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Khellin and visnagin are natural furanochromones that photoreact with DNA. Khellin has been used in the treatment of vitiligo
and psoriasis, as well as in the treatment of angina pectoris and asthma due to its potent action as a coronary vasodilator and
antispasmodic agent. �e present study aimed to investigate whether the compounds khellin and visnagin act as inhibitors of
NorA protein, an e�ux pump overproduced by the strain of Staphylococcus aureus SA-1199B that confers resistance to the
�uoroquinolones, such as nor�oxacin and cipro�oxacin. �ese substances alone did not show antibacterial activity against the
strain tested. On the other hand, when these compounds were added to the culture medium at subinhibitory concentration, they
were able to reduce the minimum inhibitory concentration (MIC) of nor�oxacin, ethidium bromide, as well as berberine,
suggesting that these compounds are modulating agents of nor�oxacin resistance, possibly due to NorA inhibition. Molecular
docking analysis showed that both khellin and visnagin form hydrogen bonds with Arg310, an important residue in the interaction
between NorA and its substrates, supporting the hypothesis that these compounds are NorA inhibitors. �ese results suggest
a possible application of khellin and visnagin as adjuvants to nor�oxacin in the treatment of infections caused by strains of
S. aureus that overproduce NorA.

1. Introduction

Infectious diseases caused by multidrug-resistant bacteria
have become a global health problem, leading to high
mortality rates [1], and high costs for healthy systems [2].
Bacterial resistance is an adaptive response caused by the

intensive use of antibacterial agents in the most diverse
areas, including in the human and veterinary medicines, as
well as animal feed supplementation, selecting the most
adapted strains [3]. Several mechanisms of antibiotic re-
sistance have been demonstrated in bacteria, such as re-
ducing the permeability of bacteria to antimicrobials,
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enzymatic modification of the antibiotic target, antibiotic
modification, or degradation, as well as drug extrusion by
efflux pumps [4].

Efflux pumps are transmembrane proteins that account
for much of the bacterial resistance since they pump anti-
microbial agents out of the cell [5]. Some of these pumps are
specific for a given compound or class of compounds,
whereas others remove a variety of structurally unrelated
antimicrobial compounds [6, 7]. Several efflux pumps re-
lated to drug resistance in Staphylococcus aureus have al-
ready been identified, including MsrA, MepA, LmrS, MdeA,
NorA, NorB, NorC, QacA, and QacC [8]. NorA is a proton-
dependent multidrug efflux pump that belongs to Major
Facilitator Superfamily (MFS) and it confers resistance to
hydrophilic fluoroquinolones, such as norfloxacin and
ciprofloxacin, as well as to biocide agents, such as ethidium
bromide, acriflavine, and benzalkoniun chloride [9–11].

Resistance-modifying agents/modulators are com-
pounds that potentiate the activity of an antibiotic against
resistant strains, and some of these agents may act as efflux
pump inhibitors (EPIs), as in the case of several naturally
occurring compounds from plants [12–16]. Various phy-
tocompounds have been studied for its ability to inhibit
S. aureus efflux pumps, including terpenes such as eugenol
[17], carvacrol, thymol [18], estragole [19], α-pinene, and
limonene [20]. Inhibition of NorA has also been reported for
ferulic acid and its esterified derivatives [21], chalcones [22],
and vitamin K3 [23]. On the other hand, various synthetic
EPIs have been reported as efflux pump inhibitors [24–26].

Chromone (1,4-benzopyrone) is a derivative of benzo-
pyran with a substituted keto group on the pyran ring, being
an isomer of coumarin (1,2 benzopyrone). Visnagin and
khellin are two naturally occurring furanochromones able to
photoreact with DNA [27]. Khellin and visnagin derivatives
have anti-inflammatory and analgesic activity [28], epi-
dermal growth factor inhibitory activity [29], as well as light
mediated antimicrobial activity against Escherichia coli and
Fusarium culmorum L. [30]. Khellin has been used in the
treatment of vitiligo, and psoriasis [31], as well as in the
treatment of angina pectoris and asthma due to its potent
action as a coronary vasodilator and antispasmodic agent
[32, 33]. Furthermore, khellin also has been used in the
treatment of kidney stones [34].

Furochromones, as well as furocoumarins, are widely
studied for their photoactive properties [27, 35]. .e
modulating activity of drug resistance by furochromones has
not yet been reported, requiring the development of studies
with these molecules as potential efflux pump inhibitors.

In an ongoing project to evaluate coumarins as modu-
lators of antibiotic resistance, the modulatory activity of
semisynthetic and commercial coumarins [36], as well as of
furanocoumarins isolated from Rutaceae species [37] has
been demonstrated. Still regarding the furanocoumarins,
bergapten, and isopimpinellin do not modulate the re-
sistance to norfloxacin and to ethidium bromide in an
effluxing Staphylococcus aureus strain. Although fur-
anochromones visnagin and khellin present similar mo-
lecular structures to bergapten and isopimpinellin,
respectively (Figure 1), these compounds were considered

different enough from the furacoumarins to justify the
evaluate these homologous furanochromones (visnagin and
khellin) as modulators of antibiotic resistance using an
effluxing Staphylococcus aureus strain.

2. Material and Methods

2.1. Chemicals. .e stock solution of norfloxacin was pre-
pared in a mixture of 1M NaOH and sterile distilled water
(1 : 9 proportion). .e stock solution of ethidium bromide
(EtBr) and berberine were prepared in distilled water. .e
stock solution of the furanochromones—khellin and vis-
nagin, were prepared in DMSO which, at its highest final
concentration after dilution in the broth (4%), displayed no
inhibition of bacterial growth. Chlorpromazine was pre-
pared in sterile distilled water. All drugs were from Sigma-
Aldrich, USA.

2.2. Bacteria. .e SA-1199B strain of S. aureuswas used as it
overexpresses the norA gene. .is gene encodes the NorA
efflux protein that extrudes not only norfloxacin but several
compounds, such as: hydrophilic fluoroquinolones, qua-
ternary ammonium compounds benzalkonium chloride and
cetrimide, intercalating dyes acriflavine and ethidium bro-
mide [10], as well as the alkaloid berberine [38]. .e strain,
provided by Professor Simon Gibbons (University College
London, UK), was maintained in blood agar base (Labo-
ratories Difco Ltda., Brazil) slants, and prior to use, the cells
were grown overnight at 37°C in brain heart infusion broth
(BHI–Difco Ltda., Brazil).

2.3. Drug Susceptibility Testing and Modulation Assay.
.e minimum inhibitory concentrations (MICs) of nor-
floxacin, pefloxacin, ethidium bromide, and fur-
anochromones were determined in BHI by the
microdilution assay using a suspension of ca. 105 cfu/mL and
a drug concentration range of 1024–1 μg/mL (two-fold serial
dilutions). .e MIC was defined as the lowest concentration
at which no growth is observed. .e detection was per-
formed after the addition of resazurin at 0.01%. For the
evaluation of furanochromones as a modulator of drug
resistance, the “modulation assay” was used, a method that
has been widely applied to identify potential EPIs [12] i.e. the
MICs of norfloxacin, pefloxacin, ethidium bromide, and
berberine were determined in the presence of fur-
anochromones at a subinhibitory concentration (MIC 1/4).
Chlorpromazine, a known NorA inhibitor [39], was used as
a positive control.

2.4. Docking Procedure. .e NorA model for the docking
procedure was created by retrieving the NorA sequence of
S. aureus 1199 strain from the Universal Protein Resource
database (Uniprot, Entry Q03325). .en, the SWISS-
MODEL [40] service was used to build the homology model.
Out of the templates generated, the one with the best GMQE
(Global Model Quality Estimation) score was the one based
on the structure of the Escherichia coli YajR transporter
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(PDB-ID: 3wdo). .e Molprobity [41] service was used for
the protonation of the NorA model. For the docking pro-
cedure, which was carried out using the Autodock Vina [42]
software, the grid box was defined as a 20Åx20Åx20Å box
around the geometrical center of the model. Partial Gas-
teiger charges were added to ligand atoms, nonpolar hy-
drogen atoms were mixed while all other parameters were
kept at their default values. Best results were chosen based on
the binding score.

3. Results and Discussion

According to a previous study, the antimicrobial activity of
an isolated compound must be considered significant if its
MIC value is ≤10 μg/mL [43]. Both furanochromones
khellin, and visnagin showed MIC values ≥1024 μg/mL.
.ese results indicate that the tested compounds were in-
active against the S. aureus strain used.

Despite not showing activity against this specific strain,
addition of these compounds to the growth medium at
256 μg/mL (MIC 1/4) potentiated the antibacterial effect of
norfloxacin against the SA-1199B strain, reducing the MIC
values for norfloxacin by at least two-fold (Table 1). Mod-
ulating effect on the resistance to norfloxacin could be
explained by inhibition of NorA efflux pump overproduced
by SA-1199B, as already reported for several compound
classes, such as alkamides [18], chalcones [44–46], flavo-
noids [47–50], and lignans [51]. In fact, visnagin, and khellin
showed a modulating effect like that exhibited by the known
NorA inhibitor chlorpromazine.

To investigate a potential action as NorA inhibitors,
assays were performed replacing norfloxacin by two known
NorA substrates: EtBr [52] and berberine [53]. EtBr is a well-
known substrate for the NorA efflux protein, and active
efflux is the only known mechanism of resistance to this
DNA-intercalating dye [54]. .erefore, the use of EtBr
against SA-1199B is enough to demonstrate that the com-
pounds evaluated here modulated the resistance to nor-
floxacin by efflux pump inhibition. Results showed that
compounds tested also reduced MIC values for EtBr and
berberine by at least two-fold. It is worth noting the results
obtained with visnagin regarding EtBr (Table 1). All ex-
periments were carried out at least twice with consistent

results suggesting that compounds tested could be NorA
inhibitors.

A previous study verified that furanocoumarins ber-
gapten and isopimpinellin did notmodulate the antibacterial
activity of norfloxacin against the strain evaluated [37]. To
understand the differences in efflux pump inhibition (EPI)
capabilities of furanocoumarins and furanochromones,
a molecular docking study against the NorA efflux pump
model was conducted. A comparison of the binding pose of
visnagin vs bergapten and khellin vs isopimpinellin is shown
in Figures 2 and 3, respectively.

Interestingly, both furanochromones dock in almost
the same fashion and interact with the same residues. In
particular, both interact through hydrogen bonds with
Arg310. .ere are close contacts with Phe16, Asn340, and
Gln51. .e binding pocket of NorA is described as being
composed by Ile19, Ile23, Gln51, Met109, Ile136, .r211,
Arg310, Ile313, .r314, Asn332, Ser333, Ser337, Asn340,
and Phe341, among others. .e furanochromones make
close contact with most of these, as can be seen in the
protein-ligand interaction diagram in Figure 4. Not only
that but a previous study described a chalcone with NorA
inhibition properties that interacts with Arg310 through
a hydrogen bond [55]..ere are also imidazolines EPIs that
bind to this same region of the binding site and interact
with Arg310 through hydrogen bonds [19]. Interaction
through H-bond with Arg310 also was reported to ami-
noguanidine hydrazones [7, 56]. .ese results suggest that
Arg310 is an important amino acid residue for NorA
substrate recognition.
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Figure 1: Chemical structure of furanocoumarins (bergapten and isopimpinellin) and furanochromones (visnagin and khellin).

Table 1: Minimum inhibitory concentrations (μg/mL) of nor-
floxacin, ethidium bromide, berberine, and pefloxacin against
Staphylococcus aureus strain SA-1199B in the absence or presence
of khellin, visnagin, and chlorpromazine.

Drugs Alone +Khellin +Visnagin +Chlorpromazine
Norfloxacin 64 32 (2)∗ 32 (2) 16 (4)
Ethidium
bromide 64 32 (2) 16 (4) 8 (8)

Berberine 512 256 (2) 256 (2) 512
Pefloxacin 16 16 16 16
∗ (fold reduction in MIC).
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On the other hand, furanocoumarins do not interact
with Arg310. Also, the Arg310 hydrogen bond anchors the
furanochromones in a way that hinders the binding of EtBr,
as can be seen in Figure 5. As such, the binding pose of
furanocoumarins shows almost no overlap with the position
of EtBr. It could, thus, be argued that the furanochromones
could act as efflux pump inhibitors through competition in

contrast with furanocoumarins, supporting the experi-
mental results shown before.

We also compared the docked pose of other known
efflux pump inhibitors, such as chlorpromazine (Figure 6),
as well as piperine (Figure S1), verapamil (Figure S2), and
reserpine (Figure S3). Chlorpromazine binds to the same
region of the binding site, interacting not only with Arg310,
but with Phe16, Asn340, Ile136 and others. More impor-
tantly, its best pose overlaps with that of EtBr in a similar
fashion as those of furanochromones.

Also, other EPIs such as piperine and verapamil also
bind to the same region of the binding site (Figures S1 and
S2), as both interact with Arg310, Phe16, Gln51, etc. .e
binding pose of reserpine, on the other hand, is a bit dif-
ferent. As it is much larger than the previously mentioned
EPIs, its interaction site goes from Ile136, Asn340, and
Phe16 to other parts of the binding site, such as Ala48 and
Met52, its sheer size contributing to inhibition as much as its
interactions (Figure S3).

Our results indicate that khellin and visnagin could be
applied in combination with norfloxacin against NorA
overproducer S. aureus strains. Khellin showed a low-level

Figure 2: .e best poses of visnagin (blue) and bergapten (golden)
on the binding site of the NorA model. Hydrogen bond with
Arg310 depicted in green.

Figure 3: .e best poses of khellin (orange) and isopimpinellin
(green) on the binding site of the NorA model. Hydrogen bond
with Arg310 depicted in green.

Figure 5: Binding poses of EtBr (white), visnagin (blue), and
bergapten (golden) on the binding site of the NorA model.
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Figure 6: Protein-ligand interaction diagram of chlorpromazine
on the binding site of the NorA model.
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Figure 4: Protein-ligand interaction diagram of khellin on the
binding site of the NorA model.
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toxicity in humans, at an average daily dose of 120mg,
administered orally [57]. Liver and dermal histological and
pathological analyses demonstrated that hydroxyethyl cel-
lulose hydrogels based on khellin loaded in the ASC10
ascosomes have no toxic effects in rats [58]. On the other
hand, both khellin and visnagin showed a strong cytotoxic
activity (IC50 ranging between 12.54 and 17.53 µg/mL) on
breast cancer (MCF-7) and hepatocellular carcinoma (Hep
G2) cell lines [59]..erefore, studies in vivowill be necessary
to evaluate the safety of using khellin or visnagin combined
with norfloxacin.

4. Conclusion

.e furanochromones Khellin and Visnagin did not show
any antibacterial activity against S. aureus resistant to
norfloxacin by efflux pump mechanism. However, both
compounds reduced theMIC of norfloxacin at subinhibitory
concentration. Furthermore, khellin and visnagin modu-
lated the resistance to EtBr and berberine, suggesting
a possible inhibition of NorA efflux pump overproduced by
S. aureus SA-1199B strain. Molecular docking analysis
showed that both khellin and visnagin form hydrogen bonds
with Arg310, an important residue in the interaction be-
tween NorA and its substrates, supporting the hypothesis
that these compounds could be NorA inhibitors. Results
obtained at this work are quite promising, which may
stimulate future studies about the use of natural products
concerning the viability of its use against microbial
resistance.
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