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Diabetic neuropathic pain (DNP) is a common complication of diabetes. Streptozotocin (STZ)-induced changes of protein in
dorsal root ganglion (DRG) and spinal cord dorsal horn (SCDH) are critical for DNP genesis. However, which proteins change
remains elusive. Here, the DNP model was established by a single intraperitoneal injection of STZ, accompanied by increased
fasting blood glucose (FBG), decreased body weight (BW), and decreased paw withdrawal latency (PWL). Proteins change in L4-
L6 DRGs and SCDH of rats were detected. Western blot and immunofuorescence results showed that expression levels of
phosphorylated protein kinase C (p-PKC), transient receptor potential vanilloid-1 (TRPV1), Substance P (SP) and calcitonin
gene-related peptide (CGRP) in the DRG and the SCDH of rats were increased after STZ injection. A preliminary study from our
previous study showed that 2Hz electroacupuncture (EA) efectively alleviates DNP. However, the analgesic mechanism of EA
needs further elucidation. Here, EA at the bilateral Zusanli (ST36) and KunLun (BL60) acupoints was applied for one week, and to
investigate the efect on DNP. EA reversed thermal hyperalgesia in DNP rats and downregulated the expression of p-PKC, TRPV1,
SP, and CGRP in DRG and SCDH.

1. Introduction

Diabetes is a common metabolic disease [1], and the inci-
dence of diabetes is on the rise [2]. Hyperglycemia can induce
metabolic, microvascular lesions, and cause various acute
and chronic neuropathy conditions [3]. Diabetic neuropathic
pain (DNP) is a major complication of diabetes [4–6], which
is mainly characterized by spontaneous pain, paresthesia and
hyperalgesia, leading to a decrease in the quality of life of
patients [7–9]. Te mechanisms underlying DNP still remain
unclear, and need further elucidation to produce the efec-
tiveness of some conventional treatment options for DNP.

Dorsal root ganglion (DRG) neurons are the primary
aferent nerve cells for trunk and extremity nociception.

DRGs are implicated in transmitting and accommodating
sensations and receiving and communicating nociception,
and they play an important role in the mechanism of pain.
Pain signals are transmitted from DRGs to the spinal cord
dorsal horn (SCDH) [10, 11]. Neurons in the central pro-
cesses of the horn and neurons in the DRG form the primary
synapse, in which SCDH plays a role in relaying and pro-
cessing sensory information. Terefore, DRGs and SCDH
are key sites for studying neuropathic pain mechanisms.
Previous studies report that several DRG pain-related ion
channels, receptors and neuropeptides such as Ca2+ chan-
nels, Na+ channels, phosphorylated protein kinase C (p-
PKC), transient receptor potential vanilloid-1 (TRPV1) [12],
calcitonin gene-related peptide (CGRP), and substance P
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(SP) [13] are implicated in the transmission of pain. Pre-
liminary studies indicate that p-PKC, TRPV1, SP, and CGRP
in DRG play fundamental roles in acute neurogenic in-
fammation [12]. However, the changes in p-PKC, TRPV1,
SP, and CGRP expression in DRG and SCDH in DNPmodel
have not been systematically studied.

Although clinical drugs are used to alleviate DNP,
clinical studies have failed to prove the efectiveness of
treatment with less adverse efects [14, 15]. Electro-
acupuncture (EA) therapy is an efective option for chronic
pain, including DNP treatment [16], which combines
electrical stimulation with the use of acupuncture needles
[17–19]. Our previous study showed that 2Hz EA was more
efective than 100Hz EA in relieving DNP [20]. However,
the precise mechanism of 2Hz EA on DNP has not been
fully elucidated.

Te present study sought to explore the efect of STZ
administration on expressions of p-PKC, TRPV1, SP, and
CGRP in DRG and SCDH. Tese fndings will provide a
basis for understanding the mechanism of DNP. Moreover,
the efect of 2Hz EA treatment on the expression levels of
p-PKC, TRPV1, SP, and CGRP in DRGs and SCDH of DNP
rats was explored.

2. Materials and Methods

2.1. Animals. Male Sprague-Dawley rats (180± 20 g) were
used in the present study. Rats were assigned to fve groups
and lived in separate cages. Animals had free access to food
and water. Rats were maintained in a controlled environ-
ment (20–24°C and 40–60%) with 12-h light/dark cycles at
the Animal Laboratory Center of Zhejiang Chinese Medical
University (SYXK (zhe) 2018-0012). Experiments were
conducted after acclimatization of animals for a week. All
experimental procedures were conducted according to an-
imal management regulations. Te Animal Welfare Com-
mittee of Zhejiang Chinese Medical University approved all
protocols in the present study (IACUC-20190805-04).

2.2.Establishment of theDNPRatModel. Rats were fasted for
16 hours and STZ (65mg/kg, S0130, Sigma) dissolved in
sodium citrate bufer (0.1mol/L, pH 4.5) was administered
into rats intraperitoneally [21, 22]. Rats in the Control group
received the same volume of the vehicle. Fasting blood
glucose (FBG) was determined 3 days after STZ injection.
Rats with FBG >13.9mmol/L [23, 24] and thermal noci-
ceptive sensitivity were used as the criteria for a DNP rat
model. Animals that met these criteria were used in sub-
sequent experiments.

2.3. Experimental Procedures. Te experiment was split into
two phases. Te efect of STZ on inducing diabetic neuro-
pathic pain was evaluated in the frst phase. Rats were
randomly assigned to two groups: (1) Control group (n= 10,
all rats were sacrifced and tissues were harvested after
3 weeks of experiment); (2) STZ group (n= 30, 10 rats were
killed and tissues were harvested after 1 week, 2 weeks and
3 weeks of experiment). Expression levels of p-PKC, TRPV1,

SP, and CGRP in lumbar 4–6 SCDH and DRGs were de-
termined by western blot (WB) or immunofuorescence (IF)
analysis. In the second phase, the analgesic efect of EA on
DNP and whether p-PKC, TRPV1, SP, and CGRP are im-
plicated in this efect was explored. Rats were randomly
assigned to three groups (n= 8): (1) Control group; (2) STZ
group; and (3) STZ+EA group. Rats in the STZ+EA group
were administered with EA daily for a week from the
2 weeks. Tissues were harvested after treatment for western
blot and immunofuorescence analysis. Expression levels of
p-PKC, TRPV1, SP, and CGRP in lumbar 4–6 SCDH and
DRGs were determined by WB or IF.

2.4. Determination of Fasting BloodGlucose andBodyWeight.
Rats were fasted for 8 h and weighed. Blood was obtained
from the tail and analysis of FBG was performed using
ACCU-CHEK Performa blood glucose meter (Roche Di-
agnostics GmbH, Germany) a day before administration of
STZ and 1 week, 2 weeks, and 3 weeks after STZ injection.

2.5. Assessment ofTermalHypersensitivity. Paw withdrawal
latency (PWL) analysis was conducted using the plantar test
(37370, Ugo Basile, Italy). Rats were acclimatized in the
Plexiglas cubicles (11.5 cm× 17 cm× 14 cm) on the glass
plate for at least 30min, before evaluation. Te cut-of time
was set at 30 s, and the radiant heat was set to 40, to avoid
damage of rat tissue. Te light beam was turned of and the
timing stopped when the rat raised its paw. Te experiment
was conducted 3 times per rat with an interval of 5min
between replicates. PWL was calculated as the average of the
latencies in seconds.

2.6. EA Treatment. Rats in STZ+EA group received EA
treatment once a day for one week. Rats that received EA
were not anesthetized, but immobilized gently with a self-
made retainer. Te selected acupoints were bilateral Zusanli
(ST36, 5mm below the fbular head and 1mm outside the
anterior tibial edge) and Kunlun (BL60, depression between
the lateral ankle joint and achilles tendon of the hind limb)
points. Te acupuncture needles (0.25mm× 13mm, Hua
Tuo, Suzhou Medical Appliance Factory, Jiangsu Province)
were carefully inserted into the acupuncture points, and then
the acupuncture needles were inserted at a depth of 3mm for
the Kunlun point and 7mm for the Zusanli point, and then
connected to the HANS acupoint electrical stimulation
device (Hans-200A, Jisheng Medical Technology, Beijing,
China) for 30 minutes. Te HANS acupoint electrical
stimulation device was set at 1mA and 2Hz. Rats in the
other groups underwent the same sedation process without
EA stimulation.

2.7. Western Blot. Experimental rats were anesthetized with
sodium pentobarbital (80mg/kg, i.p), then SCDH and L4-L6
DRGs were harvested.Te tissues were homogenized in RIPA
Lysis Bufer (P0013B, Beyotime, China) containing a mixture
of protease inhibitors (P1050, Beyotime, China) and phos-
phatase inhibitors (P1050, Beyotime, China) and then
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centrifuged at 12000 × rpm at 4°C for 20min. Te superna-
tant was used to identify protein concentration using BCA
Protein Assay Kits (23225, Termo Fisher, USA). Te su-
pernatant was diluted with 2× loading bufer solution and
boiled at 100°C for 3min. Equal amounts of proteins (20 μg)
were separated using SDS-PAGE gels electrophoresis and
transferred to polyvinylidene difuoride membranes. Sub-
sequently, the membranes were incubated in 5% nonfat milk
diluted with 1×TBST (pH 7.5) for 1 h. Further, the mem-
branes were incubated with rabbit anti-phospho-PKC (1 :
1000; AF3197, Afnity, USA), rabbit anti-TRPV1 (1 :1000;
ACC030, Alomone, USA), and β-actin (1 : 5000; #12262, Cell
Signaling Technology, USA) overnight at 4°C. Membranes
were washed three times with 1×TBST, 10min and incu-
bated with HRP-linked antibody (1 : 5000; #7074, Cell Sig-
naling Technology, USA) for 2 h at room temperature. Te
membranes were then visualized by chemiluminescence
(ECL Plus; Beyotime, China), and proteins bands were
quantifed using the Image Quant LAS 4000 system. Target
protein levels were normalized against β-actin expression
levels.

2.8. Immunofuorescence Analysis. Rats were anesthetized
with sodium pentobarbital (80mg/kg, i.p) and transcardially
perfused with 4°C saline followed by 4% paraformaldehyde.
Te spinal cord and DRGs from L4 to L6 were harvested,
postfxed in 4% paraformaldehyde for 4 h, and then dehy-
drated in 15% sucrose solution for 24 h and 30% for 48 h.
Tissue sections were prepared using a frozen microtome
(30 μm thickness for the spinal cord and 10 μm thickness for
DRGs) and subsequently fxed onto glass slides. Sectionswere
rinsed thrice with 1×TBST for 10min for each rinse, then
blockedwith 10%donkey serum for 1 h at 37°C. Sectionswere
incubated with diluted guinea pig anti-TRPV1 (1 : 200; ACC-
030-GP, Alomone, Israel) antibodies mixed with rabbit anti-
SP (1 :1500; ab67006, Abcam, UK) or rabbit anti-CGRP (1 :
800; #14959, Cell Signaling Technology) antibodies over-
night at 4°C. Tissues slices were washed 6 times in 1×TBST,
for 10min per wash, then incubated with Goat Anti-Guinea
pig IgG H&L (ALexa Fluor® 488) (1 : 600; ab150185, Abcam,
UK) and Goat Anti-Rabbit IgG H&L (Alexa Fluor® 594) (1 :800; ab150084, Abcam, UK) for 1 h at 37°C. Tissue sections
were sealed with antifade solution. Te sections were then
imaged under an Imager M2 microscope (ZEISS, Germany).
Te scale bar for SCDH slices was 100 μm and the objective
magnifcation was 10×. Te scale bar for DRG slices was
50 μm and the objective magnifcation was 20×. Te mean
fuorescence intensity of SP and CGRP in SCDH was de-
termined by Image J and the number of SP, CGRP, and
TRPV1 positive cells in DRGs was evaluated. Tree sections
were selected for each rat and three ratswere analyzed for each
group.

2.9. Statistical Analysis. Statistical analysis was conducted
using SPSS 22.0 software. Data were presented as mean-
± standard error of the mean (SEM). Independent t-test was
carried out to compare two groups and one-way ANOVA
followed by LSD or Dunnett’s post hoc tests were used for

the comparison of three or more groups. P< 0.05 was
considered statistically signifcant.

3. Results

3.1. Termal Hyperalgesia in a Rat Model of STZ-Induced
Diabetes. Te experimental design for the frst phase is given
in Figure 1(a). Te FBG in the STZ group was higher than
the Control group on 1, 2, and 3 weeks (Figure 1(b), P< 0.01,
respectively). Te BW in the STZ group was lower than the
Control group on 1, 2, and 3 weeks (Figure 1(c), P< 0.01,
respectively). Te PWL in the STZ group was lower than the
Control group on 2 and 3 weeks (Figure 1(d), P< 0.01,
respectively). Tese results revealed that the DNPmodel was
successfully established on day 14 after STZ injection.

3.2. p-PKC, TRPV1, SP, and CGRP are Increased in the DRG
after STZ Injection. To investigate the efect of STZ injec-
tion on the expression of p-PKC, TRPV1, SP, and CGRP in
the L4-L6 DRGs, we used WB and IF to measure those
protein levels. WB results showed that STZ injection sig-
nifcantly increased the expressions of p-PKC, TRPV1, SP,
and CGRP in the L4-L6 DRGs on 1W, 2W, and 3W
(Figure 2(c), P< 0.05, P< 0.05, P< 0.05; Figure 2(d),
P< 0.01, P< 0.01, P< 0.05). Double immunofuorescence
assays were performed to explore whether SP/TRPV1 and
CGRP/TRPV1 were coexpressed in DRG cells (Figure 3).
SP is a peptide mainly secreted by neurons and is involved in
neurotransmission during injuries [25]. Moreover, CGRP is
implicated in the transmission of pain signals [26]. Te
fndings showed that CGRP was coexpressed with TRPV1 in
DRG cells (Figure 3(a)), and SP was coexpressed with TRPV1
in DRG cells (Figure 3(b)). In addition, positive cell counts
showed that the number of TRPV1-positive, CGRP-positive
in DRG was increased signifcantly starting 1 week after STZ
injection (Figure 3(c),P< 0.01,P< 0.01,P< 0.01; Figure 3(d),
P< 0.05, P< 0.01, P< 0.01). SP-positive, TRPV1/CGRP-
positive, and TRPV1/SP-positive cells in DRG were signif-
cantly increased starting 2 week after STZ injection (Figure
3(e), P< 0.01, P< 0.01, Figure 3(f), P< 0.01, P< 0.01 Figure
3(h), P< 0.01, P< 0.01). Venn diagram showed that the
number of coexpressing cells in theDRGof the 3Wgroupwas
signifcantly increased compared to Control group (Figures
3(g) and 3(i)).

3.3. p-PKC, TRPV1, SP, and CGRP are Increased in the SCDH
after STZ Injection. Te expression levels p-PKC, TRPV1,
SP, and CGRP in SCDH were determined to explore the
efect of STZ on SCDH (Figures 4 and 5). WB results in-
dicated that the p-PKC protein was increased from one to
three weeks (Figure 4(c), P< 0.01, P< 0.01, P< 0.01), and
TRPV1 protein was increased from two to three weeks
(Figure 4(d), P< 0.05, P< 0.01). IF results showed SP and
CGRP increased from one to three weeks (Figures 4(g) and
4(h), P< 0.01, respectively). Moreover, IF results demon-
strated the coexpression of SP/TRPV1 and CGRP/TRPV1 in
the SCDH (Figures 5(a) and 5(b)).
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3.4.EAAlleviatesTermalHyperalgesia inaRatModel of STZ-
Induced DNP. Te experimental design is given in Figure
6(a). Te FBG in the STZ group was increased, and the BW
in the STZ group was decreased at 1, 2, and 3 weeks (Figures
6(b) and 6(c), P< 0.01, respectively). Te PWL in the STZ
group decreased at 2 and 3weeks, indicating the successful
establishment of DNP in rats (Figure 6(d), P< 0.01, re-
spectively).Te rats in the STZ+EA group were treated with
EA from the 15th day to the 21st day. EA reduced STZ-
induced thermal hyperalgesia in DNP rat models in the third

week (Figure 6(d), P< 0.01). However, EA did not produce
an efect on FBG and BW in DNP rats in the third week
(Figures 6(b) and 6(c), P> 0.05, respectively).

3.5.EAReducesExpressionofp-PKC,TRPV1,SP,andCGRPin
the DRG of DNP Rats. Further WB and IF analyses were
conducted to explore the efect of EA treatment on p-PKC,
TRPV1, SP, and CGRP expression levels in L4-L6 DRGs of
DNP rats (Figure 7). WB analysis showed p-PKC and
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TRPV1 expression in L4-L6 DRGs increased remarkably,
compared to that of the Control rats (Figures 7(c) and 7(d),
P< 0.01). EA treatment downregulated p-PKC and TRPV1
expression (Figures 7(c) and 7(d), P< 0.01). IF analysis
showed that the numbers of TRPV1-positive, CGRP-posi-
tive, SP-positive, TRPV1/CGRP-positive, and TRPV1/SP-
positive cells in DRG were signifcantly upregulated
(Figures 8(c)–8(f) and 8(h), P< 0.01, P< 0.05, P< 0.01,
P< 0.01, P< 0.01). EA treatment remarkably attenuated
the upregulated number of those positively cells
(Figures 8(c)–8(f) and 8(h), P< 0.01, P< 0.05, P< 0.01,
P< 0.01, P< 0.01). Te Venn diagram showed that the
number of coexpressing cells in the DRG of the STZ+EA
group was signifcantly lower than that of the STZ group
(Figures 8(g) and 8(i)).

3.6.EAReducesExpressionofp-PKC,TRPV1,SP,andCGRPin
the SCDH of DNP Rats. Further WB and IF analyses were
conducted to explore expression levels of p-PKC, TRPV1,
SP, and CGRP in SCDH of DNP rats after EA treatment
(Figure 9). WB results indicated that p-PKC and TRPV1
expression increased remarkably. EA treatment decreased
the increased expressions of p-PKC and TRPV1 (Figure 9(c),
P< 0.01, P< 0.05; Figure 9(d), P< 0.01, P< 0.01). IF results
indicated that STZ injection signifcantly increased the mean
intensity of SP and CGRP in L4-6 SCDH (Figures 9(g) and
9(h), P< 0.01). Notably, EA stimulation remarkably reduced

the mean intensity of SP and CGRP in L4-6 SCDH
(Figure 9(g), P< 0.01; Figure 9(h), P< 0.05).

4. Discussion

In the current study, we investigated the changes of p-PKC,
TRPV1, SP, and CGRP protein in DRG and SCDH in STZ-
induced neuropathic pain. Te results showed that the ex-
pressions of p-PKC, TRPV1, SP, and CGRP were increased
in L4-6 DRG and SCDH, and TRPV1 was coexpressed with
SP, and TRPV1 was also coexpressed with CGRP. We then
examined the efect of 2Hz EA on the thermal hyperalgesia
of DNP model rats. In total, 2Hz frequency of EA was
applied for 30 minutes every day after DNP model estab-
lishment, from days 15 to 21. Results indicated that 2Hz EA
produced antiallodynic efect on DNP model rats, and EA
efectively reduced overexpression of the p-PKC, TRPV1,
SP, and CGRP marker proteins.

STZ is a glucosamine-nitrosourea that can selectively
destroy pancreatic islet β-cells in mammals [27] and is
commonly used in establishing diabetes models [28]. In this
study, FBG increased and BW decreased remarkably starting
at 1 week after STZ injection. PWL decreased remarkably
starting at 2 weeks after STZ injection, indicating the suc-
cessful establishment of the DNP model, which consisted
with our previous research [29].

DRGs and SCDH play vital roles in many neuropathic
pain [30–32]. DRG receives pain signals and transmits them
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Figure 3: IF results of TRPV1, SP, and CGRP in DRG of rats in STZ group. (a) Representative images of IF of CGRP (red) and TRPV1
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Representative images of SP staining in SCDH. (g) Mean intensity analysis of CGRP staining in SCDH. (h) Mean intensity analysis of SP
staining in SCDH. Scale bars=100 μm. Data are presented as mean ± SEM, n = 3 per group. ∗P < 0.05, ∗∗P < 0.01 vs. Control group.
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to the SCDH [33, 34]. Many changes of protein in DRG and
SCDH are involved in neuropathic pain [35–37].

Previous studies showed that PKC is involved in the
transmission of neuropathic pain including DNP
[14, 38, 39]. PKC is a phospholipid-dependent serine/

threonine kinase family. Tis family comprises 13 isoen-
zymes that can be activated by extracellular signals [40]. Te
active state of PKC is p-PKC, which is a phosphorylated state
[41, 42] and is implicated in various roles [43]. TRPV1 is a
nonselective ligand-gated cationic channel assembled as a
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Figure 5: (a) Representative images of IF of CGRP/TRPV1 coexpression in SCDH. (b) Representative images of IF of SP/TRPV1
coexpression in SCDH Scale bars=100 μm. Data are presented as mean ± SEM, n = 3 per group.
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homotetramer and widely distributed in SCDH and DRGs
[12, 44, 45]. TRPV1 receives various pain-causing stimuli
such as noxious heat and diverse chemical irritants or toxins
[46–48]. TRPV1 is an efective target for control of neu-
ropathic pain [49]. A previous study reported that the ex-
pression of p-PKC and TRPV1 in neurogenic infammation
was signifcantly upregulated in DRGs [12]. Tis is consis-
tent with the results of the present study. In the current
study, WB analysis showed an increase in p-PKC and
TRPV1 expression levels in DRGs and SCDH of DNP rats.
SP and CGRP are coexpressed in primary sensory nerves. IF
results showed that the number of TRPV1-positive and
CGRP-positive in DRG were increased signifcantly starting
1 week after STZ injection. SP-positive, TRPV1/CGRP-
positive, and TRPV1/SP-positive cells in DRG were sig-
nifcantly increased starting 2 weeks after STZ injection.
P-PKC, CGRP, and SP in SCDH are signifcantly elevated
starting from the frst week, while TRPV1 in SCDH was

signifcantly increased from the 2 weeks. Tis may be why
thermal hyperalgesia developed at 2 weeks rather than
1 week after STZ injection. Sensory nerves endings are
released to transmit pain signals when they are activated by
stimuli [50]. SP and CGRP are expressed after activation of
TRPV1 [51]. In the present study, immunofuorescence
double staining was performed to explore colocalization of
TRPV1 with SP and CGRP and to verify the upregulation of
SP and CGRP expression in DNP. Te fndings indicated
that STZ injection induces expression of p-PKC, TRPV1, SP,
and CGRP in DRGs and SCDH upregulated.

Currently, clinical studies have failed to prove the ef-
fectiveness of treatment with less adverse efects for patients
with neuropathic pain [52]. A previous study reported that
berberine blocks PKC channels to inhibit TRPV1 activation,
thus improving DNP [14]. EA is a combination of acu-
puncture and electric current and is an efective approach for
relieving neuropathic pain [53]. A previous study reported
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that 2Hz EA has better analgesic efects than 100Hz EA [20].
Te analgesic efect of 2Hz EA has also been demonstrated
in other pain models [54, 55]. Numerous studies have shown
that EA intervention on ST36 and BL60 in rats can alleviate
diferent types of neuropathic pain [56–58]. Te preliminary
study of our research group showed that the intervention of
EA of ST36 and BL60 can efectively alleviate diabetic
neuropathic pain [59, 60]. Tus, in the present study, the
acupoints of ST36 and BL60 were selected to study the
analgesic mechanism of EA. EA intervention in rats with
neck-incision pain upregulated thermal pain thresholds and
downregulated CGRP and SP expression in the dorsal aspect
of the cervical spinal cord [61]. In addition, EA ameliorated
nociceptive sensitization in rats with chronic pain and re-
duced TRPV1 expression on DRG [56]. EA treatment im-
proved thermal hyperalgesia. EA treatment signifcantly
reduced the overexpression of p-PKC, TRPV1, SP, and
CGRP in SCDH and DRGs of DNP rats. Tese fndings all
support that EA may be a promising therapeutic option for
DNP. However, further clinical studies are needed to
comprehensively evaluate the therapeutic potentials of EA
on DNP patients.

5. Conclusion

In conclusion, p-PKC, TRPV1, SP, and CGRP in DRGs and
SCDH were signifcantly elevated after STZ-induced neu-
ropathic pain. EA treatment alleviates STZ-induced DNP,
which may be associated with downregulation of p-PKC,
TRPV1, SP, and CGRP in DRGs and SCDH. However, the
specifc mechanism of action of EA was not explored in the
current study. Further studies should be conducted to de-
termine the role of p-PKC/TRPV1 in DNP.
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