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Background. Myocardial infarction (MI) is the most severe manifestation of cardiovascular disease. Xuefu Zhuyu Capsule (XFC),
a proprietary Chinese medicine, is widely used in various cardiovascular diseases. At present, the molecular mechanism of XFC
remains unclear. Objective. To explore the mechanism of anti-MI efects of XFC by combining network pharmacology and
experiments. Methods. TCMSP, GeneCards, and DisGeNET databases were used to fnd the target of XFC. PPI analysis was
performed by the STRING database. KEGG and GO analyses were performed by Metascape Database. Molecular docking was
performed by Autodock Vina. HE staining, echocardiography, immunofuorescence, and TUNEL were performed to verify the
prediction results. Results. Network pharmacology showed that quercetin, kaempferol, β-sitosterol, luteolin, and baicalein were
the main active ingredients of XFC. TNF, IL6, TP53, VEGFA, JUN, CASP3, and SIRT1 were the main targets of XFC. KEGG
results showed that key genes were mainly enriched in lipid and atherosclerosis, PI3K-Akt signaling pathway, MAPK signaling
pathway, and NF-κB signaling pathway. HE staining showed that XFC could improve the morphology of myocardial tissue.
Echocardiography showed that XFC could improve cardiac function. TUNEL showed that XFC could reduce cardiomyocyte
apoptosis. Immunofuorescence showed that XFC could reduce the expression of α-smooth muscle actin (α-SMA) and increase
the expression of CD31. In addition, we found that XFC may exert its therapeutic efects through SIRT1. Conclusion. Tis study
demonstrated that SIRT1 may be the target of XFC in the treatment of MI. Te active ingredients of XFC and SIRT1 can be stably
bound. XFC could inhibit apoptosis, promote angiogenesis, and improve myocardial fbrosis through SIRT1.

1. Introduction

Myocardial infarction (MI) is the most severe manifestation
of cardiovascular disease (CVD), which afects more than 7
million individuals worldwide each year [1]. Te usual
initiating mechanism for MI is the rupture or erosion of
a vulnerable, lipid-laden, atherosclerotic coronary plaque,
resulting in exposure of circulating blood to a highly
thrombogenic core and matrix materials in the plaque [2].
Te method of saving ischemic myocardium from MI is
timely reperfusion, including drug thrombolysis and

percutaneous coronary intervention; however, the process of
reperfusion may lead to arrhythmia, myocardial stunning,
microvascular obstruction, and lethal myocardial reperfu-
sion injury [3, 4].

Traditional Chinese medicine (TCM) has a long history
of treatingMI. Our research group has previously found that
blood-activating Chinese herbal medicine has an improving
efect on ischemic heart disease [5–7]. Xuefu Zhuyu Capsule
(XFC) is a TCM formula that originated from the Qing
Dynasty, which has the function of promoting blood cir-
culation, removing blood stasis, moving Qi, and relieving
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pain, and is widely used in various CVD [8–10]. XFC is
composed of 11 types of herbs, including Semen Persicae,
Flos Carthami, Radix Rehmanniae, Radix Angelicae sinensis,
Radix Achyranthis Bidentatae, Radix Platycodi, Radix
chuanxiong, Radix Paeoniae Rubra, Fructus Aurantii, Radix
Glycyrrhizae, Radix Bupleuri. Currently, the active in-
gredients from XFC have been shown to have anti-
infammatory, antioxidative, antiapoptotic, and
autophagy-modulating efects, however, the mechanism of
XFC in improving MI has not been clarifed [6, 11, 12].

Network pharmacology is a new subject based on sys-
tems biology and bioinformatics, which can elucidate the
mechanism of drug action at the molecular level [13, 14].Te
comprehensive and systematic concept of network phar-
macology accords with the characteristics of multicompo-
nent, multitarget, and multipathway of TCM. Terefore, in
this study, we aimed to explore the active ingredients,
therapeutic targets, and signaling pathways of XFC in the
treatment of MI through network pharmacology and in vivo.
Our study may provide evidence for the pharmacological
efects of Chinese herbal compounds on MI. A fowchart of
the study approach is shown in Figure 1.

2. Materials and Methods

2.1. Network Pharmacology Analysis

2.1.1. XFC Targets and MI Targets. Ingredients of each herb
in XFC were obtained from Traditional Chinese Medicine
Systems Pharmacology Database and Analysis Platform
(TCMSP, https://tcmspw.com) [15], the TCMSP parameter
was set as bioavailability (OB) ≥30% and drug-like prop-
erties (DL) ≥0.18, as suggested by the TCMSP. Disease
targets of MI were collected by the GeneCards database
(https://www.genecards.org/) [16] and the DisGeNET da-
tabase (https://www.disgenet.org/) [17]. Te verifed and
predictive targets of XFC to treat MI were obtained by
overlapping these targets.

2.1.2. Protein-Protein Interaction (PPI) and Gene Enrichment
Analysis. PPI analysis of overlapping targets was performed
using the STRING platform [18], and the calculation results
were imported into Cytoscape 3.9.0 software [19] for net-
work topology analysis. Screen for key targets using the
CytoHubba plugin. Gene enrichment analysis of over-
lapping targets was performed through the Metascape da-
tabase [20]. It mainly includes molecular function (MF),
cellular components (CC), and biological process (BP),
KEGG.Te parameters of theMetascape database were set as
follows: min overlap: 3, P value cutof: 0.01, and min en-
richment: 1.5. Hiplot (https://hiplot-academic.com/) [21] is
used to visualize the results.

2.1.3. Molecular Docking. Key targets and active ingredients
were selected for molecular docking.Te key target structure
was obtained through the PDB database (https://www.rcsb.
org/), and the key active ingredients structure was obtained
through the PubChem database (https://pubchem.ncbi.nlm.

nih.gov/). PyMOL, Autodock Vina [22], and PLIP (https://
plip-tool.biotec.tu-dresden.de/) [23] were used to conduct
molecular docking.

2.2. Experimental Validation

2.2.1. Drug and Animals. XFC was purchased from Tianjin
Hongrentang Pharmaceutical Co., Ltd. (Approval number:
Z12020223). EX527 was purchased from Selleckchem, USA,
Product No: S1541, male Wistar rats (weighing 190–210 g),
purchased from Huafukang Biotechnology Co., Ltd. (Bei-
jing, China). All rats were housed in specifc pathogen-free
animal rooms in the laboratory animal center of Guan-
g’anmen hospital, China Academy of Chinese Medical
Sciences. Te temperature of the animal room is 20–25°C,
and the relative humidity is 55–60%; all rat feeding methods
and animal experiment procedures strictly follow the rele-
vant guidelines stipulated by the experimental animal ethics
committee of Guang’ anmen Hospital, China Academy of
Chinese Medical Sciences.

2.2.2. Model of MI and Drug Treatment. Te rats’ model of
MI was established by left anterior descending (LAD) li-
gation as previously described [24]. Rats were anesthetized
with pentobarbital sodium (60mg/kg, i.p.). An incision was
made between the 4th and 5th intercostal space on the left
side of the rat, the thoracic cavity was opened, the peri-
cardium was torn, and the thorax was gently pressed to
squeeze out the heart. Find the left atrial appendage and
determine the ligation position (2mm below the junction of
the pulmonary conus and the left atrial appendage). Te
LAD was ligated at the ligation site, the heart was imme-
diately put back into the thoracic cavity, the incision was
closed, and the skin was sutured. Animals in the sham group
were only threaded without ligation. An electrocardiograph
was performed immediately after modeling, and the ST-
Segment elevation was the standard screening model and the
rats without ECG changes were excluded. After the oper-
ation, the surviving rats were randomly divided into the
following four groups: (1) sham-operated group (without
LAD ligation); (2) model group (LAD ligation); (3) XFC
treated group (LAD ligation and intragastrically adminis-
tered XFC at 0.432 g/kg [25]); (4) EX527 (SIRT1 inhibitor)
group (LAD ligation, intragastrically administered XFC at
0.432 g/kg and intraperitoneal injection of EX527 at 5mg/
kg) [26]. Te sham group and model group were given
equivalent distilled water. All groups began drug in-
tervention within 12 hours after modeling. Te drugs were
administered once a day for 4 weeks.

2.2.3. Echocardiographic Evaluation of Cardiac Function.
After 4 weeks of administration, the Vevo 3100 Imaging
System (Fujiflm Visual Sonics Vevo 3100, Toronto, Canada)
was used to observe and record the echocardiographic of
rats. After the rats were anesthetized with isofurane, the rats
were fxed in a supine position, and the skin was prepared in
front of the left chest. Te RMV-716 high-frequency probe
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was used to take the short axis of the left ventricle, and the
level of the mitral valve of the rat heart was detected. Te
average value of 3 consecutive cardiac cycles was taken for
each group. Ultrasound detection indexes: left ventricular
short-axis ratio (FS) and left ventricular ejection
fraction (EF).

2.2.4. Histological Analysis. After echocardiography, the rats
were euthanized, anesthetized by intraperitoneal injection of
1% pentobarbital, fxed in the supine position, quickly
opened the chest, and the hearts were removed. Some
samples were transferred to a refrigerator at −80°C. Another
portion of the sample was fxed with 4% paraformaldehyde
and used for subsequent studies. Hematoxylin-eosin (HE)
staining was prepared according to standard procedures.
Te rat heart tissue was fxed, dehydrated, embedded in

parafn, and sliced along the longitudinal axis with
a thickness of 4 μm. After HE staining (Beyotime, China),
the morphology of cardiac tissue cells was observed under
the microscope.

2.2.5. Immunofuorescence Staining. Immunofuorescence
staining of CD31, α-smooth muscle actin (α-SMA), and c-
TnI was performed. Briefy, the procedure was as follows:
sections were prepared, washed 3 times with PBS, repaired
with citrate bufer, washed 3 times with PBS, blocked with
sheep embryo serum at 37°C for 15min, washed 3 times with
PBS, incubated with primary antibody at 4°C for 17 h,
washed 3 times with PBS, incubated with fuorescently la-
beled secondary antibody at 37°C for 30min, washed 3 times
with PBS, sealed with DAPI, and photographed with the
confocal microscope. Ten felds were randomly selected.

Figure 1: Flow chart of this study.
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Image J software was used to measure the integrated option
density (IOD) value of the stained positive part in the
captured Image, and the arithmetic mean was taken as the
IOD value of the section.

2.2.6. TUNEL Assay. Cardiomyocyte apoptosis was detected
by the In Situ Cell Death Detection Kit (11684817910, Roche,
Switzerland) according to the manufacturer’s protocol. Briefy,
the procedure was as follows: parafn section, dewaxing, hy-
dration, cell permeation, adding TUNEL reaction solution,
adding converter-POD, reaction with substrate DAB, counting,
and photographing (FV1000, Olympus, Japan). Finally, use
Image J software to analyze the pictures, calculate the number of
positive cells and total cells in each picture, calculate the per-
centage of apoptosis, and make a statistical analysis.

2.3. Statistical Analysis. Statistical analysis was performed
using GraphPad Prism 8. All data are presented as the mean-
± standard deviation (SD). One-way analysis of variance fol-
lowed by Tukey’s test was used for multiple comparisons among
groups. P < 0.05 was considered statistically signifcant.

3. Results

3.1.Network Pharmacologic PredictionAnalysis of XFC forMI

3.1.1. Analysis of Drug and Disease Targets. A total of 152
active ingredients and 253 targets corresponding to the active
ingredients were collected and 2345 disease targets were col-
lected. Te list of the top 20 active ingredients was drawn
according toOBvalues (Table 1).Te intersection of drug targets
and disease targets was calculated, and 147 overlapping targets
were obtained (Figure 2(a)). Te ingredients-target network
fgure (Figure 2(b)) was drawn by active ingredients and targets.
From this fgure, it can be seen that quercetin, kaempferol,
β-sitosterol, luteolin, baicalein, stigmasterol, naringenin,

isorhamnetin, wogonin, and nobiletin correspond to many
targets with large degree values. It is speculated that XFC
treatment of MI is mainly these active ingredients with large
degree values.

3.1.2. Gene Enrichment Analysis of XFC against MI. PPI
processing was conducted on the overlapping targets
through the STRING platform, and Cytoscape was used for
network topology analysis (Figure 3). Te key targets were
TNF, IL6, TP53, VEGFA, JUN, CASP3, PTGS2, MAPK3,
EGFR, STAT3, and SIRT1. Gene enrichment analysis was
conducted on the overlapping targets through theMetascape
database. KEGG results showed that key genes were mainly
enriched in lipid and atherosclerosis, PI3K-Akt signaling
pathway, MAPK signaling pathway, NF-κB signaling
pathway, cAMP signaling pathway, and calcium signaling
pathway (Figure 4(a)); CC results showed that key genes
were mainly enriched in membrane raft, transcription
regulator complex, vesicle lumen, receptor complex, and
integral component of presynaptic membrane (Figure 4(b)).
BP results showed that key genes were mainly enriched in
the cellular response to nitrogen compound, response to an
inorganic substance, response to the hormone, response to
xenobiotic stimulus, and cellular response to lipid
(Figure 4(c)). MF results showed that key genes were mainly
enriched in DNA-binding transcription factor binding,
oxidoreductase activity, kinase binding, protein homo-
dimerization activity, and phosphatase binding
(Figure 4(d)). Based on our previous studies and network
pharmacology results [12, 27], we selected SIRT1 as the
validation gene among these targets.

3.1.3. Molecular Docking Verifcation. Quercetin, kaemp-
ferol, β-sitosterol, luteolin, and baicalein were selected as
binding ligands, and SIRT1 was selected as the target protein.
Molecular docking was performed by Autodock Vina. Te
results showed that the docking energy was ≤−7 kcal·mol−1.
It can be seen from Figure 5 that the ligands are stably
combined in the binding pocket to form a stable structure.
For example, quercetin could bind to the SIRT1 via putative
hydrogen bonds to the Arg303, Ser370, Leu372, Lys375,
Lys377, and Lys408 residues of SIRT1.

3.2. Experimental Verifcation of XFC against MI

3.2.1. Cardiac Function. Te results showed that compared
with the sham group, the EF and FS in the model group were
signifcantly decreased (P< 0.01). Compared with the model
group, the EF and FS in the XFC group were signifcantly in-
creased (P< 0.01), and the EF and FS in the EX527 group
showed an upward trend, but there was no statistical signif-
cance. Compared with the XFC group, the EF and FS in the
EX527 group were signifcantly decreased (P< 0.01) (Figure 6).

3.2.2. Pathological Changes in Heart Tissue. Cardiac pa-
thology was compared by HE staining. Te results showed that
in the sham group, the myocardial fbers were striated, the

Table 1: Te top 20 active ingredients of XFC.

Nos. MOID Names Degree
1 MOL000098 Quercetin 364
2 MOL000422 Kaempferol 163
3 MOL000358 Beta-sitosterol 106
4 MOL000006 Luteolin 78
5 MOL002714 Baicalein 63
6 MOL000449 Stigmasterol 56
7 MOL004328 Naringenin 41
8 MOL000354 Isorhamnetin 30
9 MOL000173 Wogonin 26
10 MOL005828 Nobiletin 23
11 MOL002565 Medicarpin 20
12 MOL000392 Formononetin 19
13 MOL003896 7-methoxy-2-methyl isofavone 19
14 MOL000497 Licochalcone a 18
15 MOL004891 Shinpterocarpin 18
16 MOL002773 Beta-carotene 17
17 MOL000500 Vestitol 16
18 MOL001689 Acacetin 15
19 MOL005003 Licoagrocarpin 15
20 MOL004957 HMO 15
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nucleus of the myocardial cells was in the middle, and the
interstitial blood vessels of the myocardial fbers were normal,
without interstitial edema and infammatory cell infltration. In
themodel group, themyocardial space of the ischemic heart was
enlarged, the fber arrangement was disordered, and a large
number of infammatory cells infltrated. Te changes in the
XFC group and the EX527 group were between the sham group
and the model group, and the degree increased in turn
(Figure 7(a)).

3.2.3. Changes in Cardiomyocyte Apoptosis. TUNEL assay
detects cardiomyocyte apoptosis. Te results showed that
compared with the sham group, the apoptotic rate of

cardiomyocytes in the model group was signifcantly increased
(P< 0.01); compared with the model group, the apoptosis rate
of cardiomyocytes in the XFC group was signifcantly decreased
(P< 0.01). Compared with the XFC group, the apoptosis rate of
cardiomyocytes in the EX527 group was signifcantly increased
(P< 0.01) (Figure 7(b)).

3.2.4. Changes in Myocardial Fibers and Angiogenesis.
Cardiac fbrosis is the main pathological feature of MI, and
fbrosis is usually caused by excessive accumulation of extra-
cellular matrix. Myofbroblasts are the main source of extra-
cellular matrix, and they express the high-contractile protein
α-SMA [28, 29]. Te immunofuorescence of α-SMA can be

(a)

(b)

Figure 2: Targets of XFC against MI: (a) overlapping targets of XFC against MI; (b) ingredients -target network.

Figure 3: PPI network of overlapping targets.
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used to evaluate the degree of myocardial fbrosis. Te results
showed that compared with the model group, α-SMA in the
XFC group and EX527 group was signifcantly decreased
(P< 0.01). Compared with the XFC group, α-SMA in the
EX527 group was signifcantly increased (P< 0.01)
(Figure 8(a)). Angiogenesis plays an important role in the

recovery process of MI. As a marker of endothelial cells, CD31
represents the change in capillary density [30]. Compared with
the sham group, CD31 in the model group was signifcantly
increased (P< 0.01). Compared with the model group, the
CD31 in the XFC group and the EX527 group was signifcantly
increased (P< 0.01). Compared with the XFC group, the CD31
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Figure 4: Gene enrichment analysis of overlapping targets: (a) KEGG enrichment analysis; (b) CC enrichment analysis; (c) BP enrichment
analysis; (d) MF enrichment analysis.

SIRT1-quercetin -7.8 kcal‧mol-1

SIRT1-β-sitosterol -7.2 kcal‧mol-1 SIRT1-baicalein -7.5 kcal‧mol-1

SIRT1-luteolin -7.3 kcal‧mol-1

Figure 5: Molecular docking of SIRT1 with major active ingredients.
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in the EX527 group was signifcantly decreased (P< 0.01)
(Figure 8(b)). cTnI is a common method and index for clinical
diagnosis of MI. AMI is usually accompanied by an increase in
cTnI [31]. Compared with the sham group, the proportion
obligation as previously described of cTnI in the model group
was signifcantly increased (P< 0.01). Comparedwith themodel
group, the proportion of cTnI in the XFC group and the EX527
groupwas signifcantly decreased (P< 0.01). Comparedwith the

XFC group, the proportion of cTnI in the EX527 group was
signifcantly increased (P< 0.01) (Figure 8(c)).

4. Discussion

Cardiac repair after MI is accomplished through a series of
complex events. Tese events begin with infammation that
helps digest and removes damaged cells and extracellular
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matrix tissues, followed by a repair phase with infammation
subsiding, fbroblast proliferation, scarring, and new an-
giogenesis in the following days [32]. Herbal formula
contains hundreds of chemical compounds, which makes it
complicated and challenging to understand the mechanisms
of action and bioactive ingredients. Network pharmacology
integrates data, and carries out experimental and clinical
studies to provide a powerful tool for exploring the
mechanisms of TCM [33]. In this work, we integrated
network pharmacology, molecular docking, and experi-
mental verifcation methods to clarify the molecular bi-
ological mechanism of XFC in the treatment of MI.

In this study, we frst identifed the active ingredients and
targets of action of XFC, while obtaining disease targets for MI.
We found that quercetin, kaempferol, β-sitosterol, luteolin,
baicalein, stigmasterol, naringenin, and isorhamnetin were likely
to be the main active ingredients of XFC to exert anti-MI. Most
of these active ingredients are favonoids; favonoids can im-
prove CVD, such as reducing the brittleness of blood vessels,
improving the permeability of blood vessels, reducing lipids and
cholesterol, and preventing hypertension [34–36]. For example,
Albadrani et al. found that quercetin ameliorates MI in rats by
decreasing TGF-β1/Smad3 signaling [37]. Wang et al.

demonstrated that kaempferol ameliorates oxidative stress and
infammation by activating the PI3K/Akt/GSK-3β pathway,
thereby reducing myocardial ischemia/reperfusion injury [38].
We next performed a PPI analysis on 147 overlapping targets to
obtain the key targets among them.Tese key targets are mainly
involved in apoptosis (TP53 and CASP3), immune in-
fammation (TNF, IL6), and angiogenesis (VEGFA), which are
closely related to the molecular mechanisms of MI. MI evokes
activation of the innate immune system, resulting in increased
levels of proinfammatory cytokines (IL-1β, IL6, and TNF-α) in
the heart and circulation. Te TNF-mediated process is com-
plex. TNF can show toxicity through TNFR1 and protection
through TNFR2, showing bidirectional efects in MI [39].
VEGFA is a highly specifc vascular endothelial growth factor
that promotes angiogenesis and increases vascular permeability.
VEGFA plays a key role in triggering the cardiac angiogenic
response following MI. VEGFA can inhibit cardiomyocyte
apoptosis, promote cardiac repair, and promote vasodilation
[40, 41].

Combining our previous study and this bioinformatics
analysis, we chose SIRT1 as an entry point among these key
targets. First, we molecularly docked SIRT1 to the main
active ingredients and found that SIRT1 can and stably bind,
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which confrmed that SIRT1 might be one of the targets of
XFC.Ten, we verifed our hypothesis through experiments.
Our data suggested that XFC can efectively improve cardiac
function, myocardial fbrosis, and cardiomyocyte apoptosis
in MI model rats. Interestingly, SIRT1 inhibitors could in-
hibit the efects of XFC, which confrms that SIRT1 may be
the target of XFC. SIRT1, an NAD+-dependent protein
deacetylase, is capable of deacetylating histones and non-
histone substrates that have a powerful regulatory role and
can regulate a variety of important physiological and
pathological processes in cells, such as cell metabolism, gene
repair, cell survival, cell senescence, apoptosis, infammatory
response, oxidative stress, and vascular protection [42].
Previous studies have confrmed that activation of SIRT1 can
alleviate MI injury [42, 43]. Based on this, we hypothesized
that the active component of XFC could activate SIRT1 to
exert its anti-MI efect.

Te efect of promoting blood circulation and elimi-
nating blood stasis in Chinese medicine is similar to that of
angiogenesis. Recanalization and angiogenesis in the in-
farcted region are essential for the survival of cells in the
myocardium. CD31 is an endothelial cell-specifc marker
that can be used to label vascular endothelial cells. α-SMA is
a eukaryotic skeletal protein involved in the composition of
microflaments and is a marker protein for mesenchymal
cells [44–46]. Our data suggest that XFC improved the
expression of CD31 and α-SMA and that SIRT1 inhibitors
eliminate this efect, so we hypothesize that XFC can exert
a neovascularizing efect through SIRT1. Indeed, SIRT1 has
been shown to improve CD31 and a-SMA expression, and
this evidence further supports the reliability of our con-
clusions [47, 48].

5. Conclusion

In summary, we predicted by network pharmacology that
SIRT1 might be a target of XFC against MI.Te in vivo study
showed that XFC could inhibit apoptosis, promote angio-
genesis and improve myocardial fbrosis through SIRT1.
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