas and was associated with the tumour differen-
tiation grade. Hua et al. [46] found that ANXA11 partici-
pated in gastric cancer proliferation, migration, and invasion
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via the AKT/GSK-3β pathway. However, in our report, we
demonstrated that the expression of ANXA9 and ANXA11
in KIRC tissues was lower than that in normal tissues, and
the expression did not correlate with tumour stage. De-
creased ANXA9 and ANXA11 mRNA levels were signifi-
cantly associated with poor OS.

It has been proven that abnormal expression of
ANXA10 plays a key role in the generation, progression,
and prognosis of tumours [47–49], although its functional
role remains to be clarified and has not been reported in
KIRC. .e decreased expression of ANXA10 probably
participates in malignant progression and poor prognosis
[50]. Overexpression of ANXA10 could promote apoptosis
of hepatocellular carcinoma cells [51]. However, the results
of the present study confirmed that high ANXA10 ex-
pression was significantly associated with poor OS. .e
expression of ANXA10 was not associated with clinical
stage.

ANXA13 is the latest ANXA member to be identified.
.ere are limited studies available that focus on ANXA13
in cancer. ANXA13 increases cell growth and invasion. It
also portends lymph node metastasis and poor prognosis
in human lung adenocarcinoma patients [52]. ANXA13
was identified as a regulator of chemotherapy resistance
because ectopic overexpression of ANXA13 could increase
the sensitivity of malignant breast cancer cells to rapa-
mycin [53]. In the present study, the expression level of
ANXA13 was higher in KIRC tissues than in kidney tis-
sues, and high-stage KIRC exhibited significantly de-
creased ANXA13 expression. Moreover, the decreased
ANXA13 mRNA level was significantly associated with
poor OS.

Cancer cells carry different mutations, which leads to a
wide variety of clinical manifestations. Many genes show
variations in copy-number alterations andmay be associated
with recurrence and death [54]. In the present study, we
found gene alterations in 9.32% of the Annexin family in the
database, including an amplification rate of 7.77% and a
mutation rate of 1.44%. .e incidence rate of genetic var-
iations in the ANXA6 gene was up to 7.0%, whereas ANXA3,
ANXA4, and ANXA10 had higher probabilities of mutation
events. However, our findings showed that KIRC has a
relatively low alteration rate in ANXAs compared with other
cancers [42, 55–57].

We adopted the GeneMANIA database to construct a
gene-gene interaction network that clarified the mechanisms
of function of ANXAs in kidney cancer. .e results showed
that 20 genes, including STXBP2, RACK1, S100A10,
NDRG1, and HARS, were enriched in this network based on
their functions associated with physical interactions, coex-
pression, colocalization, pathways, and genetic interactions.
It has been demonstrated that RACK1 could regulate
ANXA2 phosphorylation to make it involved in the invasion
and metastasis of drug-resistant carcinoma cells. [58]
NDRG1, like ANXAs involved in plasma membrane repair,
has been recognized as a suppressor of carcinoma by de-
creasing EMT-associated protein expression [59]. Aberrant
expression of these interacting genes is related to the tu-
morigenesis and progression of tumours, but these

interactions with ANXAs in kidney cancer are intriguing
and still need substantial experimental confirmation. It has
been demonstrated that S100A10, located in the plasma
membrane, can unite with ANXA2 to form a heterotetramer
composed of two subunits, S100A10 and ANXA2. .e
heterotetramer could activate the plasminogen activation
pathway, playing a key role in cellular repair and further
promoting degradation of the extracellular matrix to in-
crease the invasion capability of carcinoma cells [60].

5. Conclusion

In the present study, the expression of ANXAs was sys-
temically analysed to evaluate their clinical and prognostic
value in KIRC, which provided an important molecular
biological basis for understanding the complex develop-
ment of KIRC. .e results indicated that ANXA1/2/4/7/13
may be potential therapeutic targets for KIRC treatment,
whereas ANXA2/5/8/10 may be potential prognostic bio-
markers of KIRC. .e results of the present study intro-
duced ANXA4/8/13 as good candidates for future
experimental works.
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