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Houshiheisan (HSHS), a classic prescription in traditional Chinese medicine (TCM), has shown outstanding efcacy in treating
stroke. Tis study investigated various therapeutic targets of HSHS for ischemic stroke using mRNA transcriptomics. Herein, rats
were randomly separated into the sham, model, HSHS 5.25 g/kg (HSHS5.25), and HSHS 10.5 g/kg (HSHS10.5) groups. Rats
sufering from stroke were induced by permanent middle cerebral artery occlusion (pMCAO). After seven days of HSHS
treatment, behavioral tests were conducted, and histological damage was examined with hematoxylin-eosin (HE). Te mRNA
expression profles were identifed using microarray analysis and quantitative real-time PCR (qRT-PCR) validated gene ex-
pression changes. An analysis of gene ontology and pathway enrichment was conducted to analyze potential mechanisms
confrmed using immunofuorescence and western blotting. HSHS5.25 and HSHS10.5 improved neurological defcits and
pathological injury in pMCAO rats. Te intersections of 666 diferentially expressed genes (DEGs) were chosen using tran-
scriptomics analysis in the sham, model, and HSHS10.5 groups. Te enrichment analysis suggested that the therapeutic targets of
HSHS might regulate the apoptotic process and ERK1/2 signaling pathway, which was related to neuronal survival. Moreover,
TUNEL and immunofuorescence analysis indicated that HSHS inhibited apoptosis and enhanced neuronal survival in the
ischemic lesion. Western blot and immunofuorescence assay indicated that HSHS10.5 decreased Bax/Bcl-2 ratio and suppressed
caspase-3 activation, while the phosphorylation of ERK1/2 and CREBwas upregulated in a stroke rat model after HSHS treatment.
Efective inhibition of neuronal apoptosis by activating the ERK1/2-CREB signaling pathway may be a potential mechanism for
HSHS in the treatment of ischemic stroke.

1. Introduction

Stroke is a signifcant cause of death and morbidity among
adults. To date, 80% of stroke cases occur due to throm-
boembolic occlusion. Neuron death and brain atrophy
following a sudden drop in regional cerebral blood fow can
cause permanent neurological damage [1, 2]. Intravenous
thrombolysis and mechanical thrombectomy are efective
methods for ischemic stroke in clinics [3]. However, they
have some application limitations, including a narrow
therapeutic time window, strict evaluation criteria, and the
risk of hemorrhage [4, 5]. Additionally, more than 80% of

stroke survivors sufer from motor impairment of the upper
extremities and 50% still have it four years after the stroke
[6]. Terefore, neuroprotective strategies bring the greatest
hope for stroke survivors, while neuronal protection and
regeneration have been the main focus to efectively rescue
functional brain defcits [7].

Traditional Chinese medicine (TCM) has a long history
and unique advantage in treating ischemic stroke [8], which
has been one of the essential sources for new drug devel-
opment to treat ischemic stroke [9]. As the frst classic
prescription for stroke, HSHS can promote recovery of limb
and language function in patients with ischemic stroke and
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improve clinically the quality of their lives [10, 11]. HSHS
plays a neuroprotective efect by decreasing infammatory
factor expression [12] and reducing amyloid precursor
protein accumulation 24 and 72 h after cerebral ischemia
[13]. Additionally, HSHS improved axon growth by
inhibiting Nogo-A/RhoA/ROCK2 and Netrin-1/rac1/Cdc42
pathways [14] and promoted angiogenesis by regulating
HIF1α/VEGF and Ang-1/Ang-2 pathways to alleviate
neurological damage after seven days of stroke [15]. How-
ever, the mechanisms and pathways underlying the multi-
targeted efects of HSHS on ischemic stroke have been
incompletely elucidated.

Using advanced omics technology to study applying
TCM is an efcient and comprehensive method that links
traditional Chinese medicine and Western medicine
[16, 17]. As an essential part of systems biology, tran-
scriptomics technology is an efective tool to detect the
expression changes of global RNA in corresponding pro-
teins [18, 19]. Transcriptomics analysis can determine the
precise therapeutic targets and their interactions, which is
essential to clarify the multifaceted mechanism of tradi-
tional Chinese medicine prescriptions [20]. High-
throughput RNA-seq and microarray analyses have been
widely used to reveal molecular mechanisms of Chinese
herbal medicines for diseases such as stroke, cancer, and
hypertension [21–23].

Herein, we aimed to explore the neuroprotective efect of
HSHS on cerebral ischemia in a rat stroke model induced by
pMCAO. Furthermore, a deliberate strategy was conducted
that integrates transcriptomics methods and experimental
verifcation to investigate the potential mechanisms of HSHS
on ischemic stroke. Figure 1 shows the experimental fow
chart of this study.

2. Materials and Methods

2.1. Animals. In total, forty-eight male Sprague–Dawley rats
(280–320 g) were supplied from Beijing Vital River Labo-
ratory Animal Technology Co. Ltd., China. Tey were kept
(three rats/cage) in the specifc pathogen-free animal room
of the Animal Center of Capital Medical University, China.
All animal protocols were approved by the Institution
Animal Care and Use Committee of Capital Medical Uni-
versity (No. AEEI-2019-001).

2.2. Preparation of Houshiheisan (HSHS). HSHS formula
consists of 13 herbs (Table S1), all obtained from Beijing
Tongren-Tang Chinese Medicine Co. Ltd. and authenticated
by associate professor Jia Li at Capital Medical University,
Beijing. All herbs were mixed and immersed in the
10× volume of 30% ethanol for 2 h, extracted at 40°C with
ultrasound-assisted extraction for 1 h. Afterward, the pre-
cipitate was soaked in 8× 30% ethanol at 40°C with
ultrasound-assisted extraction for 40min. Using a rotary
evaporator, the two obtained fltrates were mixed and
concentrated into the fnal extract (1.2 g/mL). Additionally,
the chemical compositions of the extract were subjected to
quality control [24].

2.3. Experiment Design. All rats were randomly separated
into four groups after adaptive feeding: the sham, model,
HSHS5.25 (HSHS 5.25 g/kg), and HSHS10.5 (HSHS 10.5 g/
kg) groups (HSHS 10.5 g/kg was the clinical equivalent daily
dose in rats). Te pMCAO model was prepared [25]. Rats
were anesthetized with isofurane (5% for induction and 2%
for maintenance) in a 2 :1 N2O :O2 atmosphere during
surgery. After operation for seven days, the ischemic regions
of the cortex were frozen in liquid nitrogen and stored at
−80°C until further use.

2.4. Neurological Functional Assessment. Te neurological
dysfunction was assessed on postoperative days 1, 3, 5, and 7.
Te test of neurological defcit was scored as follows [25]: (0)
no evident symptoms, (1) unable to fully extend the left
forepaw, (2) crawling while spinning to the left side, (3) fall
to the left side while crawling, and (4) unable to walk or
unconscious.

Te beam walking test was used to assess the motor
coordination function of rats on days 3 and 7 after pMCAO.
Before the operation, each rat was trained to ensure it could
habituate to walking on the beam (80 cm long by 3 cm wide,
located 60 cm high). Te test was scored as follows [26]: (0)
cannot stay on the beam, (1) just stay on the beam but not
move, (2) try to traverse the beam but fell, (3) traverse the
beam with ≥50% hind-limb foot slips, (4) traverse the beam
with <50% hind-limb foot slips, (5) traverse the beam and
only one hind-limb slip, and (6) traverse the beam with
no slips.

2.5. Histological Assessment. Seven days after surgery, rats
were anesthetized and transcardially perfused with 4%
paraformaldehyde. Te brains were then routinely embed-
ded in parafn, sectioned at 4 μm, and stained with HE. Light
microscopy was used to observe pathological changes
(Nikon, Japan).

2.6. Transcript Profle Analysis. Total RNA from the peri-
infarct cortex of each group for three rats (sham, model, and
HSHS10.5 groups) was extracted with TRIZol reagent (Life
Technologies, USA). Ten, an RNeasy mini kit (Qiagen,
USA) was used to purify total RNA from infarcted tissue.
According to Afymetrix protocol, 250 ng total RNA was
used to conduct biotinylated cDNA by Ambion® WT Ex-
pression Kit. Te cDNA fragments were hybridized using
a Clariom D assay (rat, Afymetrix) for 16 h at 45°C. Afy-
metrix Fluidics Station 450 was used to wash and stain
GeneChips. All arrays were scanned using GeneChip®Scanner 3000 7G with Afymetrix® GeneChip Command
Console (AGCC).

2.7. Diferentially Expressed Genes (DEGs) Analysis. Te
moderated F-statistic was used to choose the multigroup
DEGs between model vs. sham groups and HSHS10.5 vs.
model groups using the R package “limma” (version 3.36.5).
P values were corrected using limma R Empirical Bayes
moderating with Benjamini–Hochberg for multiple test
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corrections. Te threshold set for DEGs was as follows: fold
change> 1.2, P< 0.05, and false discovery rate (FDR) <0.05.
Among sham, model, and HSHS groups, Venn diagrams
were used to determine the overlapped DEGs, performed by
hierarchical clustering using the R package “heat-map”
(version 1.0.12).

2.8. Functional Enrichment Analysis. An enrichment anal-
ysis of KOBAS-i (https://kobas.cbi.pku.edu.cn/) was per-
formed on the overlapping DEGs using gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[27]. Te bubble charts of GO and KEGG pathway en-
richment were plotted using a free online data analysis and
visualization platform (https://www.bioinformatics.com.cn/).
Pathways and GO terms were considered markedly enriched
at P< 0.01.

2.9. Quantitative Real-Time PCR Validation. Te total RNA
of the ischemic cortex was obtained with a TRIZol reagent
(Life Technologies, USA). Real-time PCR was conducted
using a one-step qRT-PCR kit (Toyobo, Japan) and quan-
tifed using the Bio-Rad CFX with a 20 μL system (Bio-Rad,
United States). Relative quantifcation of mRNAs was per-
formed using the 2−ΔΔCt method, and each sample was
normalized. Table S2 lists the PCR primers.

2.10. TUNEL Assay. Te parafn slices were dewaxed and
hydrated. Brain slices were washed in PBS containing
proteinase K (20 μg/mL), and stained with TUNEL detection
reagent (G1501, Servicebio, China) at 37°C for 1 h. Te
sections were collected using a fuorescent microscope
(Nikon, Japan). ImageJ was utilized to quantify the number
of TUNEL-positive cells.

2.11. Immunofuorescence Analysis. Te brain sections were
incubated with rabbit anti-NeuN (1 : 400, Cat no. 66836-1-
Ig, ProteinTech, United States (US)), rabbit anti-Bax (1 : 400,
Cat no.50599-2-Ig, ProteinTech, US), and rabbit anti-Bcl-2 (1 :
400, Cat no.12789-1-AP, ProteinTech, US) or rabbit anti-
cleaved caspase-3 (1 : 400, #9664, CST, US), respectively, at 4°C
overnight. Afterward, the sections were supplied with FITC (1 :
400, ZSGB-BIO, China) or Cy3 (1 : 400, Beyotime, China),
incubated for 2h, and stained with DAPI (SouthernBiotech,
US). Sections were collected using a fuorescent microscope
(Nikon, Japan). Five felds of viewwere randomly selected from
each section, and the average value of integrated optical density
was calculated using ImageJ software.

2.12.Western Blotting. Te protein sample with × 5 loading
bufer was boiled, electrophoresed on a 12% polyacrylamide
gel, and transferred to PVDF membranes. Membranes were

SD rats
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Figure 1: Experimental fow chart.
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blocked with 5% skim milk or bovine serum albumin dis-
solved in Tris-bufered saline with 0.1% Tween-20 (TBST)
for 1 h, and incubated overnight at 4°C with rabbit anti-Bax
(Cat No. 12789-1-AP, 1 : 5000, ProteinTech, US), rabbit anti-
Bcl-2 (Cat no. 12789-1-AP, 1 : 2000, ProteinTech, US) or
rabbit anti-cleaved caspase-3 (#9664, 1 :1000, CST, US),
anti-p-ERK1/2 (#4370, 1 :1000, CST, US), anti-ERK1/2
(#4695, 1 :1000, CST, US), anti-p-CREB (1 :1000, #9198,
CST, US), anti-CREB (#9197, 1 :1000, CST, US) or anti-
tubulin (GTX101279, 1 : 40000, GeneTex, US), and mouse
anti-GAPDH (GTX627408, 1 :10000, GeneTex, US) at 4°C,
respectively. Te next day, washed three times for 10min in
TBST, the membranes were incubated with appropriate
secondary antibody for 1 h, and washed for another three
times for 10min at room temperature. Immunoreactive
bands were observed with the enhanced chemiluminescence
detection reagent (Millipore, USA) and analyzed using
ImageJ software.

2.13. Data Analysis and Statistics. Results were expressed as
mean± standard error (SEM) and analyzed using GraphPad
Prism 8.0.2 software. Te comparison of data between
groups was analyzed using one-way analysis of variance
(ANOVA) with the least signifcant diference test for
multiple comparisons. Statistical signifcance was defned as
P< 0.05.

3. Results

3.1. HSHS Improved Neurological Defcits and Pathological
Injury in pMCAO Rats. To assess the neuroprotective efect
of HSHS on pMCAO rats, neurological tests and hema-
toxylin and eosin (HE) staining were conducted. Compared
to the model group, neurological defcit scores of HSHS10.5
group rats were reduced on days 3 and 5∼7 after the op-
eration (P< 0.05 or P< 0.01), while the HSHS5.25 group
showed a nonsignifcant decrease (Figure 2(a)). Te beam
walking test suggested that rats in the treated group per-
formed a better motor function after pMCAO. Te bal-
ancing beam scores in the model group decreased compared
to the sham group on the 3rd and 7th day (P< 0.001)
(Figure 2(b)). Compared to the model group, the scores in
HSHS10.5 group increased on the 3rd and 7th day (P< 0.05
or P< 0.01). Balance beam scores in the HSHS5.25 group
increased, but with a nonsignifcant diference.

HE staining revealed that neurons were disorderly
arranged, the cell membrane was vague, the cell body was
shrunk, the nucleus was stained with pyknosis, and neurons
were missing in the ischemic brain. Te treatment with
HSHS decreased the pathological abnormalities of the is-
chemic brain in pMCAO rats (Figure 2(c)).

3.2. HSHS Altered Gene Expression Profles in pMCAO Rats.
To further investigate the molecular mechanisms of HSHS,
gene expression profles in pMCAO rats were analyzed using
high-throughput microarray technology. In total, 8128
DEGs were identifed in the cortex of pMCAO rats between
the model and sham group (Figure 3(a)). Tere were 868

DEGs in the cortex of pMCAO rats between the HSHS10.5
andmodel groups (Figure 3(b)). We obtained 666 DEGs that
overlap for further analysis using the Venn plot (Figures 3(c)
and 3(d)). Te results of qRT-PCR confrmed the reliability
of microarray data (Figure 3(e)).

3.3. Functional Enrichment Analysis of DEGs. We imported
the 666 DEGs into the KOBAS-i database for GO and
KEGG pathway analyses to explore functional distribution
in the DEGs. Tese genes were associated with multiple
biological processes (BP) (P< 0.01) (Figure 4(a)). BP terms
were mainly enriched in positive regulation of the neuronal
apoptotic process, positive regulation of the apoptotic
process, apoptotic process, and negative regulation of the
ERK1 and ERK2 cascade, suggesting that HSHS exerts
benefcial efects on ischemic stroke by regulating the
apoptotic process.

Pathway annotation suggested that these genes were
involved in 50 pathways (P< 0.01). Te top 21 pathways
were performed (Figure 4(b)). Among these pathways, the
PI3K/AKTsignaling, mTOR signaling, and MAPK signaling
pathways were highly associated with the target genes.

3.4. HSHS Prevented Neuronal Apoptosis in pMCAO Rats.
In pMCAO rats, the peri-infarct cortex cell apoptosis was
evaluated by TUNEL staining. Te model group showed sig-
nifcantly more apoptotic cells that emit green fuorescence
than the sham group, while the number of apoptotic neuronal
cells in the HSHS5.25 and HSHS10.5 groups was signifcantly
reduced compared to the model group (P< 0.01, P< 0.001)
(Figures 5(a) and 5(c)). Te immunofuorescence method
measured neuronal-specifc marker NeuN (Figure 5(c)).
According to the quantitative analysis, NeuN immunoreac-
tivity in the model group signifcantly decreased (P< 0.001)
(Figure 5(d)). Te number of NeuN-positive cells signifcantly
increased in HSHS5.25 (P< 0.05) and HSHS10.5 groups
(P< 0.001) compared to the model group (Figure 5(d)).

3.5. HSHS Regulated Apoptosis-Related Proteins in pMCAO
Rats. Bax, Bcl-2, and cleaved caspase-3 are major apoptosis-
related proteins. Te expressions of Bax, Bcl-2, and cleaved
caspase-3 were examined using immunofuorescence (Fig-
ures 6(a)–6(c)). Te expressions of Bax and cleaved caspase-
3 in the peri-infarct cortex were markedly upregulated
compared to that of the model group (P< 0.001) (Figures
6(d) and 6(e)), but the expression of Bcl-2 was signifcantly
downregulated (P< 0.01) (Figure 6(f)). In pMCAO rats that
received HSHS10.5 treatment, the expressions of Bax
(P< 0.01) and cleaved caspase-3 (P< 0.001) were signifcantly
elevated, and Bcl-2 expression was increased (P< 0.05) in the
peri-infarct cortex compared to the model group. Cleaved
caspase-3 expression in the peri-infarct cortex was reduced in
theHSHS5.25 group compared to themodel group (P< 0.01).
Furthermore, the cortex around the infarction was examined
using a western blot to confrm the regulation of HSHS for
apoptosis-related proteins in pMCAO rats (Figures 6(g)–6(i)).
We observed a signifcant increase in the Bax/Bcl-2 ratio in
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the model group compared to the sham group (P< 0.01) and
a substantial decrease after HSHS10.5 treatment (P< 0.05)
(Figure 6(h)). Furthermore, rats treated with HSHS5.25 and
HSHS10.5 showed less cleaved caspase-3 protein level than
that of the model group (P< 0.05, P< 0.01) (Figure 6(i)),
consistent with the result of immunofuorescence.

3.6. HSHS Increased Expression of ERK1/2-CREB Signaling
Pathway-Related Proteins in pMCAO Rats. tTe expressions
of ERK1/2-CREB signaling-related proteins were examined to
further investigate the possible mechanisms of HSHS on

ischemic stroke using western blot. Compared to the sham
group, the p-ERK1/2/ERK1/2 ratio in the model group was
downregulated (P< 0.05). Te rats in the HSHS5.25 and
HSHS10.5 groups showed a signifcant increase in the p-ERK1/
2/ERK1/2 ratio compared to the model group (P< 0.01)
(Figures 7(a) and 7(b)). Compared to the sham group, the p-
CREB/CREB ratio in the model group was downregulated
(P< 0.05), while the p-CREB/CREB ratio in the HSHS10.5
group increased compared to the model group (P< 0.05)
(Figures 7(a) and 7(c)). Te p-CREB/CREB ratio in the
HSHS5.25 group was also upregulated (Figure 7(c)).
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4. Discussion

Ischemic stroke is mainly a disorder of blood supply to the
brain resulting from various causes, contributing to a clinical
syndrome characterized by hypoxic-ischemic damage to
brain tissue [28]. Besides vascular recanalization, TCM has
shown remarkable neuroprotective efects and gained great
attention in treating ischemic stroke [29]. In TCM, HSHS
was created by Zhang et al. to treat stroke, following the
pathogenesis of defciency of genuine qi and excess of
pathogenic factor [12]. Furthermore, HSHS has been used to
treat stroke for approximately 2000 years and is safe and
efective. However, the molecular mechanism of action has
not yet been fully elucidated. Herein, transcriptome analysis
and in vivo experiments were used to systematically in-
vestigate the pharmacological mechanisms of HSHS in
treating ischemic stroke.

Herein, HSHS exerted neuroprotective activity on pMCAO
rats by improving the symptoms of neurological impairment
and pathological injury.Ten, the high-throughput sequencing
technology of the microarray chip was conducted to explore
the therapeutic mechanism of HSHS for ischemic stroke from
the whole transcriptome level. We identifed 8128 DEGs be-
tween the model and sham groups and 868 DEGs between the
HSHS10.5 and model groups. We obtained 666 intersection
DEGs between the sham, model, and HSHS10.5 groups.
Furthermore, GO enrichment analysis on total intersection
DEGs showed that the efects of HSHS on ischemic stroke were
associated with positive regulation of neuron apoptotic process,
positive regulation of the apoptotic process, apoptotic process,
and negative regulation of ERK1 and ERK2 cascade. Moreover,
the KEGG pathways analysis demonstrated that the in-
tersection of DEGs was mainly associated only with the PI3K-

Akt signaling, mTOR signaling, and MAPK signaling path-
ways. Accordingly, the neuroprotective efect of HSHS in
stroke rats was related to the regulation of neuronal apoptosis.

Apoptosis plays a vital role in ischemia-induced neu-
ronal death in ischemic stroke [30]. In the infarct core,
excitotoxicity and neuronal necrosis occur in several min-
utes [31]. However, many dormant or semidormant nerve
cells in the ischemic penumbra mainly occur in delayed
death in the form of apoptosis [32]. Tese cells are the most
possible and valuable to be rescued in clinics [30]. Sub-
sequently, preventing neuronal apoptosis in the penumbra
and improving its dysfunction is vital to treat ischemic
stroke [33]. Herein, TUNEL and NeuN staining results
showed that HSHS reduced the number of cell apoptosis to
protect neurons in pMCAO rats. Meanwhile, treatment of
HSHS decreased the expression of proapoptotic proteins
Bax and cleaved caspase-3 and increased antiapoptotic
protein Bcl-2 expression. Te previous results indicated
that HSHS signifcantly increased the number of surviving
neurons by preventing apoptosis in the peri-infarct of
pMCAO rats.

We evaluated the related signaling pathways and found
that HSHS could suppress apoptosis by activating the ERK1/
2-CREB signaling pathway. Mitogen-activated protein ki-
nase (MAPK) signaling pathway controls diferent physio-
logical processes, such as cell growth, development, division,
and death [34, 35]. As a member of the MAPK family,
extracellular regulated protein kinases (ERKs) exert a crucial
role in transmitting signals from surface receptors to the
nucleus. Phosphorylated ERKs are transferred from the
cytoplasm to the nucleus to regulate cell proliferation,
survival, diferentiation, and apoptosis [34, 36]. Upregu-
lating ERK1/2 pathway activity is associated with neuronal
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Figure 4: Functional enrichment analysis of DEGs: (a) the top 20 signifcant biological processes and (b) the top 21 signifcant KEGG
pathways.

Evidence-Based Complementary and Alternative Medicine 7



50 um

50 um

50 um

TUNEL

DAPI

Merge

Sham Model HSHS5.25 HSHS10.5

(a)

NeuN

DAPI

Merge

50 um

50 um

50 um

(b)

TU
N

EL
+  ce

ll 
nu

m
be

r
10

3 
(m

m
2 )

**

HSHS10.5

Model
HSHS5.25

***

0.0

0.2

0.4

0.6

0.8

1.0

(c)

*

Sham
Model HSHS10.5

HSHS5.25

***

###

N
eu

N
+  ce

ll 
nu

m
be

r
10

3 
(m

m
2 )

0.0

0.5

1.0

1.5

(d)

Figure 5: Efect of HSHS on neuronal apoptosis in pMCAO rats. (a, b) Micrographs of the TUNEL-labeled and NeuN-labeled in the peri-
infarct cortex. (c) Quantitative data of apoptotic cells in various groups. (d) Quantitative data of the NeuN+ cells in various groups of rats.
Scale bars: 50 μm and magnifcation: 400×. Results were presented as mean± SEM, n� 3. ###P< 0.001 vs. sham group, and ∗P< 0.05,
∗∗P< 0.01 and ∗∗∗P< 0.001 vs. model group.
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Figure 6: Efect of HSHS on regulated apoptosis-related proteins in pMCAO rats. Te representative images and immunofuorescence
analysis for Bax (a, d), Bcl-2 (b, e), and cleaved caspase-3 (c, f ) in the peri-infarct cortex (n� 3). (g–i) Te protein levels of Bax, Bcl-2, and
cleaved caspase-3 were determined by western blot analysis (n� 4). Results were presented as mean± SEM. #P< 0.05, ##P< 0.01, and
###P< 0.001 vs. sham group, and ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001 vs. model group.
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survival in ischemic stroke models in vivo and in vitro
[37, 38]. ERK1/2 acts as a neuroprotective agent by inhib-
iting postischemic oxidative stress and mitochondria-
dependent apoptosis of neural cells [39, 40]. ERK1/2 acti-
vation can promote the phosphorylation of CREB, increase
the expression of prosurvival protein Bcl-2, inhibit ischemia-
induced neuronal apoptosis, and enhance neuronal survival
[41, 42]. As a post-translationally activated transcription factor,
cyclic AMP response element binding protein (CREB) par-
ticipates in many brain functions, such as promoting neuronal
survival mainly by increasing the expression of neurotrophic
factors and antiapoptotic genes [43, 44]. Hypoxia and ischemia
increase the phosphorylation of CREB in brain tissue. How-
ever, inhibiting the phosphorylation of CREB reduces Bcl-2
expression [45]. Herein, the phosphorylation of ERK1/2 and
CREB was downregulated in pMCAO rats, whereas HSHS
treatment protected neurons and increased ERK1/2 and CREB
phosphorylation. Tese results indicated that ERK1/2-CREB
pathway activation might play a vital role in the neuro-
protection of HSHS on ischemic stroke.Tese fndings provide
a solid theoretical basis for the clinical application of HSHS in
ischemic stroke.

5. Conclusion

Tis study used transcriptome analysis and in vivo exper-
iments to systematically investigate the neuroprotective
mechanisms of HSHS in ischemic stroke. Te results sug-
gested that HSHS may prevent neuronal apoptosis by ac-
tivating the ERK1/2-CREB signaling pathway, providing
a novel insight for treating ischemic stroke.

Data Availability

Te data that support the fndings of the study are available
in this article.
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