Esculentoside A Inhibits Proliferation, Colony Formation, Migration, and Invasion of Human Colorectal Cancer Cells


1Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
2Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
3Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
4Director of the Research Center, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
5Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
6Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
7Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
8Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
9Prince Sultan Bin-Abdul-Aziz Center for Environment and Tourism Studies and Researches, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
10Department of Teriogenology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt

Correspondence should be addressed to Jewel Mallick; jewel@bgctub.ac.bd

Received 12 July 2022; Revised 10 August 2022; Accepted 16 August 2022; Published 10 February 2023

Academic Editor: Shuli Yang

Copyright © 2023 Maha Abdullah Momenah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Esculentosides include a group of plant-derived compounds with tremendous pharmacological potential. The antiproliferative effects of esculentoside A against different colorectal cancer cells were evaluated. We found that the proliferation of all the colorectal cancer cells was halted by esculentoside A. The IC50 of esculentoside A ranged from 16 to 24 μM against different colorectal cancer cells. Investigation of the underlying molecular mechanism revealed that esculentoside A caused an increase in the colorectal cancer cells at the G1 phase of the cell cycle, indicative of G0/G1 cell cycle arrest. The percentage of G1 cells increased from 22.68% in control to 54.23% at 16 μM esculentoside A. We also found that the colony formation of HT-29 cells was inhibited by 59% at 24 μM esculentoside A. Finally, effects of esculentoside A on the motility of HT-29 colorectal cancer cells were investigated, and it was found that esculentoside A caused a significant decline in HT-29 colorectal cancer cell migration and invasion. The migration and invasion of esculentoside A-treated HT-29 cells were 45% and 51% higher, respectively, than those of untreated cells. Summing up, these results suggest that esculentoside A exhibits antiproliferative effects against human colorectal cancer cells.

1. Introduction

Esculentosides constitute a large and diverse group of oleanene-type saponins with a wide array of pharmacological properties [1]. They are generally isolated from plant species belonging to the family Phytolaccaceae. Plant species such as Phytolacca esculenta and Phytolacca americana are important sources of esculentosides [2, 3]. They have been shown to have diverse bioactivities, which include antimicrobial, anti-inflammatory, and anticancer properties, to name a few.
2.4. Cell Cycle Analysis. HT-29 cells were subjected to fixation with 70% ethanol at 4°C for 12 h. Afterwards, a 100 μL suspension was treated with 50 μL propidium iodide (PI) at 4°C for 35 min. Lastly, cell cycle phase distribution was estimated by using a flow cytometer. 15,000 cells/sample were taken and analysed by BD FACSuite software version 1.0.

2.5. Transwell Assay. Migration and invasion of cells were estimated using Transwell chambers (BD Biosciences) with either Matrigel coating or without it for cell invasion and migration, respectively. HT-29 cells were put into the upper chambers. Nonetheless, lower chambers were filled with 10% FBS-containing medium. Cells were then incubated for 24 h and passed via membranes that were stained with 0.1% crystal violet (Sangon Biotech).

2.6. Statistical Analysis. Experimental procedures were done in triplicate. Data are presented as mean± standard deviation (SD). For statistical analysis, Student’s t-test with P < 0.05 was used.

3. Results

3.1. Esculentoside A Inhibits Proliferation of Colorectal Cancer Cells. Effects of esculentoside A (Figure 1(a)) on the proliferation of HT-29, HCT-116, and SW620 cell lines by the CCK-8 assay showed that esculentoside A triggered growth inhibitory effects on all three colorectal cancer cell lines (Figure 1(b)). These growth inhibitory effects of esculentoside A were found to be dose-dependent. The IC50 of esculentoside A ranged between 16 and 24 μM. The lowest IC50 of 16 μM was observed against the HT-29 cell line. As a result, this cell line was used for next experiments.

3.2. Esculentoside A Induces Cell Cycle Arrest of Colorectal Cancer Cells. Effects of Esculentoside A were assessed on HT-29 cells’ distribution in phases of the cell cycle. We found that the esculentoside A of HT-29 cells triggered their accumulation at the G1 phase of the cell cycle. The percentage of the G1 phase cells was enhanced from 22.68% to 54.23% at 16 μM dosage of esculentoside A (Figure 2). These findings are indicative of G0/G1 cell cycle arrest.

3.3. Esculentoside A Inhibits Colony Formation of Colorectal Cancer Cells. The effects of esculentoside on the colony forming property of HT-29 cells were also examined. HT-29 cells were administrated with different dosages of esculentoside A and subsequently incubated at 37°C for 14 days. We found that esculentoside A diminished the colony forming property of HT-29 cells. At 16 μM esculentoside A concentration, the colony formation was inhibited by 59% compared to the untreated HT-29 cells (Figure 3).

3.4. Esculentoside A Inhibits Migration and Invasion of Colorectal Cancer Cells. Effects of esculentoside A on HT-29 cells migration and invasion were evaluated by the transwell assay. The results showed that the migration and invasion of esculentoside A-treated HT-29 cells were diminished in a dose-dependent manner. The migration and invasion of esculentoside A-treated HT-29 cells were 45% and 51% higher, respectively, than those of untreated cells (Figures 4(a) and 4(b)).
Figure 1: Esculentoside A exerts antiproliferative effects on colorectal cancer cells. (a) Esculentoside A structure. (b) Effect of esculentoside A on the viability of colorectal cancer cells. Experiments were done in triplicate.

Figure 2: Esculentoside A induces cell arrest of colorectal cancer cells. Flow cytometry showing HT-29 cells distribution at various phases of cell cycle. The experiments were carried out in triplicate.
4. Discussion

Colorectal cancer is a devastating disease, causing a huge number of human mortalities across the world every year [8]. A lot of research efforts are put in from different corners of the world to decrease the incidence of colorectal cancer. However, due to the lack of reliable procedures for early detection and efficient chemotherapeutic agents without adverse effects, the management of colorectal cancer has become a mammoth task [9]. Researchers are looking for anticancer drugs from plant sources, as many previously used anticancer drugs have also come from plants [10]. Many plants are edible by nature, and it is believed that anticancer agents from such plants may prove to be nontoxic.
and safe [11–13]. In this study, a plant-derived saponin, esculentoside A, was evaluated for its antiproliferative effect against human colorectal cancer cells. Esculentoside A suppressed the growth of all the colorectal cancer cells. Liu et al. showed that esculentoside A targets the IL-6/STAT3 cascade to halt the growth of breast cancer cells [4]. Many related compounds, such as esculentoside H, have been shown to block the NF-κB signaling cascade and suppress CCC proliferation. Cell cycle analysis showed that esculentoside A arrests the cells at the G0/G1 phase [14]. Several saponins have previously been shown to induce cell cycle arrest; for example, Pennogenyl saponins triggered cell cycle arrest in hepatocellular carcinoma cells [15]. Previously, migration and invasion of colon cancer cells were inhibited by esculentoside H [14]. In this study, the effects of esculentoside A on the migration and invasion of colorectal cancer cells were evaluated. Interestingly, the migration and invasion of colorectal cancer cells were blocked by esculentoside A treatment, indicative of its antimetastatic potential [16–18].

5. Conclusion

Esculentosides are plant-derived compounds that have tremendous pharmacological applications. The present investigation showed that esculentoside A was able to suppress the proliferation and colony formation of colorectal cancer cells via G0/G1 cell cycle arrest. Furthermore, esculentoside A also reduced the movement and invasion of human colorectal cancer cells. Therefore, esculentoside A may prove to be a potential lead molecule for colorectal cancer chemotherapy. However, in vivo studies are required for further confirmation.

Data Availability

All data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

\This research was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R224), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References