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Te liver is a crucial organ that is involved in various kinds of metabolic activity and a very stable accessory gland for the digestive
system. Long-term or persistent infammation and oxidative stress due to any reasons have a substantial impact on the beginning
and continuation of chronic diseases such as hepatocellular carcinoma, liver cirrhosis, liver fbrosis, and other hepatic conditions.
Tere are many sources which can help the liver to be healthy and enhance its metabolic potential of the liver. Since the diet is rich
origin of bioactive along with antioxidant chemicals including favonoids and polyphenols, it can control diferent stages of
infammation and hepatic diseases. Numerous food sources, notably vegetables, nuts, fruits, cereals, beverages, and herbal
medicinal plants, are rich in bioactive chemicals called favonoids and their derivatives like Flavones, Anthocyanins, Iso-favonoid,
Flavanones, Flavanols, and Flavan-3-ols. Most recently occurred research on favonoids has demonstrated that they can regulate
hepatoprotective properties. Tis is because they are essential parts of pharmaceutical and nutraceutical products due to their
hepatoprotective, antioxidative, and immune-modulating characteristics. However, the characteristics of their hepatoprotective
impact remain unclear. Te purpose of this comprehensive review is to survey the favonoid structure and enriched sources for
their hepatoprotective and antioxidant efects concerning liver toxicity or injury.

1. Introduction

Te liver is a crucial organ that is involved in various kinds of
metabolic activity. Drug abuse, viral infection, excessive
intake of alcohol, and biological and chemical agents, as well
as correspondingly developed autoimmune assault of the
hepatocyte, are just a few of the many reasons that can easily
result in liver damage. Hepatic shape and function will be
shattered and hampered if the damage cannot be reversed.
Long-term hepatic damage could be a consequence of he-
patic cirrhosis, fbrosis, fatty liver, and even also liver car-
cinoma, creating an epidemiological issue [1]. Currently,
alternative treatment methods for several ailments are being
embraced that use phytochemicals derived from natural
resources. Te lack of suitable and efective hepatoprotective
drugs has remained a persistent worry despite signifcant

advances in modern medicine. Due to the reason of drug-
induced liver injury (DILI), many drugs have been taken of
the market. Severe cases of liver failure can necessitate
transplantation of the liver and result in organ death. He-
patic illnesses are primarily treated with plant-based med-
icines, and modern pharmaceuticals ofer little alleviation
for hepatic ailments. But there are not many medications on
the market right now to address liver diseases. Due to their
strength, purity, and afordability, herbal medications have
gained importance and acceptance in recent years [2]. Tere
are a huge number of bioactive substances, also known as
secondary metabolites, in diferent plants, including alka-
loids, polysaccharides, phenylpropanoids, Flavonoids,
resins, tannins, steroids, essential oils, organic acids, an-
thraquinones, polyphenols, and saponins. Tis is because
coevolution has produced so many of these substances [3].
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More than fve thousand polyphenolic chemicals with
a ffteen-carbon core make up the vast family of favonoids.
Except for chalcones, which have a cleaved C ring, they
frequently contain two phenyl rings A and B, and a het-
erocyclic C ring with attached oxygen [4]. Te name of
favonoids comes from the Latin word known as favus,
whose meaning is “yellow,” which protects plants against
oxidative damage in a defensive manner, male fertility, and
visual signals [5]. Flavonoids are additionally known for
their name as vitamin P for humans, it is a disputed name as
they do not match the characterization of vitamins, and their
infuence on a variety of infammatory diseases attracts
research interest [5, 6]. Since the beginning of civilization,
plants have been employed as traditional sources of thera-
peutic substances. Te phytoconstituents derived from
plants and their synthetic and semisynthetic analogues have
been a major pathway to new pharmaceutical products since
the advent of modern medicine and single pure medications
[7]. Terefore, to efectively combat this threat, safe and
afordable treatment alternatives must be developed. Natural
secondary metabolites have been already taken on purpose
for many centuries to treat various illnesses or diseases.
Between 1981 and 2010, the FDA authorized about 35% of
the medicines and their compounds that were obtained from
natural sources. Tese natural substances already possess
strong medicinal and anti-infammatory properties. Nu-
merous bioactive substances produced from plants, pri-
marily favonoids, can decrease infammation by lowering
the extent of potential mediators involving prostaglandin,
Reactive oxygen species, and cyclo-oxygenase-2 as well as
several cytokines like interleukin-6, interleukin-1, and TNF-
α. Flavonoids are favourable to utilize in many dietary
approaches due to the wide range of bioactivities they have
been linked to in the human body, including antimutagenic,
antioxidant, antiviral, and anti-infammatory efects [8].

2. Chemical Structure of Flavonoids and
Their Subclasses

Plants are a major origin of favonoids, which are phenolic
metabolites that exist naturally. An orange extract that was
assumed to be a novel class of vitamins during the 1930s was
eventually identifed as a favonoid. Over 8000 distinct
favonoids have been identifed so far and have been re-
ported in the literature. Diferent plant tissues contain fa-
vonoids either internally or externally [8]. Te
pharmaceutical and biological ascribe to favonoids such as
antimalarial, cytotoxic, anticancer, cardioprotective, hep-
atoprotective, antileishmanial, antitrypanosomal, anti-
infammatory, and neuroprotective antiamoebic and also
efective in the therapy of age-related factors, diabetes, and
Alzheimer’s disease [8, 9]. Tese qualities are typically at-
tributed to their capacity for metal chelation, activity in
scavenging free radicals, and degree of specifcity in protein
binding ability. Te basic ingredient of favonoids, which
come in a variety of shapes, is a ffteen-carbon skeleton
linked to two benzene rings A and B by a C (heterocyclic
pyrene) ring. Distinct types of favonoids vary according to
the degree of oxidation and arrangement of C-ring

substitution, although each compound within a class difers
in the sequence of A and B-ring substitution [8]. Flavonoids
can be subdivided into numerous subgroups based on the
carbon in the C ring that the B ring is attached to, as well as
the degree of oxidation and substitution of the ring
C. Flavonoids classifed as isofavones have a B ring joined to
the 3rd position of the ring C. Neo-favonoids include those
in which the B ring is attached in 4th position, subgroups can
be formed based on the structural characteristics of the ring
C for all those in which ring B is attached at position 2nd.
Flavonoids are subcategorized into diferent classes in-
cluding favanols or catechins, favanols, anthocyanins,
favonols, favones, favanones, and chalcones which are
given in Table 1 with their chemical structure [10]. Flavo-
noids naturally occur in plants in the form of glycosylated or
methylated compounds because these structures have higher
bioactivity, bioavailability, and stability. A biological tool
called glycosyltransferase has been used to glycolyze favo-
noids, catalyzing the conjoined of a sugar moiety to an
aglycone part to produce glycosides. Similar to how
methyltransferase attaches methyl moieties to aglycone to
create methoxides, the hydroxyl group in favonoids is
methylated in the existence of this enzyme. Methylation can
result in the formation of C-methylated or O-methylated
molecules via the carbon or oxygen atom, respectively. Te
pharmacological and biological characteristics of the
methylated product relative to its parent compound were
dramatically altered as a result of the methylation of fa-
vonoids, according to experimental data [11].

3. Flavonoids and Their Subclasses with Their
Dietary Sources

Flavonoids, also known as dietary favonoids, are a class of
organic compounds with a variety of phenolic metabolites
that are primarily present in beverages and plant-derived
food, such as fowers, bark, cereals, herbs, fruits, cocoa, tea,
and wine. Depending on their chemical structure, favonoids
are subcategorized into twelve distinct groups, and hardly six
of them are relevant to the diet which is given in Table 2 [10].

3.1. Flavonols. Te favonols are one of the subclasses of
favonoids and are distinguished from favones by having an
oxo group at the 4th position and a 2,3-double bond present
on ring C, which permits conjugation between rings (A and
B) and signifcantly changes redox characteristics of favo-
nols. Although, they are unlike favones in that they possess
a hydroxyl group at position three, the sole nonphenolic one.
Even though favonols and favones are highly alike, neither
reduction nor oxidation of the former into the former ap-
pears to happen in plants. Higher plants have a consistent
distribution of favonols that is widely dispersed in leaves,
stems, fruits, and fowers. Some of the most extensively
investigated aglycons comprise isorhamnetin, kaempferol,
galangin, isorhamnetin, rhamnetin, quercetin, fsetin, and
myricetin [12]. Onions, broccoli, tea, and fruit all contain
favonols, which are represented by the glycoside(s) quer-
cetin and kaempferol [13]. Flavonols such as isorhamnetin
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quercetin and rhamnocitrin have hepatoprotective activity.
Dietary favonols are bioavailable compounds with signif-
cant therapeutic benefts such as free radical scavenging
activity, hepatoprotective activity, cardioprotective, antivi-
ral, antibacterial, and antineoplastic activity, and the
metabolization operation also results in compounds with
astonishing bioactivities as well as the equivalent precursors.
Te incorporation of these compounds in the individual diet
is strongly advised because of their undeniable health-

promoting qualities since they make excellent nutraceut-
icals and functional food ingredients. According to studies
conducted in-vitro and in vivo, favonols alter the enzymatic
potency of several molecular targets, including kinases,
phospholipases, ATPases, lipoxygenases (LOX), cyclo-
oxygenases (COX), and phosphodiesterases, which can be
found in the three primary types of colon, breast, and liver
cancer. Tis has an impact on the corresponding bio-
chemical pathways. Tere is a wide spectrum of

Table 1: Chemical structures of favonoids and their major subclasses.
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antineoplastic properties in favonols: they control the cell
cycle and reactive oxygen species (ROS)-scavenging enzyme
activities, promote apoptosis, and autophagy and reduce the
multiplication and encroaching of cancer cells [12, 14].

3.2. Flavones. Flavones and favonols share a similar
structural makeup, although the OH (hydroxyl) group on
the pyran ring C3 of favones is less [15]. Diferent biological
actions, such as cardioprotective, anti-infammatory, anti-
tumour, antioxidant, antiallergic, and hepatoprotective ac-
tivity are demonstrated by favones and their synthetic
derivatives [16, 17]. Lutein and apigenin are the two favones
that are most prevalent in plant food. In addition, they are
abundant in celery, artichokes, parsley, grains, and celery.
Various mono- and di-glycosides of apigenin, as well as
orientin and iso-orientin, are also found in black and green
tea [18]. Te electronic and molecular structures of parent
favone and polymethoxylated favones were explored in the
theoretical investigation. A chosen class of favonoids
comprises substances found naturally in synthetic favone
derivatives and citrus trees. Tey have a diversity of bio-
activities both in vivo and in vitro, and they can also shield
plants from ultraviolet radiation [19].

3.3. Iso-Flavonoids. Tis class of favonoids is regarded as
a group possessing a ring B linked at position C3 rather than
C2 in the fundamental structure [20]. Although they only
have a modest range among plants, they are primarily found
in the leguminous family. Globally, the prime dietary origin
of isofavones is mung bean, common bean, and soybean
[21]. Black peas and green beans both contain certain iso-
favones, including daidzein, genistein, and glycitein, in very
small amounts. Tere have also been reports of several
isofavonoid subtypes in microorganisms [22]. In addition,
isofavonoids can be altered through polymerization, hy-
droxylation, or methylation to form diferent isofavonoids
such as isofavonols and isofavones [23]. Isofavonoids also
have great promise for treating many disorders. Daidzein
and genistein are commonly known as phytoestrogens be-
cause of their oestrogenic activity in various models of
animals. Tey have antidiabetic, antioxidant, and also ef-
fective against Leishmania infantum, cytotoxicity against
Hep G2 cell lines, and Leishmania amazonensis [24, 25].
Isofavonoids are essential for preventing cataract devel-
opment in diabetic and hypertensive animal models [26].

3.4. Flavanones and Chalcones. All citrus fruits, including
lemons, oranges, and grapefruit, often include favanones,
another signifcant class of compounds, and examples of this
group of favonoids include naringenin, eriodictyol, and
hesperetin. Tey are also termed dihydro favones, having
a saturated C ring; the double bond between positions 2nd
and 3rd is saturated in the two subgroups of favonoids,
unlike favones, which is the primary structural diference
between them. Te quantity of favanones has dramatically
increased over the previous 15 years. While the biosynthesis
process for favonoids synthesized the secondary metabolite

chalcones and its derivatives. Its chemical name is 1,3-diaryl-
2-propen-1-one and consists of 2 aromatic rings linked by
3C atoms. Majorly chalcones found in nature are poly-
hydroxylated aromatic by nature [27]. Te potential of
favanones to neutralize free radicals has been related to
numerous health advantages. Citrus fruits have a bitter
favour in both their juice and peel because of these sub-
stances. As a hypo-lipidemic, antioxidant, cholesterol-
lowering, and anti-infammatory agent, citrus favonoids
have noteworthy pharmacological efects [10]. Psoriasis can
be treated with favanones, and favonoids reduce skin in-
fammation. According to the previous study, favonoids
having a favanone backbone were helpful for skin
penetration [28].

3.5. Flavan-3-Ols, Flavanols, or Catechins. Te supreme
intricate group of favonoids is known as favan-3-ols or
favanols. Tey do not possess a double bond on the 2nd and
3rd carbon, unlike other favonoids. Tey consist of simple
monomers, including catechin and also its isomer epi-
catechin, as well as oligomers (which range from dimers to
decamers), polymers (more than 10 parts), and other derived
compounds including thearubigins and theafavins).
Proanthocyanidins or condensed tannins are other names
for the polymers and oligomers of favan-3-ols. Te mo-
nomeric favan-3-ols’ two chiral centres at 2nd and 3rd
Carbon form 4 isomers for one and all degrees of B-ring
hydroxylation, two of which, (1)-epicatechin and (2)-cate-
chin, are widely distributed in the environment. Another
isomer, including (2)-epiafzelechin, has a more restricted
distribution. By altering the cell’s redox homeostasis and
preventing NF-κB activation, favan-3-ols are efective
against infammatory disorders. Typically, they are believed
to be benefcial ingredients in a range of drinks, supple-
mental, herbal medicines, and whole or processed foods. In
addition, they have an impact on the food’s astringency,
bitterness, sourness, sweetness, colour formation, and
sweetness [8, 29]. Proanthocyanidin, which are oligomers of
favan-3-ols, are thought to be good sources in malt and
barley and are the predominant source of free radical
scavenging potential [30].When it refers to nuts, pecans, and
hazelnuts are excellent sources of proanthocyanidins,
whereas almonds, cashews, roasted peanuts, and pistachios
are only modestly rich in the compound. Flavan-3-ols are
also present in sufcient amounts in rosemary, mint, sage,
dark chocolate, and dill [31].

3.6. Anthocyanins. Anthocyanins are phenolic group-
related coloured, water-soluble pigments. Even though the
O atom in ring C of the fundamental favonoid structure of
anthocyanin has a positive charge, it is still regarded as one
of the favonoids. It is sometimes referred to as the favylium
ion (2-phenylchromenylium). Anthocyanin exists as a gly-
coside, whereas anthocyanidin is an aglycone. Delphinidin,
peonidin, malvidin, petunidin, pelargonidin, and cyanidin
are the anthocyanidins that are most frequently found in
herbs. Te anthocyanins that give fruits and vegetables their
blue, purple, and red hues are abundant in them. Currants,

Evidence-Based Complementary and Alternative Medicine 5



grapes, berries, and several tropical fruits have signifcant
anthocyanin content. Edible vegetables with high antho-
cyanin concentrations include leafy vegetables with hues
ranging from red to purple blue, roots, grains, and tubers.
Cyanidin-3-glucoside, one of the anthocyanin pigments, is
the main anthocyanin present in the majority of plants. Te
colourful anthocyanin pigments have historically been used
as a natural food colouring. Temperature, pH, structure, and
light all have an impact on the colour and stability of these
pigments. When the pH is raised, anthocyanins turn blue
instead of red. While possessing a positive charge on the O
atom of the ring C of the fundamental structure of favonoid,
anthocyanin is still characterized as one of the favonoids. It
is also known as 2-phenylchromenylium ion. As a phyto-
pharmaceutical, choleretic agent, appetite stimulant, and for
the treatment of numerous other disorders, it has tradi-
tionally been used in numerous ways. Substantial phar-
maceutical or nutraceutical compounds are these colourful
pigments. Te bioavailability of anthocyanin as a nutra-
ceutical is essential for preserving health and preventing
disease [32].Te scientifc community has been interested in
anthocyanins because of their anticancer, antimetastatic,
and antioxidant potential [33]. According to twelve scientifc
studies, anthocyanin is capable of reducing apoptosis,
cholinergic dysfunction, synaptotoxicity, cognitive defcits,
tau hyperphosphorylation, neuronal extracellular calcium,
oxidative stress, and dysfunction amyloidogenic pathway in
various models of Alzheimer’s [34].

4. Flavonoid as a Hepatoprotective Agent

Flavonoids act as hepatoprotective agents by targeting dif-
ferent mechanisms. Te liver is particularly susceptible to
attacks from reactive oxygen species, and it is also recog-
nized as a vital regulator that contributes signifcantly to the
development of liver illnesses with a high prevalence. Mostly
liver diseases are caused by hazardous chemical exposure
such as carbon tetrachloride, D-galactosamine, peroxidized
oil, chlorinated hydrocarbon, afatoxin, di-
methylnitrosamine, thioacetamide, viral infections like
Hepatitis AeE, autoimmune diseases, high doses of drug use
(such as acetaminophen, and antibiotics), and excessive
alcohol consumption are the main causes of hepatic diseases
[14, 36]. Te most prevalent chronic liver disease, known as
nonalcoholic fatty liver disease (NAFLD), afects a signif-
cant section of the global population. NAFLD is charac-
terized by the deposition of fat (more than 5%) in the
hepatocytes in the absence of moderate alcohol consump-
tion or additional factors of liver disease, such as autoim-
mune diseases, viral hepatitis, and drug-induced disorders.
Te most frequent causes of chronic hepatic disease are
alcohol-associated liver disease and nonalcoholic fatty liver
diseases. Tey both seem to have steatohepatitis, cirrhosis,
fatty liver/steatosis, hepatocellular carcinoma, and fbrosis,
but there are some variances as well. In contrast, ALD is
more likely than NAFLD to have infammatory cell in-
fltration, venous sclerosis, and venous or intravenous f-
brosis. Nonalcoholic fatty liver or NAFL (simple steatosis)
and nonalcoholic steatohepatitis (NASH) are on the NAFLD

spectrum. NASH can proceed to hepatocellular cancer and
cirrhosis, both of which are diseases of the liver and are
marked by hepatocyte enlargement, infammation, and
diferent rate of fbrosis. Although the exact aetiology of
NAFLD is unknown, new research has indicated that oxi-
dative damage brought on by hepatic steatosis and insulin
resistance could be substantial contributors to the condition
and may be crucial in the development of NASH. A dis-
crepancy between the frequency of triglyceride infow and
the degree of clearance leads to fat build-up in the liver.
Enhanced lipolysis in peripheral tissues is the primary cause
of the majority of free fatty acids (FFAs) accumulated as
triglycerides. Hyperinsulinemia, dietary fat, and enhanced
lipogenesis all contribute to increased lipolysis as a result of
these factors. Lipid peroxidation, oxidative stress, mito-
chondrial dysfunction, and infammation in hepatic tissues
can arise from all of this. Due to metabolic abnormalities
caused by fat deposition in the hepatic tissues, which also
leads to increased mitochondrial reactive oxygen species
generation and endoplasmic reticulum stress which cause
the onset of infammatory steatohepatitis. NASH is an in-
fammatory condition that primarily activates Kufer cells
(KCs) and astrocytes, which promotes the build-up of
collagen and causes liver fbrosis [36]. Te primary regulator
in numerous experimental hepatic injury models, particu-
larly CCl4-induced hepatitis, is iNOS, COX- 2, and TNF-α
are the proinfammatory genes that are induced by an early
increase in TNF-α levels [37]. Te fve favonoids such as
luteolin, Hesperetin, 3′,4′-dimethoxy hesperetin, chrysin,
and apigenin help in improved superoxide dismutase, cat-
alase, total antioxidant capacity, decreased nitric oxide
synthase, nuclear factor erythroid-derived 2-related factor,
and heme-oxygenase-1. Tey hindered the NF-κB signalling
pathway’s phosphorylation of IκBα, NF-κB, and IKK, along
with the blood serum elevation of proinfammatory cyto-
kines and alanine and aspartate aminotransferase (ALT and
AST). In addition, fve favonoids reduced caspase family
protein expression and raised the Bcl-2/Bax ratio to prevent
hepatocyte apoptosis. Tese favonoids appear to protect the
liver from acute hepatic injury brought on by D-GalN/
LPS [38].

4.1. In Vivo and In Vitro Studies. Numerous studies have
shown that some favonoids are having anti-infammatory,
antihistamines, hepatoprotective, and antioxidant activity.
Kaemferol, quercetin, myricitrin, malvidin, luteolin, apige-
nin, epicatechin, and hesperetin were discovered to be ef-
fcient against liver damage. In addition, all have been shown
to control the Nrf2 signalling pathway, suppress NLRP3
infammasome, and inhibit autophagy, oxidative efects, and
apoptosis, by decreasing malondialdehyde and nitric oxide.
Tey also improve catalase, total antioxidant capacity, heme-
oxygenase-1, superoxide dismutase, and nuclear factor
erythroid-derived 2-related factor [38–41].

4.1.1. Quercetin. Tere are many red, green, and purple-
hued fruits and vegetables that contain quercetin, including
red onion, green leafy vegetables, kidney beans, apples, red
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grapes, evergreen tea, and apple cider vinegar. However,
quercetin is the compound that is most frequently studied
[42, 43]. Te biological activity of quercetin, which includes,
antioxidant, antiviral, and anti-infammatory properties, has
been demonstrated to have a wide range of biological ap-
plications, involving liver protection. It can link with
transition metal ions and neutralize free radicals. Gluta-
thione production within the body may be infuenced by
quercetin, which is involved in the process by which SOD
converts oxygen into H2O2 and subsequently catalysis the
breakdown of H2O2 into H2O. GSH-Px (glutathione per-
oxidase) can precisely catalyze the reaction between GSH
and H2O2, minimizing the production of peroxides and
preserving regular physiological processes [44, 45]. Quer-
cetin can be efective in cholestatic liver injury. Platelets in
cholestatic hepatic diseases are depleted, lose platelet
granules and are unable to perform their function. Te
pathophysiology of platelets hypofunction in the bile duct
ligation model is infuenced by the expression of the ORAI-1
gene. Quercetin enhances store-operated calcium entry
mediated by ORAI-1 and may be a promising therapeutic
target in hemostatic diseases [46]. Quercetin can be
employed as a hepatoprotective drug since it can efectively
prevent t-BHP-induced hepatic injury in mice. Te pre-
ventive advantages towards acute hepatic injury could be
attributed to the improved free radical neutralizing action,
reduction in peroxidation of lipids, and enhanced antioxi-
dant capacity [47]. Numerous advantages and therapeutic
qualities of quercetin have been noted, including hep-
atoprotective efcacy against triptolide-induced hepatic
injury. Before the administration of TP (Triptolide), treat-
ment with Quercetin (20000, 50000, and 80000 μg/kg) re-
versed the changes caused by TP in a dosage range,
demonstrating the ability of quercetin to prevent Triptolide-
induced liver damage. One pathway driving this response
was the balance between T17 and Treg cells shifting from
T17 dominance to Treg dominance. Te retinoid-related
orphan receptor-t, proinfammatory cytokines interleukin-6
and interleukin-17 as well as the T17 transcription factor,
which was controlled by the Tim-3, and TLR4-MyD88-NF-
κB signalling pathway, have also been substantially down-
regulated by quercetin [48]. Tere are various quercetin
derivatives with hepatoprotective efects, for example,
hyperoside. Hyperoside is a favonol glycoside with yellow
solids and quercetin as its aglycon is called hyperoside and
also referred to as quercetin 3-O-β-D-galactopyranoside. It
has the potential to operate antioxidant activity to prevent
hepatic oxidative stress in liver diseases. Te hydrogen
peroxide-induced intracellular oxidative damage in HepG2
cell lines demonstrated the antioxidative efects of
hyperoside [49]. Notably, in the presence of hyperoside, the
modulation of hepatic mitogen-activated protein kinase,
heme-oxygenase-1, nuclear factor erythroid 2-related factor
2, and may augment antiapoptosis and ultimately prevent
chemically-driven hepatotoxicity in mice [50]. It was dis-
covered that hyperoside, at a dose of 60000 μg/kg, can
ameliorate the liver from oxidative damage and control
metabolites and enzymes related to glutathione by blocking
CYP4502E1. In overview, hyperoside inhibits the growth of

hepatic tumour cells, arrests the cell cycle, and signifcantly
reduces the expression of QKI (quaking), the activity of the
Yin Yang 1(YY1) complex, and the proliferation and me-
tastasis of hepatic tumour cells [51].

4.1.2. Hesperetin. Te hesperidin metabolite hesperetin-7-
glucoside is more bioavailable than hesperidin itself. Hes-
peretin (HSP) is a favonoid that occurs naturally and has
a variety of pharmacological properties. It is most frequently
found in citrus fruits like grapefruit, lemons, tangerines, and
sweet oranges. Hesperidin can be found in numerous fruits
and vegetables, as well as other herbal preparations, besides
lemons and sweet oranges. Citrus aurantium, Citrus sinensis,
and Citrus limon are where it is most frequently found. On
a wide scale, HSP has also been taken out of Citrus aur-
antifolia callus cultures. Mandarin and citrus fruit peels have
high HSP concentrations [52–54]. 7-O-(2-(propylamino)-2-
oxoethyl)-hesperetin, a hesperetin derivative (HD-4d)
demonstrated anti-infammatory and hepatoprotective ef-
fects on alcohol-induced hepatic injury in C57BL/6J mice, as
well as observable anti-infammatory efects in ethanol and
lipopolysaccharide-induced RAW264.7 cells. In addition, we
found that HD-4d downregulates the expression of in-
fammatory factors via increasing NLRP12 both in vivo and
in vitro. Additional research revealed that HD-4d increased
NLRP12, which in turn prevented the phosphorylation and
activation of the p65 proteins. In conclusion, HD-4d
stimulated NLRP12 through the NF-κB pathway to lessen
liver damage and infammatory response [55]. In mice,
acetaminophen (APAP)-induced acute liver damage was
lessened by hesperetin. Hesperetin dramatically reduced the
liver hepatocytes apoptosis caused by APAP, according to
apoptosis analysis using terminal deoxynucleotidyl trans-
ferase dUTP Nick end labelling (TUNEL). Similarly, the
activity of caspase 3 revealed that acetaminophen overdose
considerably raised liver caspase 3 activity; however, dose-
dependent hesperetin suppressed the raised in caspase 3 in
the liver of mice subjected to a toxic dose of acetaminophen
[56]. A monomer molecule produced from hesperetin called
hesperetin derivative (HD-16) with a dose of (25000, 50000,
and 100000 μg/kg) showed hepatoprotective and anti-
infammatory efects on a variety of hepatic disorders. On
mouse hepatic fbrosis brought on by carbon tetrachloride as
well as on LX-2 cells (human immortalized HSCs) triggered
by transforming growth factor beta 1 (TGF-β1), HD-16
demonstrated an antifbrotic efect both in-vivo and in-vitro.
Te AMPK/SIRT3 pathways were regulated by HD-16 to
exert an antifbrotic efect. Te extent of damage and in-
fammation in the fbrosis of mouse liver caused by CCl4 was
reduced, according to pharmacodynamic studies, using
HD-16 [57].

4.1.3. Apigenin. Apigenin (APG) is a favone belonging to
the superfamily of favonoids engaged with a keto group at
the 4th carbon and substituted by hydroxy groups at the 4′,
5th, and 7th positions. It is a naturally existing polyphenol
that is produced and retained in a diversity of fruits, veg-
etables, and sanitary plants including celery, vine spinach,
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chamomile, artichokes, propolis, oregano, and parsley, and it
is found in the dried form of plants. Te highest concen-
tration of apigenin, 45.035 µg/g, has been found in dried
parsley. Additional sources of apigenin include celery seeds,
which have 786.5 µg/g, dried chamomile fowers, which have
300–5000 µg/g, vine spinach, which has 622 µg/g, and
Chinese celery, which has 240.2 µg/g [58, 59]. In recent
hepatoprotective activity, apigenin was given at a dosage of
0.1-0.2 g/kg P.O for 1week, which lessened the concentra-
tion of the enzyme ALT and AST and decreased the seri-
ousness of hepatic failure. It is signifcant to mention that
pretreatment of apigenin increased the liver’s manifestation
of the proteins PPARc, and Nrf-2 as well as the activities of
catalase, glutathione reductase, superoxide dismutase, and
glutathione S-transferase while decreasing the levels of he-
patic NF-κB. Apigenin was demonstrated to have a variety of
biological efects, notably anti-infammatory and antioxi-
dant characteristics as well as a protective impact counter to
D-galactosamine/lipopolysaccharide-induced hepatic lesion
in mice. Its mode of action may be based on rises in Nrf-2-
mediated antioxidant enzymes and modulation of NF-κB/
PPARc-mediated infammation [40]. In addition, apigenin
also ameliorates edifenphos (EDF)-induced liver toxicity by
protecting hepatic cells and has a mitigating efect on mi-
tochondrial deterioration. When EDF was taken orally, the
intracellular antioxidant system had been disrupted, which
led to the generation of intracellular reactive oxygen species.
EDF, on the other hand, encourages harmful consequences
such as DNA damage, oxidative stress, decreased potential of
mitochondrial membrane, generation of reactive oxygen
species, stimulation of caspase 3/9 action, and the devel-
opment of histo-renal histopathological abnormalities. By
directly scavenging free radicals or exerting antioxidant
activity, APG reduced the apoptosis and oxidative damage
caused by EDF. Apigenin is an efcient dietary antioxidant
that ameliorates EDF-induced oxidative stress [60].

4.1.4. Epicatechin. A monomeric favanol termed epi-
catechin (EC) has fve hydroxyl groups substituted at po-
sitions 3, 3′, 4′, 5, and 7. It is a polyphenol and catechin by
nature. It is a secondary metabolite ubiquitously present in
plants and fruits such as cocoa powder, chocolate, teas, and
grapes in notable concentrations. Epicatechin is an anti-
oxidant with hepatoprotective, anti-infammatory, anti-
obesity, and anticancer efects. Trough the suppression of
apoptosis and infammation, epicatechin seems to have
a protective efect on the liver of mice with acute hepatic
lesions brought on by APAP. By blocking TNF-α,
interleukin-1b, interleukin-6, and additionally infammatory
reaction, EC reduced immunological response and patho-
logical damage. EC also inhibited Bax and caspase 3, sub-
sidence of the pathway of mitochondrial apoptosis, raised in
Bcl-2 to improve its antiapoptotic activity and reduced
hepatic damage [41]. A dosage of 0.02–0.04 g/kg of epi-
catechin also reduced the severity of the hepatic sinusoidal
obstruction syndrome brought on by monocrotaline by
declining liver infammation and oxidative stress. Rats
treated with EC had improved nuclear translocation of Nrf-2

and raised the output of its downstream antioxidant genes
[61]. In hamsters, an amoebic liver abscess was successfully
treated with epicatechin. 1.106 Entamoeba histolytica tro-
phozoites were administered intraperitoneally to the Syrian
golden hamster. Te EC dose (10mg/100 g, I.P.) reduced the
advancement of the liver abscess by modifying the infuence
of the infammatory cytokines including interleukin-10,
interleukin-1, TNF-α and aids in the removal of trophozoites
to repair the liver [62].

4.1.5. Malvidin. A naturally occurring favonoid substance
included in plant foods is malvidin, one of the anthocyanins.
An O-methylated anthocyanin derivative is a malvidin. It is
a fundamental plant pigment, and its glycoside is very
prevalent. Previous research showed that malvidin had
a diversity of pharmacological properties, involving anti-
oxidant, anticarcinogenic, and anti-infammatory proper-
ties. Previous literature revealed that malvidin can be
efective against LPS-induced acute hepatic damage in mice.
Malvidin may be able to inhibit NLRP3 infammasome
activation, block proinfammatory cytokines, and mediators
and reduce oxidative stress by up-regulation of the Nrf2
signalling cascade. It may also be able to attenuate autophagy
and hepatic apoptosis. Tese are the main mechanisms by
which malvidin may be able to reduce acute liver injury
caused by LPS [39]. Malvidin-3-galactoside, often known as
MV-3-gal, is the main anthocyanin monomer present in
blueberries. Tis substance has a strong antioncogenesis
efect on various organs, such as the liver. MV-3-gal was
given to Huh-7 hepatocellular carcinoma (HCC) cell lines,
which decreased cell division, stop cell cycle, and colony
formation depending on the dose via inhibiting the MAPK,
MMP, and PTEN/Akt pathways [63].

Many exogenous and endogenous factors induce oxi-
dative stress and cause hepatic diseases by various means
from which oxidative stress and infammation are highly
concerned as they are the main targets of most favonoids.
For better understanding, an illustration of the induction of
liver diseases by various factors via oxidative stress and
infammation along with the mechanism of action favo-
noids as hepatoprotective agents, by inhibiting oxidative
stress and infammation is shown in Figure 1.

Tere are diferent mechanism of action of various
favonoids as a result of in vivo and in vitro research studies
have shown in Table 3.

4.1.6. Genistein. Genistein is an isofavone that is primarily
found in legumes such as fava beans, soybeans, kudzu, lu-
pine, and Psoralea. Te chemical name for genistein is 5,7-
dihydroxy-3-(4-hydroxyphenyl) chromen-4-one [67]. A
total of 15 carbons make up genistein, which is divided into
two aromatic rings A and B, as well as one other carbon
pyran ring (C), which contains the nucleus 3-phenylchro-
men-4-one. Positions two and three of the genistein basic
carbon skeleton have a double bond. In addition, it has 3
more hydroxyl groups at positions 5th, and 7th of ring A and
the 4th position of ring B and also has an oxo group at
position 4 of ring C [68]. It was demonstrated to have
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displayed a broad range of pharmacological activities, such
as anti-infammatory, anticancer, antiproliferative, antioxi-
dant, and protection against osteoporosis, and a reduction in
cardiovascular-related diseases. It is an organic substance
that resembles mammalian estrogens in terms of chemical
structure. Numerous in-vivo and in-vitro research on the
anti-infammatory potential of genistein have been con-
ducted in the past. Te potent anti-infammatory activity of
genistein is achieved by blocking several signalling pathways,
including those involving prostaglandins, nuclear factor
kappa-B, proinfammatory cytokines, induced nitric oxide
synthase, and reactive oxygen species [69]. In a rat model of
chronic liver injury, hepatic damage, and hepatic fbrosis
caused by D-GalN, the hepatoprotective efect of genistein
was assessed at a dose of (250mg/kg BW) two times a week
for three months. Genistein (5mg/kg BW) was administered
intragastrically as a cotreatment once a day for 12weeks, and
the functional impairment that resulted was signifcant
amelioration. Tis improvement included inhibition of
activation of reduced expression of SMA (alpha-smooth
actin) and deposition of the collagen matrix, as well as
a rise in aspartate transaminase, serum alanine transaminase
and also leads to elevated expression of hepatic Smad7 [64].
Another study found that supplementing alongside 150mg/
kg of genistein reduced the rise in ALT (alanine trans-
aminase), AST (aspartate transaminase) activity, the decline
in GSH (glutathione) level, and the amount of hepatic
malondialdehyde in response to an inappropriate dose of
acetaminophen [70]. Acetaminophen is a broadly used
analgesic and antipyretic [71]. It is safe when taken at the
appropriate dose, but an inappropriate dose of APAP
(acetaminophen) can cause serious liver damage, which is
one of the major factors for acute liver injury-related

mortality [72]. At therapeutic concentrations, APAP is
mostly metabolized by the enzymes of the UDP-
glucuronosyltransferase 1A subfamily and sulfotransferase
into glucuronide and sulfate conjugates, respectively.
NAPQI (N-acetyl-p-benzoquinone imine), a lethal and
extremely toxic metabolite is generated when a tiny amount
is oxidized by the CYP family, particularly CYP2E1. By
covalently joining with glutathione to generate a nonreactive
metabolite, small levels of the metabolite are efectively
detoxifed and eliminated from the body by the liver.
However, the glucuronidation and sulfation pathways sat-
urate within 1 to 2 hours of an APAP overdose. Ten, while
drug consumption is too high, CYP2E1 produces NAPQI.
Large amounts of NAPQI cause the liver’s GSH to be rapidly
depleted and covalently bind to mitochondrial proteins to
produce reactive oxygen species, which in turn leads to
hepatocellular necrosis and harsh centrilobular hepatotox-
icity [73].Te sirtuins family includes SIRT1, which has been
discovered as a NAD-dependent class 3 histone/protein
deacetylase [74]. Widespread expression of SIRT1 and its
role as a potent modulator on a variety of biochemical
activities were becoming clearer, according to mounting
data such as stress sensors [75], in metabolism [76], in cell
survival [77], and autophagy [78].

4.1.7. Daidzein. Daidzein is a compound with a low mo-
lecular weight that is synthesized from isofavone, an isomer
of favone. Daidzein is a chemical compound that belongs
to the class of 7-hydroxyisofavones, which are
7-hydroxyisofavones with an extended hydroxy group at
position 4′. It is a dormant form of the tyrosine kinase
inhibitor genistein. It is a phytoestrogen and a regulator of

Oxidative
Stress

Hepatic stellate
cells activation

Mitochondrial
dysfunction

Inflammation

Inflammasomes

Protein
adducts

Immune cells
infilteration

Cirhosis/fibrosis Chronic hepatitis

(i) Obesity
(ii) Insulin resistance
(iii) Others

Endogenous factors

Lipid
peroxidation

Steatosis

DNA
damage

Hepatocellular
Carcinoma

Flavonoids exerting their anti-
infammatory activities by the
down-regulation of several
infammatory mediators
(prostaglandin, COX-2, cytokines
like interleukin-6, interleukin-1,
and TNF-α.) through key inhibition
of signaling pathways.

Hepatoprotective potential
of flavonoids by reducing
oxidative stress and ROS

Exogenous factors

(i) Drugs
(ii) Environmental toxins
(iii) Alcohol
(iv) Virus
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Figure 1: An illustration of induction of liver diseases by various factors via oxidative stress and infammation along with the mechanism of
action favonoids as hepatoprotective agents, by inhibiting oxidative stress and infammation.
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cellular proliferation, oxidative stress, and apoptosis.
Daidzin is the equivalent glucoside form of daidzein, and
through hydrolysis, daidzin can liberate daidzein. Daidzein
is prevalent inmany diferent types of vegetables, fruits, nuts,
peas, lentils, seeds, and legumes, particularly in soybeans and
foods and formulas based on soy. Epidemiology studies
show an inverse relationship between cancer risk in the
Asian population and a diet enriched in soy products
[79–81]. Daidzein has reportedly been proven benefcial in
treating LPS-induced hepatotoxicity. It acts by reducing
oxidative stress and infammation, hence diminishing the
damage to the hepatocytes caused by LPS. Investigations
were conducted into the mechanism underlying daidzein’s
impact on hepatocyte damage. Daidzein at a concentration
of 100 μM lowers AST and ALT expression levels without
cytotoxicity. Moreover, 100 μM daidzein reduced the ex-
pression of infammatory markers such as interleukin-6,
interleukin-1 beta, and tumour necrosis factor (58.8%, 73.8%
5.3%, and 55.5% 7.2%, respectively) in LPS-treated hepa-
tocytes. In addition, 100 μM daidzein boosted SOD activity
by 88.418.9 and decreased LPS-induced ROS generation by
23.97.8% via upregulating Nrf2 expression and down-
regulating Keap-1 [65]. According to a diferent study,
daidzein, chicory, and their combination signifcantly re-
duce the expression of the cyclin D1/CDK4 axis and the
cyclin A/CDK2 axis in the liver tissue. Tis is accomplished
by causing cell cycle arrest, preventing proliferation through
the induction of apoptosis via the downregulation of Bcl-2,
and suppressing the expression of Ki-67 [66].

5. Pharmacokinetics, Advantages, and
Limitations of Flavonoids against
Liver Diseases

In the case of liver damage, the pharmacokinetics of favo-
noids may be altered due to changes in liver metabolism and
clearance. For example, some studies have suggested that
favonoids may accumulate in the liver during liver disease,
potentially leading to higher local concentrations and in-
creased efcacy. On the other hand, other studies have re-
ported decreased favonoid bioavailability in patients with
liver disease, which may limit their therapeutic potential.
Flavonoids have shown countless health benefts, their low
bioavailability has been a concern. Phase 2 metabolism is
known to afect the bioavailability of favonoids in humans.
Usually, most favonoids undergo sulfation, methylation, and
glucuronidation in the small intestine and liver, and conju-
gated metabolites can be found in plasma after favonoid
ingestion. Despite the bioactivity expressed in diferent
in vitro systems, the bioavailability of favonoids would be
a determinant factor of their bioactivity in vivo studies.
Terefore, enhancement of bioavailability would be of utmost
importance to exert health efects in, in vivo approach. In this
regard, numerous attempts have been made to increase
bioavailability such as improving intestinal absorption via the
use of absorption enhancers, novel delivery systems, im-
proving metabolic stability, and changing the site of ab-
sorption from the large intestine to the small intestine [82].

Flavonoids have been reported to have an excellent safety
profle (no toxicity at up to 140 g/day), with no known
signifcant adverse efects. Te enthusiasm for favonoids
expressed by the public has sometimes overlooked their
toxicity and also consumed the favonoids exceeding the
body’s requirements. Te consumption of a higher dose of
favonoids may lead to dysfunctioning in the multiorgan
system. One of these approaches involves the use of ki-
netically stable nanoemulsion technology, where the lipo-
philic favonoids can be prepared as emulsions consisting of
extremely small particle sizes (<200 nm). Te emulsifed
favonoids are released slowly over time, allowing for
a higher surface area for absorption, ultimately improving
their absorption and bioavailability after oral administra-
tion. Te advantages of using favonoids in the treatment of
liver diseases include their potential to reduce infammation,
oxidative stress, and fbrosis, all of which are common
features of liver damage. In addition, favonoids have been
shown to have hepatoprotective efects, protecting liver cells
from damage and promoting liver regeneration [83].

However, there are also limitations to the use of favo-
noids in liver disease treatment. As mentioned, their low
bioavailability can limit their efectiveness, and their
metabolism in the liver may be altered in patients with liver
damage. Flavonoids may also interact with other medica-
tions or supplements, potentially leading to adverse efects.
Furthermore, the optimal dosing and duration of favonoid
supplementation for liver disease treatment are not well
established, and more research is needed to determine their
safety and efcacy in this context [84].

All the studies have revealed the favonoids as hep-
atoprotective but some authentic information is required for
their efcacy, dose, and potential for safe use of the favo-
noids. For the same many clinical trials have been done and
some are currently going on. Te diferent favonoids
mentioned in this review were found to be efective against
diferent liver-associated diseases and several studies of
hepatoprotective activity of these in humans are clinically
investigated an overview of important research on clinical
trials of favonoids for hepatoprotection is shown in Table 4.

 . Summary and Conclusion

Due to an increase in cases, liver disease or hepatotoxicity is
a popular subject of growing concern. According to the
above-given literature, liver conditions can be developed due
to long-term infammation. Due to antioxidant, hep-
atoprotective, and anti-infammatory properties, dietary
favonoids are important in the development and mitigation
of pathological conditions. Recent clinical studies of six
major hepatoprotective favonoids have confrmed benefcial
efects on liver diseases by inhibiting infammation by
lowering thresholds of several cytokines including
interleukin-1, interleukin-6, and TNF-α, decreasing its main
mediator prostaglandins, COX-2, ROS, and preventing the
NF-κB/P65, IKK, and IKBα in the NF-κB signalling.
According to the research, favonoids also prevent apoptosis
of the liver by boosting the Bcl-2/Bax ratio and inhibiting the
previously mentioned Caspase family protein. Hence

14 Evidence-Based Complementary and Alternative Medicine



favonoids in diet could be a good option for preventing
hepatic conditions. However, precise, dose-dependent
clinical trials are still required in the future to evaluate
the hepatoprotective potential of favonoids to treat hepatic
disorders with a safe approach.
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