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Paclitaxel, one of the most efective chemotherapeutic drugs, is used to treat various cancers but it is exceedingly toxic when used long-
term and can harm the liver. Tis study aimed to see if rutin, hesperidin, and their combination could protect male Wistar rats against
paclitaxel (Taxol)-induced hepatotoxicity. Adult maleWistar rats were subdivided into 5 groups (each of six rats).Te normal groupwas
orally given the equivalent volume of vehicles for 6weeks.Te paclitaxel-administered control group received intraperitoneal injection of
paclitaxel at a dose of 2mg/Kg body weight twice a week for 6 weeks. Treated paclitaxel-administered groups were given paclitaxel
similar to the paclitaxel-administered control group together with oral supplementation of rutin, hesperidin, and their combination at
a dose of 10mg/Kg body weight every other day for 6 weeks. Te treatment of paclitaxel-administered rats with rutin and hesperidin
signifcantly reduced paclitaxel-induced increases in serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, al-
kaline phosphatase, and gamma-glutamyl transferase activities as well as total bilirubin level and liver lipid peroxidation. However, the
levels of serum albumin, liver glutathione content, and the activities of liver superoxide dismutase and glutathione peroxidase increased.
Furthermore, paclitaxel-induced harmful hepatic histological changes (central vein and portal area blood vessel congestion, fatty
changes, andmoderate necrotic changes with focal nuclear pyknosis, focal mononuclear infltration, and Kupfer cell proliferation) were
remarkably enhanced by rutin and hesperidin treatments. Moreover, the elevated hepatic proapoptotic mediator (caspase-3) and pro-
infammatory cytokine (tumor necrosis factor-α) expressions were decreased by the three treatments in paclitaxel-administered rats.Te
cotreatment with rutin and hesperidin was the most efective in restoring the majority of liver function and histological integrity.
Terefore, rutin, hesperidin, and their combination may exert hepatic protective efects in paclitaxel-administered rats by improving
antioxidant defenses and inhibiting infammation and apoptosis.

1. Introduction

Paclitaxel, which stabilizes microtubules and inhibits their
depolymerization during cell division, is one of the most

widely used chemotherapy drugs [1–4]. Te active com-
pound selection program founded by the National Cancer
Institute in 1981 proved that paclitaxel was the only active
biological ingredient that falls within this category and
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meets the standard that could be efectively used to
manage cancer, mainly from clinical trials [5, 6]. Pacli-
taxel is used to treat various cancers, including breast,
prostate, bladder, cervical, and brain cancer [7–10]. Many
diferent cancers are also treated with paclitaxel, such as
aggressive and metastatic breast cancer, ovarian cancer,
lung cancer, pancreatic cancer, and others [11]. However,
its administration causes numerous adverse efects, in-
cluding neuropathy, cardiotoxicity, and hepatotoxicity, as
well cancer cells’ resistance to paclitaxel chemotherapy
[12–14]. Paclitaxel has been widely known to stimulate
apoptosis. Moreover, it has been recognized to produce
reactive oxygen species (ROS) that trigger mitochondrial
dysfunction to release cytochrome C into the cytoplasm
and activate the caspase cascade and apoptosis stimulation
[15, 16]. Paclitaxel promotes oxidative stress, decreases
antioxidants, increases liver enzymes, and impairs renal
function, which may be due to its mechanism of action
and the oxidative stress that it caused [17]. Paclitaxel
exacerbates liver damage during treatment and causes
severe liver necrosis that may lead to mortality [18–20].
Paclitaxel has been reported to exert infammatory ac-
tions. It also revealed a signifcant increase in pro-
infammatory cytokines, such as interleukin (IL)-17A,
tumor necrosis factor-alpha (TNF-α), interferon-c (IFN-
c), and keratinocyte, in paclitaxel-treated mice [21].

To reduce the toxicity of various organs from chemo-
therapeutic drugs, several studies have investigated the use
of natural compounds that have antioxidant and anti-
apoptotic efects [22–28]. Citrus species are considered to be
among the most economically signifcant biological re-
sources, as they contain a variety of plant nutrients and
phytochemicals with promising therapeutic properties [29].
Flavonoids have various biological efects and may confer
health benefts via diferent mechanisms through anti-
infammatory, antioxidant, antimicrobial, and anti-
proliferative regulatory activities [30–32]. Several natural
antioxidants have been experimentally tested for their po-
tential to protect the liver, such as rutin [33] and hesperidin
[34]. Combining rutin with other drugs can reduce drug
resistance and side efects of chemotherapy [35]. Rutin has
tremendous medicinal potential to regulate several cell
signaling and apoptotic pathways implicated in cancer
progression [36]. Additionally, it induces an important
mechanism in inhibiting cell proliferation in neoplastic cells
in the liver tissue by hepatocellular marker enzyme and
tumor incursion suppression [37]. Rutin has shown re-
markable protection against acrylamide-induced oxidative
deoxyribonucleic acid (DNA) damage, which may be due to
its antioxidant potential [38]. Hesperidin possesses che-
mopreventive potential against paclitaxel-induced hepato-
toxicity probably by reducing oxidative stress, infammation,
apoptosis, and autophagy [39]. Furthermore, the pre-
treatment of hesperidin ofers powerful protective efects
against cisplatin-induced hepatic damage, which is achieved
by its antioxidant, anti-infammatory, and antiapoptotic
activities [40]. Hesperidin’s anticancer potential is con-
trolled by ROS-dependent apoptotic pathways in certain
cancer cells, despite the fact that it can be an excellent ROS

scavenger and could operate as a powerful antioxidant
defense mechanism [41].

Chemotherapeutic drugs such as paclitaxel have
several deleterious side efects including liver injury and
we aim to minimize these efects by using plant con-
stituents with antioxidant and anti-infammatory activ-
ities. Terefore, this research aimed to scrutinize the
preventative efcacy of rutin, hesperidin, and their
combination on paclitaxel (Taxol)-induced liver toxicity,
as well as to investigate the roles of infammation, oxi-
dative stress, and apoptosis modulations in preventive
action.

2. Materials and Methods

2.1. Chemicals. Te trade name drug, paclitaxel, or Taxol, in
the formulation vehicle of cremophor® EL∗ (CrEL) (poly-
oxyethylated castor oil) (batch number: 7E05628), was
obtained from Bristol-Myers Squibb global bio-
pharmaceutical company (Princeton, USA). Rutin (batch
number: 501) was obtained from Oxford Laboratory
Company (Mumbai, India). Rutin is a light yellow crystalline
powder with the empirical formula C27H30O16 and
a molecular weight of 610.5 and tastes slightly bitter. It has
low solubility in water (125mg/L), while it is highly soluble
in polar solvents and melts at around 176–178°C. Hesperidin
(lot number: # SLBT3541) was obtained from Sigma-Aldrich
Company (St. Louis, MO, USA). Hesperidin is a light yellow
crystalline powder with the empirical formula C28H34O15
and a molecular weight of 610.6, odorless, and tasteless. It
demonstrated poor, pH-independent, aqueous solubility,
while it dissolves in dimethyl formamide and formamide at
60°C and slightly soluble in other polar solvents and melts at
around 258–262°C. Alanine transaminase (ALT) reagent kit
(catalog number: M11533c-21) and aspartate transaminase
(AST) reagent kit (catalog number: M11531c-21) were
purchased from Biosystem S.A. (Barcelona, Spain). Te
alkaline phosphatase (ALP) reagent kit and gamma-
glutamyl transferase (GGT) reagent kit were purchased
from Biosystem S.A. (Barcelona, Spain), with catalog
numbers M11592-0610 and M11584c-11, respectively. A
lactate dehydrogenase (LDH) reagent kit (catalog number:
MX41214) was purchased from Spin React (Girona, Spain).
Total bilirubin reagent kit (catalog number: 10742) and
albumin reagent kit (catalog number: 10560) were purchased
fromHUMANGesellschaft für Biochemica und Diagnostica
mbH (Wiesbaden, Germany). Chemicals of oxidative stress
including trichloroacetic acid (TCA) (batch number:
5O011689) obtained from PanReac AppliChem ITW
Companies (Spain); thiobarbituric acid (TBA) (batch
number: L 16A/1916/1212/13) was obtained from Sd Fine
Chem Limited (SDFCL) Company (India); 1,1,3,3 tetra-
methoxy propane or malondialdehyde (MDA) (catalog
number: T9889) was obtained from Sigma-Aldrich (MO,
USA); metaphosphoric acid (batch number: M21519) was
obtained from ALPHA CHEMIKA Company (India); 5,5-
dithiobis nitrobenzoic acid (DTNB or Ellman’s reagent)
(batch number: 40K3652) was obtained from Sigma-Aldrich
(MO, USA); Reduced glutathione (GSH) (batch number:
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3W010085) was obtained from PanReac AppliChem ITW
Companies (Spain); and pyrogallol (batch number:
1280B251114) was obtained from ResearchLab Company
(India).

2.2. ExperimentalAnimals. Te experimental animals in this
study were thirty adult male Wistar rats weighing 130–150 g
and aged 7–8 weeks. Tey came from the National Research
Center’s Animal House in Dokki, Giza, Egypt. Te animals
were monitored for 15 days before the trial began to ensure
that no inter competitive infections existed. Te animals
were kept in polypropylene cages with well-ventilated
stainless steel lids at room temperature (25± 5°C) and on
a 12-hourlight-dark cycle every day. Te animals had un-
limited access to water and were fed a well-balanced meal ad
libitum daily. Te Experimental Animal Ethics Committee’s
rules and guidelines were followed in all animal procedures.
Faculty of Science, University of Beni-Suef, Egypt (Ethical
Approval Number: BSU/FS/2017/8). Every efort has been
made to reduce pain, distress, and discomfort among
animals.

2.3. Experimental Design. Adult male Wistar rats were
subdivided into 5 groups in this study (6 rats per group).

(i) Normal group: rats in this group were orally ad-
ministered with 5mL 1% carboxymethylcellulose
(CMC) (vehicle in which rutin and hesperidin are
dissolved)/Kg body weight (b. wt) every other day
and 2mL isotonic saline (0.9% NaCl) (vehicle in
which paclitaxel is dissolved)/Kg b. wt twice per
week via the intraperitoneal (i.p.) route for
6 weeks.

(ii) Paclitaxel-administered control group: this group of
rats received paclitaxel at a dose of 2mg/Kg b. wt (in
2mL 0.9% NaCl) by i.p. injection [42] twice a week
on the 2nd and 5th days of each week for 6 weeks, an
equivalent dose of 1% CMC (5mL/Kg b. wt) was
also given orally every other day.

(iii) Paclitaxel-administered group treated with rutin:
this group of rats received paclitaxel as in the
paclitaxel-administered control group, as well as
rutin orally every other day at a dose of 10mg/Kg b.
wt [43] (dissolved in 5mL of 1% CMC) for 6 weeks.

(iv) Paclitaxel-administered group treated with hes-
peridin: this group of rats received paclitaxel as in
the paclitaxel-administered control group, as well as
hesperidin orally every other day at a dose of 10mg/
Kg b. wt [44] (dissolved in 5mL of 1% CMC) for
6 weeks.

(v) Paclitaxel-administered group treated with rutin
and hesperidin combination: this group of rats
received paclitaxel as in the paclitaxel-administered
control group, as well as rutin and hesperidin
combination orally every other day at a dose of
10mg/Kg b. wt (dissolved in 5mL of 1% CMC) for
6 weeks.

2.4. Blood and Liver Sampling. Under inhalation anesthesia
[45], blood samples were collected from the jugular vein into
gel and clot activator tubes after a 6-week treatment with the
prescribed dosages. Blood samples were allowed to clot at
room temperature and then centrifuged for 15 minutes at
3,000 rounds per minute (rpm). For various biochemical
experiments, sera were quickly separated, split into four
portions for each animal, and kept at −30°C. Following
decapitation and dissection, livers were dissected for bio-
chemical testing and histopathological examination, with
each rat’s liver tissue being quickly weighed and washed with
isotonic saline (0.9% NaCl). A part of the liver was preserved
in bufered formalin for 24 hours, then cut and placed in 70%
alcohol for histopathologic analysis. Te Tefon homoge-
nizer (Glas-Col, Terre Haute, IND, USA) was used to ho-
mogenize approximately 0.5 g of each liver tissue into 5mL
0.9% NaCl. Te homogenates were then centrifuged for
15 minutes at 3,000 rpm, and the supernatants were aspi-
rated and frozen at −30°C until employed in the assessment
of oxidative stress marker-related biochemical and antiox-
idant parameters.

2.5. Determination of Liver Function Biomarkers in Serum.
ALT and AST activities were assessed according to the
method of Gella et al. [46]. Te activities of GGT and ALP
were assayed using the methods of Schumann et al. [47] and
Schumann et al. [48], respectively. Te activity of LDH was
measured as previously described by Pesce [49].Te levels of
serum albumin and total bilirubin were measured according
to the procedures of Doumas et al. [50] and Jendrassik [51],
respectively.

2.6. Liver Oxidative Stress and Antioxidant Biomarkers’
Analysis. Chemical reagents prepared in the laboratory were
used to evaluate liver oxidative stress and antioxidant bio-
markers. Te method provided by Preuss et al. [52] was used
to estimate liver lipid peroxidation (LPO). Briefy, 0.15mL
76% TCAwas added to 1mL liver homogenate to precipitate
the protein. Te isolated supernatant was then color-
enhanced with 0.35mL TBA. At 532 nm, the produced
pale pink color was identifed after 30 minutes in an 80°C
water bath.Te standard wasMDA. On the other hand, GSH
concentration in the liver was evaluated by adding 0.5mL
DTNB or Ellman’s reagent (as a color-developing agent),
and phosphate bufer solution (pH, 7) to homogenate su-
pernatant after protein precipitation by centrifugation, as
described by Beutler et al. [53]. At 412 nm, the generated
yellow colors in the samples and GSH standard were
measured and compared to a blank. Te activity of liver GPx
was determined using a modifed version of the procedure
described by Matkovics et al. [54]. Te remaining GSH after
it has been converted by the enzyme to GSSG (oxidized
glutathione) and deducting the residual from the total is the
basis of this approach. Briefy, 50 μL of homogenate su-
pernatant was introduced to a Wasserman tube that already
contained 350 μL of Tris bufer (pH 7.6), 50 μL of GSH
solution (2mM), and 50 μL of hydrogen peroxide (H2O2)
(3.38mM). Te previously mentioned technique for
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determining GSH was used to quantify the residual GSH
content at 430 nm following a 10-minute incubation period.
Te standard test was made using 50 μL of dist. H2O instead
of 50 μL sample and the blank test was made with 100 μL of
distilled water instead of 50 μL sample and 50 μL GSH so-
lution. Following the discovery of residual GSH in the
sample, the enzyme activity was measured by converting
GSH to GSSG. Te activity of the liver SOD was measured
using the method of Marklund and Marklund [55]. SOD
inhibits pyrogallol autoxidation, which is the basis for the
reaction. Superoxide ions are necessary for the process to
take place. One unit of enzyme is equivalent to the quantity
of enzyme required to reduce extinction changes by 50% in
one minute as compared to the control.

2.7. Histological Investigations. After the fast decapitation
and dissection of each rat, 3mm3 pieces of liver from all
groups were preserved in 10% neutral phosphate-bufered
formalin (pH 7.2) for 24 hours. Te fxed livers were
transferred to the Pathology Department of Beni-Suef
University’s Faculty of Veterinary Medicine in Egypt for
additional processing, wax blocking, sectioning, and he-
matoxylin and eosin (H&E) staining [56]. Histological
scores were determined by examining the stained liver
sections. Six random felds were estimated for each section.
Te number of sections in each group is six. Degenerative
change, fatty change, infammatory cell infltration, necrosis,
vascular congestion, and Kupfer cell proliferation were
among the graded lesions. Scoring of these hepatic lesions
was calculated based on Khafaga et al. [57] and Wasef et al.
[58] and graded as follows 0� none; 1≤ 25%; 2� 26–50%;
3� 51–75%; and 4� 76–100%.

2.8. Immunohistochemical Investigations of Caspase-3 and
TNF-α. Te liver samples, secured with 10% neutral
bufered formalin, were processed, blocked, and divided
into 5-μm–thick sections that were fxed on positive-loaded
slides (Fisher Scientifc, Pittsburgh, PA, USA) at the Na-
tional Cancer Institute’s Pathology Department. Te im-
munohistochemical reactions in the liver sections were
investigated according to the method described by previous
publications [59–63]. Briefy, after antigen retrieval, liver
sections were incubated for 1 hour with diluted primary
antibodies (dilution: 1–100 in phosphate bufer saline) for
caspase-3 or TNF-α (Santa Cruz Biotechnology, Santa
Cruz, CA, USA). Diluted biotinylated secondary antibodies
(dilution: 1–200 in phosphate bufer saline) of DakoCy-
tomation Kit were added and incubation was carried out
for 15 minutes at 37°C. Ten, using a DakoCytomation Kit,
horseradish peroxidase conjugated with streptavidin was
added and incubated for another 15 minutes. A reaction of
3,3′-diaminobenzidine (DAB) substrate was used to vi-
sualize the bound antibody complex, which was counter-
stained with hematoxylin. Immunostaining was
comparable across all research groups since all liver slices
were incubated under the same conditions with the same
antibody dilutions and for the same period. A light mi-
croscope was used to examine the immunostained liver

sections and determine the degree of cell immunoposi-
tivity. A digital camera was used to capture photos of the
liver section (Leica, DM2500M Leica, Wetzlar, Germany).
ImageJ (1.51d), a free software program, was used to
measure the area percentage of immune positivity for
caspase-3 and TNF-α reactions according to Khafaga et al.
[64] and El-Far et al. [65].

2.9. Statistical Analysis. Te mean and standard error of the
mean (SEM) were used to express all of the data. Te Sta-
tistical Package for Social Sciences computer software (SPSS)
(version 22, IBM software, Armonk, NY, USA) was used to
perform the statistical analysis. A one-way analysis of var-
iance (ANOVA) test was performed to clarify the signif-
cance among group means, followed by Tukey’s post hoc test
to compare-averaged aged results. At p< 0.05, diferences
were considered signifcant. Percentage changes were cal-
culated using the formula: % change = [(Final value – Initial
value)/Initial] × 100 [66].

3. Results

3.1. Efects on Serum Parameters Related to Liver Function.
Te serum AST, ALT, GGT, LDH, and ALP activities, as
well as the total bilirubin level, increased signifcantly
(p< 0.05) after rats were given paclitaxel intraperitoneally
for 6 weeks. When compared to the corresponding
normal controls, paclitaxel administration resulted in
a signifcant decrease in serum albumin level, with
a documented percentage change of −37.37%. Te
treatment of paclitaxel-administered rats with rutin and/
or hesperidin resulted in substantial decreases in in-
creased serum AST, ALT, LDH, ALP, GGT, and total
bilirubin levels when compared to the paclitaxel-
administered control group. Te treatment with rutin
and its combination with hesperidin, on the other hand,
resulted in a signifcant change in albumin levels, with
recorded percentage changes of +31.72 and + 34.41%,
respectively, whereas the treatment with hesperidin
produced a nonsignifcant improvement (p> 0.05).
Moreover, compared with the paclitaxel-administered
control group, the treatment of paclitaxel-administered
rats with rutin and hesperidin combination was the most
efcacious in improving the elevated serum AST, ALT,
LDH, ALP, and total bilirubin levels, as well as the de-
creased albumin levels. Hesperidin treatment was the
most efective in lowering GGT activity, with a recorded
percentage change of −33.33% (Table 1).

3.2. Efects on Liver Oxidative Stress and Antioxidant Defense
Parameters. Paclitaxel was given intraperitoneally to rats for
six weeks, resulting in a highly signifcant rise in liver LPO
and a highly signifcant decrease in liver GSH content, as
well as SOD and GPx activities. Te treatment of paclitaxel-
administered rats with rutin, hesperidin, and their combi-
nation signifcantly decreased liver LPO. Hesperidin seemed
to be the most efective in lowering the increased LPO
product in the liver. In contrast to the paclitaxel-
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administered control group, paclitaxel-administered rats
treated with rutin, hesperidin, or their combination showed
a signifcant improvement in lowered liver SOD and GPx
activities. Te treatment of paclitaxel-administered rats with
rutin and hesperidin caused a signifcant increase in the GSH
content (Table 2).

3.3. Liver Histological Changes. Histopathological fndings
of the liver specimens from diferent experimental groups
are presented in Figure 1 and Table 3. Te normal group’s
liver sections revealed normal histological structures in the
form of a thin-walled central vein and normal hepatocytes
forming the hepatic cords radiating from the central vein
toward the periphery and alternating with narrow blood
spaces, the sinusoids, which are lined with single-layered
Kupfer cells on histopathological analysis (Figure 1(a)).
Conversely, the livers of the paclitaxel-administered group
showed marked pathological changes in the form of central
vein and portal area blood vessel congestion, marked de-
generative changes, including fatty changes and moderate
necrotic changes with focal nuclear pyknosis in certain areas,
focal leukocytic infltration (mainly mononuclear cells), and
Kupfer cell proliferation (Figure 1(b)). Tese changes were
altered to some extent in diferent paclitaxel-treated groups.
Tese changes were amended to some extent by treatments
of paclitaxel-administered groups. First, rats treated with
paclitaxel/rutin showed severe degenerative and fatty
changes associated withmoderate necrotic changes and focal
leukocytic infltration associated with moderate pro-
liferation of Kupfer cell activation (Figure 1(c)). Second,
pathologic changes in the paclitaxel/hesperidin-treated
group were relatively similar to those in the paclitaxel/
rutin-treated group (Figure 1(d)). Finally, the treatment of
paclitaxel/rutin/hesperidin produced a good improvement
in liver histological changes compared with other treated
rats. Moderate degenerative changes and mild necrotic
changes accompanied by the mild Kupfer cell proliferation
were noted (Figure 1(e)). Te signifcantly elevated histo-
logical lesion scores of degenerative changes, fatty changes,
necrosis, infammatory cells, congestion, and activated
Kupfer cell proliferation in the paclitaxel-injected group
were signifcantly decreased by treatments with rutin, hes-
peridin, and their combination. Te combinatory treatment
was the most efective in improving the degenerative and
fatty changes (Table 3).

3.4. Efects on Liver Caspase-3 and TNF-α. As demonstrated
in Figures 2 and 3, immunohistochemical detection of
expressed caspase-3 and TNF-α in the liver was performed.
Caspases-3 and TNF-α immunohistochemistry reactivity
was very feeble in the liver sections of normal control rats,
indicating that their expression levels are very low. Caspase-
3 and TNF-α staining in the livers of paclitaxel-administered
rats was highly positive, as shown by a dense cytoplasmic
brownish-yellow color that suggested their high expression,
with percentage changes of +549.29% and +309.55%, re-
spectively, in comparison to the control group. Rutin,
hesperidin, and their combination signifcantly reduced the

enhanced caspase-3 activity and TNF-α concentration in
paclitaxel-administered rats. Te treatment of paclitaxel-
administered rats with rutin and hesperidin combination
was the most successful in lowering caspase-3 and TNF-α
expressions.

4. Discussion

Paclitaxel is a drug that is commonly used to treat a variety of
cancers. Its use may have a variety of adverse efects on
several organs, including the liver, kidneys, and heart
[67–70]. Despite remarkable progress in cancer research,
compounds derived from natural resources are powerful
candidates for cancer treatment [71]. Flavonoids and other
reported phenolic components were discovered to have
impressive antioxidative, cardioprotective, anticancer, an-
tibacterial, antidiabetic, hypertensive, anti-infammatory,
and immune response enhancing efects as well as to protect
skin from harmful ultraviolet radiation, making them out-
standing drugs for pharmaceutical and medical use [72–74].

Tis study showed that the intraperitoneal injection of
paclitaxel in the form of Taxol at a dose of 2mg/Kg b. wt
twice a week for 6weeks caused hepatotoxicity, which was
manifested biochemically by a signifcant increase in serum
activities of cytosolic enzymes (ALT, AST, and LDH) due to
their leakage into the bloodstream from injured hepatocytes
[75]. Elevated serum ALT and AST levels in hepatocellular
damage have been previously reported in paclitaxel-induced
hepatotoxicity models [76–81]. Furthermore, the activity of
LDH increased in paclitaxel-administered rats [82]. Te
LDH activity is elevated in patients with cancer and as
a result of tissue damage; it is a common marker of toxicity.
Additionally, we found a signifcant elevation in serum
activities of membrane-bound enzymes (ALP and GGT) as
a result of the increased rate of bile duct production and/or
regurgitation in the blood after bile duct blockage [83].Tese
fndings are similar to those reported by Ortega-Alonso et al.
[84] who stated that the alteration of membrane perme-
ability of liver cells and bile ducts triggers the release of their
specifc enzymes, notably GGT and ALP. Moreover, pacli-
taxel administration led to a signifcant increase in the total
bilirubin content [85, 86], and this increase may be in-
dicative of a specifc liver injury and loss of function [87].
Te serum albumin level was signifcantly reduced in
paclitaxel-administered rats, which agrees with Wang et al.
[88], who found that serum albumin concentration de-
creased signifcantly following chemotherapy. A decrease in
albumin concentration, as observed in paclitaxel-
administered rats, indicated insufciency of albumin syn-
thesis by the liver due to hepatopathy [89]. Tese bio-
chemical parameter alterations strongly correlate with
hepatic histopathological changes in the form of central vein
and portal area blood vessel congestion, marked de-
generative changes, including fatty changes and moderate
necrotic changes with focal nuclear pyknosis in certain areas,
focal leucocytic infltration, and Kupfer cell proliferation.
Te current fndings are congruent with those of Salahshoor
et al. [80] who showed obvious changes and damage in the
liver following paclitaxel treatment. Additionally,
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hepatotoxic efects following paclitaxel therapy were ob-
served [90, 91]. It has been also found a distinctive hepa-
tocellular carcinoma in hepatic histological sections in all
groups following paclitaxel treatment was observed [85].

Rutin and/or hesperidin treatment of paclitaxel-
administered rats successfully reduced increased blood
ALT, AST, LDH, ALP, and GGT activities, as well as serum
total bilirubin levels, by stopping further paclitaxel-induced

(a) (b)

(c) (d)

(e)

Figure 1: Photomicrographs of liver sections of the normal (a), paclitaxel-injected control group (b), and paclitaxel-injected groups treated
with rutin (c), hesperidin (d), and their combination (e). (H) hepatocytes; (T) trabeculae; (S) sinusoids; and KC: Kupfer cells; (N) necrosis;
IC: infammatory cells infltration; FC: fatty changes; (C) congestion; CV: central vein; DC: degenerative changes. (H&E; ×400).

Table 3: Pathological hepatic lesion scores in diferent groups.

Groups
Parameters

Degenerative change Fatty change Necrosis Infammatory cells Congestion Activated Kupfer
cell proliferation

Normal 0 0 0 0 0 0
Paclitaxel 3.83± 0.17a 3.83± 0.17a 2.17± 0.17a 3.33± 0.21a 3.17± 0.4a 3.67± 0.21a
Paclitaxel + rutin 2.50± 0.22abc 3.00± 0.26abc 1.00± 0.37ab 1.83± 0.31ab 1.50± 0.22ab 2.67± 0.33ab
Paclitaxel + hesperidin 3.00± 0.37abc 2.83± 0.31abc 1.67± 0.31ab 2.00± 0.36ab 1.67± 0.33ab 2.50± 0.22ab
Paclitaxel + rutin + hesperidin 1.67± 0.33ab 2.00± 0.26ab 1.33± 0.21ab 1.50± 0.43ab 1.00± 0.26ab 2.17± 0.31ab

Data are expressed as Mean± SEM (n� 6). ap< 0.05: signifcant compared with the normal group. bp< 0.05: signifcant compared with the paclitaxel-injected
group. cp< 0.05: signifcant compared with the paclitaxel-injected group treated with both rutin and hesperidin. Scoring of hepatic histological lesions was
calculated and graded as follows 0�none; 1≤ 25%; 2� 26–50%; 3� 51–75%; and 4� 76–100%.
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hepatocellular damage and stabilizing membrane activity,
thereby decreasing the leakage of these enzymes into the
general circulation. Te treatments potentially increased the
reduced serum albumin level. Moreover, most hepatic
histopathological changes were efectively improved by these
treatments. Similar observations have been reported by
Hozayen et al. [92] who stated that the pretreatment with
rutin, hesperidin, and their combination can protect the liver
against the hepatotoxic efect of doxorubicin by ameliorating
the elevated AST, ALT, ALP, and c-GT activities. Tis is
attributed to the hepatoprotective potential of rutin [33] and
hesperidin [34]. It was found that hesperidin reduces the
severity of sodium arsenate (SA)-induced liver damage [93].
Rutin administration restored the elevated ALT, LDH, AST,
and ALP levels in 5-fuorouracil (FU)-treated rats and im-
proved the hepatic structure to normal [24]. Furthermore,
rutin treatment improved carflzomib-induced elevated
levels of direct bilirubin in rats [94].

Enzymatic and nonenzymatic antioxidant substances are
components of antioxidant defense systems. GSH has
a tripeptide structure and is a potent nonenzymatic anti-
oxidant. SOD, catalase, and GPx are additional enzymatic
antioxidants for ROS defense [95, 96]. Paclitaxel adminis-
tration increases the formation of oxygen-free radicals,
decreases antioxidants (SOD and GPx) and GSH content,
and increases LPO, which results in liver damage. Tese
results are consistent with those of Harisa [97] who reported
that paclitaxel induces oxidative stress through decreased
GSH content and increased MDA levels. In addition, it was
reported that paclitaxel increases ROS and MDA concen-
trations and decreases SOD activity [82], indicating that
paclitaxel induces changes in protein expression associated
with apoptosis and ROS generation (Figure 4). ROS activates
several mechanisms by damaging cell membranes and
macromolecules in cells, resulting in infammation and cell
death [98]. Terefore, oxidative stress, which is caused by
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Figure 2: Photomicrographs of immunohistochemically stained liver sections for caspase-3 detection showing very weak expression in normal
(2a and 2A), very strong expression in the paclitaxel-administered group (2b and 2B), andmoderate expression in paclitaxel-administered groups
treated with rutin (2c and 2C), hesperidin (2d and 2D), and their combination (2e and 2E). Arrows indicate positive reactivity. 2f indicates the
image analysis result of caspase-3 of the tested groups. ap< 0.05: signifcant compared with the normal group. bp< 0.05: signifcant compared
with the paclitaxel-injected group. Photomicrographs 2A–2E are magnifed sectors of Photomicrographs 2a–2e respectively.
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paclitaxel administration, may cause the production of ac-
tive oxygen species, including pure oxygen, H2O2 and su-
peroxide radicals, which destroy cells, DNA, proteins, and
intracellular lipids, and fnally liver damage [99]. According
to the fndings, rutin and hesperidin treatment remarkably
reduced paclitaxel-induced oxidative stress by reducing LPO
and improving GSH content along with the activities of
antioxidant enzymes due to the ability of rutin to recover-
free radicals by chelating metallic iron ions [100, 101] as well
as the antioxidant activity and radical recovery properties of
hesperidin [102, 103]. Tese fndings are consistent with
those of Hozayen et al. [92], who found that rutin and
hesperidin signifcantly increased GSH and GPx levels in the
liver and decreased the LPO level in doxorubicin-treated
rats. Rutin treatment alleviated liver and kidney damage by
reducing oxidative stress, endoplasmic reticulum stress,

infammation, apoptosis, and autophagy caused by valproic
acid [104]. Additionally, rutin has a hepatoprotective role in
eliminating isoniazid-induced oxidative stress [33]. Hes-
peridin has been discovered to protect the brain, liver,
kidneys, and oxidative damage caused by numerous toxins
[105, 106]. In another way, thymoquinone and costunolide
are also natural products that have been shown to have an
apoptotic efect to rapidly eliminate the senescent cells in-
duced by doxorubicin and induce apoptosis of proliferative
cancer cell lines [107].

Immunohistochemical investigations showed a signif-
cant increase in the proapoptotic protein (caspase-3) activity
and pro infammatory cytokine (TNF-α) concentration in
the liver of paclitaxel-administered rats. Te fndings of our
investigation agree with those of Yardım et al. [108] who
revealed that the mRNA levels of TNF-α and caspase-3 were
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Figure 3: Photomicrographs of immunohistochemically stained liver sections for TNF-α detection showing very weak expression in normal
(3a and 3A), strong expression in the paclitaxel-administered group (3b and 3B), andmoderate expression in paclitaxel-administered groups
treated with rutin (3c and 3C) and hesperidin (3d and 3D) andmild expression in the paclitaxel-administered group treated the combination
of rutin and hesperidin (3e and 3E). Arrows indicate positive reactivity. 3f indicates the image analysis result of TNF-α of the tested groups.
ap< 0.05: signifcant compared with the normal group. bp< 0.05: signifcant compared with the paclitaxel-injected group. cp< 0.05:
signifcant compared with the paclitaxel-injected group treated with both rutin and hesperidin. Photomicrographs 3A–3E are magnifed
sectors of Photomicrographs 3a–3e respectively.
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higher in the paclitaxel group for the sciatic nerve and spinal
cord, and the immunohistochemical expression of caspase-3
in the paclitaxel-induced bone marrow tissue was increased.
Furthermore, taxanes, including paclitaxel, induced an in-
crease in IL-1β, IL-6, and TNF-α levels in patients with
cancer [109–111]. It was also found that circulating IL-6 and
TNF-α levels were increased 3 days after a 6-dose paclitaxel
regimen [112]. TNF-α is a critical mediator of infammation
[113] that has been demonstrated to recruit and trigger more
infammatory cells in response to increased oxidative stress
[114]. TNF-α can promote hepatocyte apoptosis via binding
to TNF receptors (TNFR) and death receptors, triggering the
extrinsic apoptosis pathway [115–117] (Figure 4). Trough
the permeability of the mitochondrial membrane or its
transition pore apertures, paclitaxel releases apoptogenic
components, including cytochrome C, into the cytosol, ei-
ther directly or indirectly [118, 119]. Apoptosis is facilitated
by cytochrome C active caspase-9, which stimulates various
caspase enzymes, including caspase-3 and caspase-7, in the
presence of apoptotic protease activating factor-1 [120, 121].

Te treatment of paclitaxel-administered rats with rutin
and/or hesperidin suppressed the activity of caspase-3,
which is a common mediator of extrinsic and intrinsic
apoptotic pathways and the level of TNF-α, which is a key
regulator of infammation (Figure 4). Tese results are
consistent with those of Li and Schluesener [122] who re-
ported that hesperidin suppressed oxidative/nitrative stress,
infammation, and apoptosis. Hesperidin reduced the
caspase-3 activity and showed an anti-infammatory efect
by decreasing the levels of TNF-α, nuclear factor kappa B
(NF-κB), and IL1β in the kidney and liver tissues of rats with
SA-induced toxicity [93]. It also reduced the serum level of
TNF-α in arthritic rats [123]. Hesperidin decreased the

elevated liver caspase-3 expression and altered serum TNF-
α, IL-17, and IL-4 levels in diclofenac-administered rats
[124]. Additionally, rutin may have potential protective
benefts against hepatotoxicity induced by doxorubicin
through reducing oxidative stress, infammation, and apo-
ptosis as well as altering the expression of the nuclear factor
erythroid 2–related factor 2 (Nrf2) gene [125]. Rutin de-
creased the hepatic TNF-α and IL-6 levels of carbon
tetrachloride-treated rats [126]. It was found that rutin sig-
nifcantly decreased caspase-3 immunopositivity in 5-FU-
treated rats [24]. Te therapeutic potential of rutin can be
owed to its antioxidant, anti-infammatory, antiallergic, and
antiangiogenic properties [127, 128]. Based on our fndings
and past research studies, the intrinsic pathway, which is
activated by high ROS levels, or extrinsic ligands of pathway
receptors, such as TNF-α, can cause caspase-3, the apoptosis
executor, to be activated in paclitaxel hepatotoxicity. Rutin
and hesperidin may have reduced apoptosis by modulating
both intrinsic and extrinsic apoptotic pathways by sup-
pressing oxidative stress and signifcantly lowering increased
TNF-α concentration (Figure 4). In addition, TNF-α (through
canonical pathway) can activate NF-κB, which promotes NF-
κB target genes involved in infammatory responses [129].
Both rutin and hesperidin may produce their anti-
infammatory efects by afecting the canonical pathway of
NF-κB through the suppression of TNF-α levels and in turn
inhibition of TNF-α receptors (TNFR) (Figure 4).

5. Conclusion

Oral administration of rutin, hesperidin, and their combi-
nation could counteract paclitaxel-induced liver damage and
toxicity by strengthening the antioxidant defense system and
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apoptosis are shown. Te fgure was designed by us using power point software.

Evidence-Based Complementary and Alternative Medicine 11



decreasing oxidative stress and apoptosis. Additionally, it
was discovered that rutin and hesperidin combined therapy
was the most efective at restoring liver function and his-
tological integrity in paclitaxel-administered rat models.
However, before rutin and hesperidin be used in humans,
more clinical trials are necessary to evaluate their efec-
tiveness and safety during paclitaxel administration. Te
Food and Drug Administration also needs to approve their
use in human beings these evaluations. Moreover, further
studies are required to scrutinize the efect on mediators of
apoptosis other than caspase-3 and mediators of in-
fammation other TNF-α to identify other targets of rutin
and hesperidin in paclitaxel-administered rats.
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