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Objective. �is study is designed to �nd out the molecular targets of e�ective Chinese medicine Ziyin Mingmu pills (ZMPs) in
treating age-related macular degeneration (AMD) based on network pharmacology and experimental data. Methods. A com-
prehensive network pharmacology strategy that consists of three sequential modules (drug-disease target molecular docking,
enrichment analysis, and external veri�cation) was carried out to identify potential targets of ZMPs acting on AMD. Results. �e
active ingredients of ZMPs targeting 66 genes have e�ects on the process of AMD. GO and KEGG pathway enrichment analyses
suggested that response to oxidative stress, regulation of angiogenesis, and lipid and atherosclerosis might serve as the most
important signaling pathways in ZMPs for AMD treatment. Combined with the GSE29801 dataset for further analysis, two key
genes, EGFR and VEGFA, were identi�ed. Immune in�ltration analysis showed that there was a strong association between EGFR
and immune cell content. In addition, images were acquired following 24 h in the scratch experiment showed that ZMPs can
reduce the percentage of wound healing distance. �eWestern blot assay found that ZMPs increased the expression of EGFR and
decreased the expression of VEGFA. Conclusion. �is study sheds light on some mechanisms of ZMP therapy for AMD,
particularly the e�ect of ZMP on the oxidative stress in RPE and cell survival and angiogenesis in AMD. We propound ZMPs as
a promising strategy to intervene in the process of AMD.

1. Introduction

Age-related macular degeneration (AMD) is one of the main
causes of vision loss in the elderly [1]. AMD patients are
mostly 50 years of age or older and are characterized by
decreased central vision and blurred vision, which are
progressively aggravated [2]. AMD can be divided into two
types: dry AMD and wet AMD. �e former is characterized
by drusen and geographic atrophy with central dark spots
and gradual vision loss [3], while the latter causes severe
visual damage to patients through choroidal neo-
vascularization, often causing macular hemorrhage, �brous
scarring, and irreversible blindness [4]. Many factors that are
closely related to AMD have been discovered, such as age,

oxidative stress, smoking, in¤ammation, and genetics [1, 5].
At present, there is no e¥cacy therapy for early AMD or dry
AMD, and an antineovascular drug injection is the main
method for clinical treatment of in advanced AMD or wet
AMD, which have a positive impact on the restoration of
vision and the improvement of prognosis [6, 7]. However,
there are still unmet clinical needs for AMD therapy, and an
intravitreal injection is a very big obstacle for patients with
wet AMD [7]. On this basis, split-new treatment strategies
need to be explored.

AMD belongs to the category of “faint vision (Shi Zhan
Hun Miao in Chinese)” in traditional Chinese medicine
(TCM) and attributes to depletion of essence, qi, and blood
[8]. Modern medicine believes that ischemia and oxidative
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stress play an important role in the pathogenesis of AMD,
which naturally followed the attribution of AMD in TCM
[9, 10]. In clinical application, compared with the exposure
to single-target drugs with side effects and poor therapeutic
effects on complex diseases, TCM offers the advantages of
multicomponents and multitargets with a synergistic
strategy [11]. Ziyin Mingmu pill (ZMP), a Chinese patent
medicine (Hunan Medicine Manufacturing Standard:
Z20080745), is mainly composed of 16 kinds of medicinal
materials: Gouqi (Lycium barbarum L.), Huangjing (Pol-
ygonatum sibiricum Delar. ex Redoute), Shudihuang
(Rehmannia glutinosa), Tusizi (Cuscuta chinensis Lam.),
Shanzhuyu (Cornus officinalis Sieb. et Zucc.), Mudanpi
(Paeonia suffruticosa Andr.), Sanqi (Panax pseudo-ginseng
Wall. var. notoginseng (Burkill) Hoo & Tseng), Danshen
(Salvia miltiorrhiza Bunge), Niuxi (Achyranthes bidentata
Blume), Danggui (Angelica sinensis (Oliv.) Diels), Chuan-
xiong (Ligusticum chuanxiong Hort.), Qianghuo (Notop-
terygium incisum Ting ex H. T. Chang), Shichangpu (Acorus
tatarinowii Schott), Shanyao (Dioscorea opposita ,unb.),
Fuling (Poria cocos (Schw.) Wolf), and Chushizi (Brousso-
netia papyrifera (L.) Vent.). Clinical observations have found
the efficacy of ZMPs for AMD [12, 13]. However, the
pharmacological mechanisms of ZMPs acting on AMD have
not been completely elucidated.

2. Materials and Methods

2.1. Screening the Active Ingredients of ZMPs Acting on AMD.
,e traditional Chinese medicine system pharmacology
(TCMSP, https://tcmspw.com/tcmsp.php) database is used
to analyze the 16 kinds of medicinal materials of ZMPs. ,e
TCMSP database collects 499 Chinese medicines from the
Chinese Pharmacopoeia, containing 29,384 components,
3,311 targets, and 837 related diseases. ,e database uses
predictive algorithms to obtain the relationship between
drug targets and provides pharmacokinetic information
including bioavailability (OB) and drug similarity (DL) for
each compound; molecules with OB≥ 30% or DL≥ 0.18 are
considered to be active ingredients [14]. In addition, the
OMIM database, GeneCards database, and GEO database
are used to screen the pathological targets of AMD. ,e
Venn diagram is used to integrate the drug targets of ZMPs
and the pathological targets of AMD to determine the
mechanisms of action of potential targets.

2.2.GEODataAcquisition. ,eGEO database (https://www.
ncbi.nlm.nih.gov/gds/) stores microarray, next-generation
sequencing, and other high-throughput sequencing data.
We downloaded the GSE29801 Series Matrix File data file
from the NCBI GEO public database. ,e annotation
platform is GPL4133. ,ere are 151 sets of transcriptome
data, including the control group (n� 78) and the disease
group (n� 73), for later verification.

2.3. Screening the Target of ZMP Treatment for AMD.
STRING online database 11.0 (https://string-db.org) was
used to analyze compounds of Gouqi, Huangjing,

Shudihuang, Tusizi, Shanzhuyu, Mudanpi, Sanqi, Danshen,
Niuxi, Danggui, Chuanxiong, Qianghuo, Shichangpu,
Shanyao, Fuling, and Chushizi, and the confidence score
>0.4 was used as the cutoff standard to obtain a target
function-related protein network and protein-protein in-
teraction (PPI) network.

2.4. Annotation of GO and KEGG Functions. To better un-
derstand the functional target genes and obtain better in-
sights into the stress-responsive genes and pathways, R
package “Cluster Profiler” was used to annotate the target
genes. ,e Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) were used to assess related
functional categories. ,e GO and KEGG enrichment
pathways with a p value and q value both less than 0.05 are
considered as the significant criterion.

2.5. Drug-Ingredients-Gene Symbols-Disease Network
Construction. NetworkAnalyzer in Cytoscape (version
3.7.1) is used to analyze the topological parameters in the
Drug-Ingredients-Gene Symbols-Disease (D-I-G-D) net-
work construction, such as the median degree and the
maximum degree. We further visualize the generated PPI
network through Cytoscape software, analyze the role of key
genes in the occurrence and development of diseases, and
explore the correlation between diseases and gene
expression.

2.6. Immune Cell Infiltration Analysis. CIBERSORT is an
analytical tool to provide an estimation of the abundances of
member cell types in a mixed cell population using gene
expression data [15]. ,e RNA-seq data on patients with
AMD were analyzed by CIBERSORT to reveal the relative
proportions of 22 immune-infiltrating cells and perform the
spearman correlation analysis of gene expression and im-
mune cell content. p< 0.05 is considered to be statistically
different.

2.7. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) uses a predefined gene set, ranks the genes
according to the degree of differential expression in the two
types of samples, standardize the Z-score, and then checks
whether the preset gene set is enriched at the ranking table.
,is study used GSEA to compare the signal pathway dif-
ferences sorted according to the level of expression and
explored the molecular mechanism of the core genes of the
two groups of patients. ,e number of replacements was set
to 1000, and the replacement type was set to phenotypes.
Statistical analysis is mentioned in section 2.8.5. Data
Processing and Statistical Analysis.

2.8. In Vitro Validation of the Experiment

2.8.1. Preparation of ZMPs. Ziyin Mingmu pills (30 g) were
completely crushed and mixed, and the mixture was
decocted with 100°C distilled water two times at a final ratio
of 1 : 9 (weight/volume).,e water extract was centrifuged at
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10000×g for 15min, and the extract was filtered and con-
centrated. ,e final concentration of the ZMP extract is
1.2 g/ml.

2.8.2. Cell Viability Assay. ,e ARPE-19 cell line was
purchased from Jennio Biotech Co., Ltd. (Guangzhou,
China) and cultured in complete culture media (Sigma-
Aldrich RPMI 1640). ,e ARPE-19 cell model of oxidative
stress damage was constructed by incubating the cells with
50 μL (concentration of 200 μmol/L) hydrogen peroxide
(H2O2). Cell viability was determined by the CCK8 assay
(Signalway Antibody, CP002). Briefly, adult retinal pig-
ment epithelial cell line-19 (ARPE-19) cells were seeded
into a 96-well plate and treated with ZMPs at the indicated
concentrations for 24 h. 10 μL of CCK8 solution was added
to each well, and the culture plate was incubated in an
incubator at 5% CO2 and 37°C for 4 hours. After treatment,
absorbance was measured at 560 nm using a microplate
reader. Cell viability was calculated according to the ab-
sorbance of each well with the following formula: cell
viability (%) � [(A560 sample −A560 blank)/(A560 con-
trol −A560 blank)] × 100%.

2.8.3. Wound Healing Assay and Analysis (Scratch
Experiment). Cells were divided into three groups, in-
cluding the normal group, model group, and ZPM group,
and seeded into 6-well plates at 2×105 cells/mL and in-
cubated for 24 h. After the cells reached 100% confluence,
the model group and ZPM groups were treated with H2O2
for 24 h. Wounds were generated using a 1mL tip. Media
were removed, and cells were washed with 600 μL of PBS.
,en, 600 μL of the complete culture media was added to the
normal group and the model group, and 400 μL of the
complete culture media and 200 μL of the ZMP extract were
added to the ZMP group. Images were acquired following
media replacement and 24 h.

2.8.4. Western Blot Assay. ARPE-19 cells were divided into
the normal group, model group (treated with 50 μL H2O2,
dynamics of H2O2 availability to ARPE-19 cultures in
models of oxidative stress), and ZMP group (treated with
200 μL of ZMP extracts). After treatment, cells were
collected and lysed for 30 min on ice with lysis buffer.
Samples were centrifuged at 15,000 rpm for 10min at 4°C,
and total protein concentrations were measured and then
denatured. Aliquots of 20–40 μg of lysates were separated
in a 6–12% sodium dodecyl sulfate polyacrylamide gel
along and transferred onto a polyvinylidene difluoride
membrane preactivated by methanol. ,e membrane was
blocked for 2 h at room temperature with 5% nonfat milk
powder dissolved in TBST (0.1% Tween-20 in TBS) and
then incubated with primary antibodies against EGFR
(Abcam, ab52894), VEGFA (Proteintech, 66828-1-Ig), or
beta-actin (Proteintech, 66009-1-Ig) for 12 h at 4°C.
Secondary antibodies were diluted in TBST containing
5% milk and incubated for 1 h at 25°C. ,e immune-
reactive targets were detected by using the ECL western

blotting substrate kit. Band density was analyzed by using
ImageJ software and normalized with the internal
control.

2.8.5. Data Processing and Statistical Analysis. SPSS 26.0
software combined with GraphPad Prism 9 software was
used for data processing and analysis. ,e enumeration data
were analyzed by the chi-square test. For the comparison of
quantitative data between two groups, the normality test
was first performed. If the normality of each group was
satisfied and the variance between the two groups was
equal, the t-test was used for the comparison between
groups; otherwise, the nonparametric Wilcoxon rank-sum
test was considered. For the comparison between multiple
groups, if the continuous data obeyed the normal distri-
bution and the variance was homogeneous, the one-way
analysis of variance (ANOVA) was used for the comparison
between the groups; LSD was used for the post hoc test. If
the difference between the groups was statistically signif-
icant, the Bonferroni method was used for the pairwise
comparison. Subject to normal distribution or unequal
variance, the Kruskal–Wallis rank-sum test was used for
comparison between multiple groups. When there was
a statistical difference between groups, the DSCF method
was used for multiple comparisons. p< 0.05 was considered
a statistically significant difference.

3. Results

3.1. Screening the Target of ZMPs Acting on AMD. ,e
method of network pharmacology is used to analyze and
determine the effect of Gouqi, Huangjing, Shudihuang,
Tusizi, Shanzhuyu, Mudanpi, Sanqi, Danshen, Niuxi,
Danggui, Chuanxiong, Qianghuo, Shichangpu, Shanyao,
Fuling, and Chushizi, a total of sixteen compound Chinese
herbal medicines, on AMD. We explored 820 targets related
to AMD by the OMIM database and the GeneCards database
(relevance score≥5). With bioavailability (OB)≥ 30% and
drug-like properties (DL)≥ 0.18 as the threshold, we
screened these sixteen Chinese medicines from the TCMSP
database, and 246 targets that were the active ingredients of
the medicines acting on AMD were obtained. We used
Cytoscape to show the relationship between Chinese
medicine components and targets in the form of a network
diagram (Figure 1). ,e 246 drug targets and 820 disease
targets related to AMD were intersected, and 66 intersecting
targets were disclosed (Figure 2).

3.2. Annotation of Target Gene Function Enrichment. By
exploring the network pharmacology and pathway re-
lationship between disease targets and drug targets, we
further inquire into the potential mechanism of Chinese
herbal compounds influencing age-related macular de-
generation. Using R package “Cluster Profiler,” the 66
intersecting targets were used for GO enrichment and
KEGG pathway analyses. ,e GO enrichment results
showed that the main pathways have cellular response to
oxidative stress, response to lipopolysaccharide, reactive
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oxygen species metabolic processes, and response to oxi-
dative stress (Figure 3). ,e KEGG enrichment results
showed that the main pathways involved in 66 genes are
fluid shear stress and atherosclerosis, AGE-RAGE signaling
pathways in diabetic complications, lipid and atheroscle-
rosis, HIF-1 signaling pathways, and other signaling path-
ways (Figure 4).

3.3. D-I-G-D Network Construction. We further used
Cytoscape software to generate a network visualization of
Chinese medicines against age-related macular degeneration
targets and an interactive diagram of core target-related
pathways. ,e chart can clearly show the molecular
mechanisms of 16 compound Chinese medicines regulating
66 targets and their effects on AMD (Figure 5).
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Figure 1: ,ere are a total of 246 targets that 16 different Chinese medicine active ingredients of drugs act on. Red labels represent 16
different Chinese medicines. Blue labels represent 246 targets of actions of 16 different Chinese medicine active components.
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Figure 3: GO analysis shows the top 10 terms of the 66 overlapping genes involved in AMD. ,e Y-axis in (a) and (b) represents the
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3.4. External Verification. We obtained the 66 intersecting
target proteins through the string database and then se-
lected the top ten genes of degree through Cytoscape.
,en, we used the GSE29801 dataset for external

verification and identified two key genes, epidermal
growth factor receptor (EGFR) and vascular endothelial
growth factor A (VEGFA), for follow-up research
(Figure 6).
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3.5. Immune Infiltration Analysis in AMD. We hereby an-
alyze the relationship between key genes and immune
infiltration in the AMD dataset and investigate the po-
tential molecular mechanisms of key genes affecting

the AMD’s immune microenvironment. Compared to
the normal group, the results represented that plasma
cells in patients with AMD were significantly higher, see
Figure 7.
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Figure 7: Continued.
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3.6. Gene Set Enrichment Analysis Enrichment. We studied
the specific signaling pathways involved in two key genes,
EGFR and VEGFA, and explored the potential molecular
mechanisms of core genes affecting the progression
of AMD. ,e results of multienrichment GSEA showed
that EGFR was mainly enriched in signal pathways
such as KEGG_OXIDATIVE_ PHOSPHORYLATION,
KEGG_P53_SIGNALING_PATHWAY, and KEGG_DNA_
REPLICATION. VEGFA was mainly enriched in pathways
including KEGG_MTOR_ SIGNALING_PATHWAY,

KEGG_T_CELL_RECEPTOR_ SIGNALING_PATHWAY,
and KEGG_ SPLICEOSOME (Figure 8).

3.7. ExperimentalValidation InVitro. ,e effect of ZMPs on
AMD was validated in vitro. We first examined the effect of
ZMPs on the viability of ARPE-19 cells, which are the
commonly used AMD-cell models. ,e results of CCK8
detection of different doses of hydrogen peroxide-induced
cell damage and ARPE-19 cell activity after treatment with
ZMP extracts showed that the dose of 50 μL hydrogen
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Figure 7: Estimation of fractions of immune cells. (a) 22 immune cells were annotated by various colors. (b) ,e heatmap illustrating the
differences in infiltrating immune cells, and the colors ranging from blue to red represent the infiltration density from low to high. (c) ,e
Wilcoxon rank-sum test was used to accurately compare the differences, and the results showed that plasma cells (p � 0.023) in the high-risk
group (blue symbol) displayed a significantly higher infiltration density. (d) ,e relationship between 2 hub genes and 22 infiltrating
immune cells was evaluated, and there was a strong association between EGFR and immune cell content. ∗p value <0.05; ∗∗p value <0.01.
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peroxide in the 96-well plate was the best choice and that the
ZMP extract dose was 200 μL. ,e statistical results are
shown in Figure 9.

Compared to the model group by the scratch experi-
ment, images were acquired following media replacement
(T� 0 h), which displayed no difference in the percentage of
wound healing distance in each group. Compared to the
model group by the scratch experiment, images were ac-
quired following 24 h, which showed that the percentage of
wound healing distance in the ZMP group was significantly
lower than that in the model group. ,ere was no difference
between the normal group and ZMP group, as shown in
Figures 10 and 11.

,e expression levels of EGFR and VEGFA proteins in
ARPE-19 cells in each group were detected by Western blot
(see Figure 12). ,e exposed film was scanned and analyzed
with the Quantity One grayscale analysis software. Com-
pared to those of the ZMP extract group, the expression
levels of EGFR in the normal group and the model group
were decreased; compared to those of the model group, the
expression levels of VEGFA in the normal group and the
ZMP extract group were decreased. ,e statistical analysis
results of the data are as follows.

4. Discussion

In aging or disease, the excessive accumulation of reactive
oxygen species (ROS) induced by photoreceptors and RPE
dysfunctions are considered the major causes of AMD
[16, 17]. Chinese medicine is a style of traditional medicine,
aims to regulate biological activity for balance, and has been
used to treat many diseases for thousand years in China

[18, 19]. Liver-kidney yin deficiency is considered to be the
major disharmony in patients either with AMD, and ZMP
has the effect of supplement deficiency and invigorate blood,
which effectively improve the disharmony of liver-kidney
yin deficiency [12, 20]. However, the specific pharmaco-
logical mechanism is incompletely understood. ,e oxida-
tive injured ARPE-19 cell line was ideally characterized
in vitro models of AMD [21]. In this study, we applied
network pharmacology to investigate the mechanism of
ZMPs acting on AMD, and the results showed active
ingredients of ZMPs targeting 66 gene effects on the
process of AMD. GO and KEGG pathway enrichment
analyses suggested that response to oxidative stress,
regulation of angiogenesis, and lipid and atherosclerosis
might serve as the most important signaling pathways in
ZMPs for AMD treatment. Immune infiltration analysis
showed that there was a strong association between AMD
and immune cell content. EGFR and VEGFA were
identified as key genes of AMD, and ZMP increased the
expression of EGFR, while it decreased the expression of
VEGFA and reduced the percentage of wound healing
distance in ARPE-19 cells.

Studies found that downregulated expression of vascular
endothelial growth factor (VEGF) and EGFR can inhibit NV
[22, 23]. In wet AMD, oxidative stress can alter RPE cells to
express VEGF, in turn, induced choroidal neo-
vascularization [24]. A study has shown that an increase in
VEGFA is sufficient to cause both forms of AMD pathol-
ogies [25]. Brolucizumab that binds to the major isoforms of
VEGFA has been administered as an effective treatment for
neovascular AMD [26]. ,ere are distinct anti-VEGF
molecules available for AMD treatment based on their
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Figure 8: Pathways enrichment involved in EGFR and VEGFA. Multienrichment GSEA showed that EGFR was mainly enriched in signal
pathways such as KEGG_OXIDATIVE_ PHOSPHORYLATION, KEGG_P53_SIGNALING_PATHWAY, and KEGG_DNA_ REPLI-
CATION. VEGFAwasmainly enriched in pathways including KEGG_MTOR_ SIGNALING_ PATHWAY, KEGG_T_CELL_RECEPTOR_
SIGNALING_ PATHWAY, and KEGG_ SPLICEOSOME.
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structure and function; however, the risk of intravitreal
injections and economic cost burden still exists [27]. So far,
treatment outcomes for dry AMD are still poor, with al-
most all patients exhibiting RPE dysfunction and loss [28].
EGFR is critical in cell proliferation, differentiation, and
migration, which raise cell survival under oxidative stress.
Studies on the ARPE-19 cell line indicate that oxidative
stress induced by H2O2 suspends expression of EGFR,
resulting in ARPE-19 cell loss. ,is finding suggests that
EGFR may be an important target for preventing oxidative
injury in RPE cells [29]. Another study in RPE cells has
found that suppressing aberrant EGFR activation induced

by cigarette smoking has an important effect on VEGF
release [30].

It is known that multiple factors including the in-
traocular microenvironment affected the progression of
AMD.,e immune regulation of RPE cells in the intraocular
microenvironment depends on the ability of RPE cells to
express cell surface molecules and soluble inhibitors, such as
transforming growth factor β (TGF- β), pigment epithelium-
derived factor (PEDF), complement regulatory proteins
(CD46, CD55, and CD59a), and interleukin (IL)-1 receptor
antagonist [31, 32]. ,e immune microenvironment is
mainly composed of immune cells, extracellular matrix,
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Figure 9: Detection of ARPE-19 cell viability after treatment with different doses of hydrogen peroxide (a) and ZMP extract (b) using one-
way ANOVA statistical analysis. ∗p< 0.05; ∗∗p< 0.01.
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Figure 10:,emorphology of ARPE-19 cell migration in each group. Normal group, nontreated cells; model group, cells treated with 50 μL
of H2O2 for 24 h before scratch; ZMP group, cells scratched and then treated with 200 μL of the ZMP extract for 24 h.
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a variety of growth factors, inflammatory factors, and special
physical and chemical characteristics, which significantly
affect the diagnosis of diseases and the sensitivity of clinical
treatment [33, 34]. Immune infiltration analysis suggested
there was a strong association between EGFR and immune
cell content, and the results were in line with expectations. In
AMD, inflammation develops within the retina in an at-
tempt to maintain ocular homeostasis and physiological
allostasis, reflected by increased expression of anti-
inflammatory cytokine IL-10 [35]. Furthermore, dysregu-
lation of macrophage and activation of retinal microglia are
observed and potentially contribute to macular degeneration
[36, 37]. Our in vitro validation experiment showed that the
ZMP extract promoted the proliferation and migration

ability of ARPE-19 cell lines and was involved in the in-
hibition of induced angiogenesis.

,ere are some shortcomings in this study. ,e targets
obtained by the network pharmacology of traditional Chi-
nese medicine compound prescriptions are mainly obtained
by the superposition of the predicted targets of each single
traditional Chinese medicine composition. In the actual
experiment and clinical medication process, different tra-
ditional Chinese medicine preparation methods and time
will affect the efficacy of the drug, so experimental or clinical
use. ,e composition of TCM supplements used clinically is
more complex than that of single TCM ingredients. ,is
study only qualitatively predicted and preliminarily verified
the drug components of ZMPs and the targets of AMD
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Figure 12: Comparison of EGFR and VEGFA protein expression in ARPE-19 cells in each group. (a) N represents the normal group, M
represents the model group, and Z represents the ZMP extract group. (b) Compared to those of the ZMP extract group, the expression levels
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in the normal group and the ZMP extract group were decreased. One-way ANOVA statistical analysis; ∗∗p< 0.01; ∗p< 0.05.
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disease, and the definite pharmacological effects still need to
be verified through animal experiments and even clinical
trials.

5. Conclusion

AMD is a complex multifactorial disease involving complex
molecular signaling pathway networks during its course.
,is study sheds light on some mechanisms of ZMP extract
therapy for AMD, particularly the effect of ZMP extracts on
the oxidative stress in RPE and cell survival and angiogenesis
in AMD. On this account, we propound the ZMP extract as
a promising strategy to intervene in the process of AMD.
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