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Background. Vascular dementia (VD), associated with cerebrovascular injury, is characterized by severe cognitive impairment.
Jianpi Tianjing Decoction (JTD) has been widely used to treat VD. However, its molecular targets and mechanisms of action in
this treatment remain unclear. This study integrated network pharmacology and proteomics to identify targets and mechanisms of
JTD in the treatment of VD and to provide new insights and goals for clinical treatments. Methods. Systematic network
pharmacology was used to identify active chemical compositions, potential targets, and mechanisms of JTD in VD treatment.
Then, a mouse model of VD was induced via transient bilateral common carotid artery occlusion to verify the identified targets
and mechanisms of JTD against VD using 4D label-free quantitative proteomics. Results. By screening active chemical com-
positions and potential targets in relevant databases, 187 active chemical compositions and 416 disease-related compound targets
were identified. In vivo experiments showed that JTD improved learning and memory in mice. Proteomics also identified 112
differentially expressed proteins in the model and sham groups and the JTD and model groups. Integrating the network
pharmacology and proteomics results revealed that JTD may regulate expressions of cytochrome ¢ oxidase subunit 7C,
metabotropic glutamate receptor 2, Slc30al zinc transporter 1, and apolipoprotein A-IV in VD mice and that their mechanisms
involve biological processes like oxidative phosphorylation, regulation of neuron death, glutamate secretion, cellular ion ho-
meostasis, and lipoprotein metabolism. Conclusions. JTD may suppress VD development via multiple components, targets, and
pathways. It may thus serve as a complementary treatment option for patients with VD.

1. Introduction

Vascular dementia (VD) is a cognitive dysfunction associ-
ated with cerebrovascular injury and characterized by severe
impairment of cognitive functions, including attention,
memory, verbal fluency, and executive function [1].

Epidemiological studies indicate that VD is the second
leading cause of dementia and that in addition to economic
burdens, it negatively impacts patient health, productivity,
and daily activities [2]. Current studies identify VD as
a cognitive dysfunction with multifactorial pathogenesis,
probably related to atherosclerosis, lipid metabolism,
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oxidative stress, the inflammatory response, calcium over-
load, excitotoxicity, and/or hemostatic activation [3-6].
Drugs that may improve VD symptoms include choline
esterase inhibitors (donepezil, galantamine, and riva-
stigmine) and N-methyl-D-aspartate receptor antagonists
(memantine) [7]. Studies have shown that donepezil and
galantamine treatments modestly improve cognition but
have no effect on activities of daily living [8, 9]. In a ran-
domized controlled trial, incidences of adverse events from
donepezil (10 mg, 5 mg) and placebo were 16.3%, 10.1%, and
8.8%, respectively [10]. Another clinical trial showed that
compared with a placebo, there were more deaths in the
donepezil group [11]. In a trial testing galantamine treat-
ment for VD, the incidence of adverse events from the drug
and placebo were 13% and 6%, respectively [12]. Riva-
stigmine has minimal effects on cognitive symptoms [13].
Memantine produces small benefits in patients with mild to
moderate vascular dementia, and current data are in-
sufficient to support the widespread use of memantine in
vascular dementia [14]. These drugs also have limited effi-
cacy and adverse effects that include nausea, vomiting, di-
arrhea, dizziness, headache, and hypertension [14, 15].
Therefore, there is an urgent need to develop complemen-
tary and alternative VD therapies.

Chinese herbal formula (CHF) has multiple targets and
tfew side effects, playing an active role in VD treatment [16].
CHF showed fewer adverse effects, lower costs, and im-
proved suitability for long-term use compared with cur-
rently prescribed drugs [17]. For example, clinical trials have
confirmed that the Shenmayizhi formula combined with
ginkgo extract tablets effectively improves cognitive function
in mild-to-moderate VD without adverse effects, and clinical
outcomes from Dingzhi Yicong granules are superior to
those with piracetam in patients with VD [18, 19]. Our team
developed Jianpi Tianjing Decoction (JTD) based on years of
clinical experience and guided by traditional Chinese
medicine (TCM) theory. JTD consists of seven Chinese
herbal medicines (CHM), including Panax ginseng C.A.
Meyer, Gastrodia elata, Atractylodes macrocephala, Morinda
officinalis Radix, Acorus tatarinowii Schott, Rhizoma copti-
dis, and Semen cuscutae. Previous studies have shown that
Gastrodia elata ameliorates vessel elasticity and prevents
atherosclerosis [20]. Panax ginseng C.A. Meyer extract at-
tenuates neuronal injury and cognitive deficits in a VD rat
model by upregulating the apoptosis regulator Bcl-2 and
downregulating the apoptosis regulator BAX (Bax) pro-
tein expression [21]. Rhizoma coptidis improves the rat
neurological function after acute brain injury by in-
creasing the hippocampal brain-derived neurotrophic
factor expression [22]. Our preliminary study confirmed
that JTD significantly improves cognitive function and
quality of life in patients with mild cognitive dysfunction
[23, 24]. Animal studies have also identified potential
mechanisms of JTD for treating VD, including reducing
oxidative stress damage, maintaining hippocampal mi-
tochondrial membrane potential and adenosine tri-
phosphate (ATP) levels, and improving mitochondrial
dysfunction [25, 26]. However, CHF composition is so
intricate that it is difficult to fully clarify its mechanisms
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through traditional research methods. Therefore, it is
necessary to focus on the potential system-level mecha-
nisms of JTD in VD treatment.

Network pharmacology is a novel method for studying
CHM and CHF that combines systematic network analysis
and pharmacology to identify interactions among com-
pounds, genes, proteins, and diseases [27]. Tian et al. suc-
cessfully predicted 28 potentially active Shenzhi Jiannao
prescription ingredients and 21 VD therapy targets. They
found that the potential targets of these 28 active ingredients
mainly involve neuroactive ligand-receptor interactions,
calcium, apoptosis, and cholinergic synaptic signaling
pathways [28]. Through network pharmacology analysis, Shi
et al. discovered that the five core compounds in Yizhi
Tongmai decoction exert antiVD effects [29]. Proteomics, an
important tool for exploring drug targets and molecular
mechanisms, is now also widely applied in many life sciences
[30]. It can be used to analyze differentially expressed
proteins (DEPs) to explore CHM molecular mechanisms of
action. Yang et al. identified 245 Fugui Wenyang Decoction
(FGWYD) genes and 145 VD genes via network pharma-
cology, showing that the Nrf2/HO-1 pathway plays an
important role in the FGWYD treatment of VD [31]. That
group also used proteomics to verify the neuroprotective
mechanistic role of the Nrf2/HO-1 pathway in the FGWYD
treatment of VD. An integrated network pharmacology and
proteomics analysis can provide a more comprehensive
description of CHF molecular mechanisms. Hence, this
study integrated network pharmacology and proteomics to
analyze the molecular targets and mechanisms of action of
JTD in the treatment of VD. First, network pharmacology
was performed to predict the target proteins and pathways
related to JTD in the treatment of VD. Second, mass
spectrometry (MS) analysis was used to identify differen-
tially expressed proteins after VD model mice were treated
with JTD. Finally, we revealed the targets and mechanisms of
JTD by combining the network pharmacology and pro-
teomic results.

2. Materials and Methods
2.1. Network Pharmacology Analysis

2.1.1. Data Sources. The TCM systems pharmacology
(TCMSP) database (https://www.old.tcmsp-e.com/tcmsp.
php (accessed October 7, 2022)), BATMAN-TCM (http://
www.bionet.ncpsb.org/batman-tcm/(accessed October 7,
2022)), ETCM (http://www.tcmip.cn/ETCM/(accessed Oc-
tober 7, 2022)), chemical database (http://www.organchem.
csdb.cn (accessed October 7, 2022)), and more recent re-
search literature were used to collect the chemical compo-
sitions of Panax ginseng C.A. Meyer, Gastrodia elata,
Atractylodes macrocephala, Morindae Officinalis Radix,
Acorus tatarinowii Schott, Rhizoma coptidis, and Semen
Cuscutae. Next, active chemical compositions were screened
using the Swiss ADME database (http://www.swissadme.ch/
(accessed October 9, 2022)) and selected based on oral
bioavailability “> 30%,” gastrointestinal absorption level
“high,” and “Yes” for atleast three of Lipinski, Ghose, Veber,
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Egan, or Muegge drug-likeness items or drug-likeness
“>0.18.”

2.1.2. Targets of Disease-Related Compounds. VD genes were
collected from GeneCards (https://www.genecards.org/
(accessed October 10, 2022)), OMIM (https://www.omim.
org/ (accessed October 10, 2022)) and Drugbank (https://
www.go.drugbank.com/ (accessed October 10, 2022)) da-
tabases. The protein targets of active chemical compositions
were obtained through the TCMSP and Swiss Target Pre-
diction databases (http://www.swisstargetprediction.ch/
(accessed October 10, 2022)). Target protein names were
transformed into their equivalent official gene names using
the UniProt database (https://www.sparql.uniprot.org/
(accessed October 10, 2022)). An online data analysis and
visualization platform (http://www.bioinformatics.com.cn/
(accessed October 10, 2022)) was used to plot Venn dia-
grams and access disease-related compound targets.

2.1.3. Network Construction and Analysis. Cytoscape 3.9.1
software was used to construct the “herb-component-target”
network diagram. Disease-related compound targets were
imported into the String database (https://www.string-db.
org/ (accessed October 11, 2022)), with species “Homo
sapiens”, and the protein—protein interaction (PPI) network
was generated based on a confidence level >0.7. The results
were imported into Cytoscape 3.9.1 for visualization and
analysis, and the top 30 hub genes were ranked with the
CytoHubba plug-in of Cytoscape 3.9.1. Finally, Gene On-
tology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses of potential targets
were performed on the Metascape platform (https://www.
metascape.org/ (accessed October 11, 2022)).

2.2. Animal Experiment

2.2.1. Experimental Animals. Forty Institute of Cancer
Research mice (6-8weeks old males, 20+2g, specific
pathogen-free) were purchased from the Shanghai Institute
of Planned Parenthood Research Center for Animal Re-
search (laboratory animal certificate: SCXK (Shanghai)
2018-0006). Animal experiments were approved by the
Animal Experimentation Ethics Committee of Zhejiang
Chinese Medical University (grant number: IACUC-
20210906-12). The mice were kept at the Zhejiang Chinese
Medical University Laboratory Animal Research Center
(license number: SYXK (Zhejiang) 2021-0012). All mice
were allowed to acclimatize for one week prior to being used
in experiments. Mice were group housed (five per cage) at
22+ 2°C and humidity 63 + 2%, with noise level <55 dB and
an alternating 12-h light/dark cycle. The mice had free access
to standard laboratory food and tap water.

2.2.2. Experimental Drugs. JTD granules were composed of
Panax ginseng C.A. Meyer 9g, Gastrodia elata 9g, Atrac-
tylodes macrocephala 10g, Morindae Officinalis Radix 6 g,
Acorus tatarinowii Schott 6g, Rhizoma coptidis 3g, and

Semen Cuscutae 12g. The JTD granules are prepared in
accordance with the previous methods [32, 33]. The col-
lected CHM was washed with water to remove any dust or
foreign particles present on them and shade-dried for one
week at room temperature to avoid excessive loss of volatile
components. After drying, the CHM was ground to prepare
the crude powder. The above crude powder was subjected to
extraction using a hydroalcoholic (30: 70, water: ethanol)
solvent to obtain the CHM granules [34]. All components
were supplied by the Hangzhou Hospital of Traditional
Chinese Medicine, which is affiliated with Zhejiang Chinese
Medical University (Panax ginseng C.A. Meyer lot no.
21021463, Gastrodia elata lot no. 21041643, Atractylodes
macrocephala lot no. 21073513, Morindae Officinalis Radix
lot no. 2101010, Acorus tatarinowii Schott lot no. 2104010,
Rhizoma coptidis lot no. 21051343, and Semen Cuscutae lot
no. 20111003). Previous studies have shown that the optimal
therapeutic dose of JTD in mice is 20.160 g/kg/d [25, 26] and
that the typical daily intragastric dose in mice is 10 mg/kg
[35]. Thus, we dissolve JTD granules in an appropriate
amount of normal saline to achieve a final solution con-
centration of 2.016 g/ml.

2.2.3. Animal Modeling, Grouping, and Intervention. The 40
mice were randomly divided into three groups: sham surgery
(n=10), model (n=15), and JTD (n=15). The transient
bilateral common carotid artery occlusion (BCCAO) surgery
was performed as previously described with minor modi-
fications [36]. The mice in each group were anesthetized by
intraperitoneal injection of 0.3% pentobarbital sodium so-
lution (0.25 ml/10 g). Mice in the model and JTD groups had
a midline cervical incision. After exposure, both the right
and left common carotid arteries were isolated from the
adjacent vagus nerve, and silk was passed below each carotid
artery for closure. The bilateral carotid arteries were locked
by silk strings for 10 min and then released for 10 min, and
this was repeated three times. The strings were then removed
and the incision sutured. In the sham group, the same neck
region was surgically opened to isolate the vagus nerve and
then sutured without a transaction. To prevent wound in-
fection, each mouse received an intramuscular injection of
penicillin at a rate of 5,000 units per day for three days. Seven
days after surgery, mice in the JTD group were treated with
daily intragastric 10 ml/kg/d JTD solution for 28 days. Sham
and model groups were treated on the same schedule with
saline.

2.2.4. Morris Water Maze Test. After the 28 treatment days,
learning and memory were assessed by the Morris water
maze test. This test uses a circular pool (100 cm in diameter)
with a circular escape platform (6cm in diameter, 1.0 cm
below the water’s surface) and an image acquisition system.
The pool is divided into four quadrants, with the circular
escape platform in the third quadrant. Powdered milk is
added to make the water opaque. The mice were released
from the four quadrants, respectively, and given 90 s (max)
to find the platform. If the mice could not find the platform
in 90s, they were guided onto the platform and allowed to
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remain for 30 s. Training occurred on four consecutive days.
At the end of this training period, the mice were randomly
released into the first, second, or fourth quadrant, and their
time to reach the platform, or escape latency (EL), was
recorded. Testing lasted five days. On day 6, the circular
escape platform was removed, and each mouse was placed in
the first quadrant. Duration spent in the third quadrant and
number of times crossing the platform (TCP) during 1 min
were recorded.

2.3. Proteomics Methods

2.3.1. Sample Preparation and Protein Extraction.
Following Morris water maze testing, all mice were sacri-
ficed, and the extracted brains were immediately placed in
liquid nitrogen and stored at —80°C. Three samples from
each group were randomly assigned to subsequent analysis.
SDT buffer (P0015F, Beyotime, 4% SDS, 100 mM Tris-HCI,
pH=7.6) was added to samples to extract proteins. The
supernatant was quantified with the BCA Protein Assay Kit
(P0012, Beyotime). Proteins were then digested using the
filter-aided sample preparation procedure [37]. The CI18
column (IonOpticks, Australia; 25cm x 75 um, 1.6 ym C18
beads) was used to desalt the peptide segment.

2.3.2. MS Analysis. Samples were analyzed on a nanoElute
(Bruker, Bremen, Germany) coupled to a TIMS TOF Pro
(Bruker, Bremen, Germany) equipped with a CaptiveSpray
source. Peptides were separated on a 25cm x 75um ana-
Iytical column, 1.6 yum C18 beads with a packed emitter tip
(IonOpticks, Australia). The column was equilibrated using
4 column volumes before loading a sample in 100% buffer A
(0.1% formic acid). Samples were separated at 300 nl/min
using a linear gradient as follows: 2-22% buffer B (99.9%
acetonitrile and 0.1% FA) for 75 min, 22-37% buffer B for
5min, 37-80% buffer B for 5 min, and hold in 80% buffer B
for 5min. The TIMS TOF Pro was operated in parallel
accumulation-serial fragmentation (PASEF) mode. Specifi-
cations were as follows: mass range 100-1700 m/z; 1/KO start
0.75 V-s/cm’ end 1.4 V-s/cm? ramp time 100 ms; lock duty
cycle to 100%; capillary voltage 1500 V; dry gas 3 L/min; dry
temp 180°C. PASEF settings were as follows: 10 MS/MS
scans (total cycle time 1.16 sec); charge range 0-5, active
exclusion for 0.5min; scheduling target intensity 10,000;
intensity threshold 2,500; and CID collision energy
20-59eV.

2.3.3. DEP Bioinformatics Analysis. MS data were analyzed
using MaxQuant software version 1.6.17.0. A label-free
quantitation strategy [38] was used for protein quantita-
tion. Proteins with a fold change >1.2 (or <0.8), and p <0.05
were considered DEPs. Hierarchical cluster analysis was
performed using Matplotlib 3.5.1. GO annotations were
performed on the DEPs using Blast2GO. The KEGG data-
base (http://www.kegg.jp/) was used to obtain information
on the biological pathways of DEPs. GO and KEGG pathway
enrichment analyses were evaluated using Fisher’s exact
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probability test. The DEPs were imported into the String
database with the species “MusMusculus”, and results were
imported into Cytoscape 3.9.1 for visual analysis.

2.4. Statistical Analysis. All data were analyzed using IBM
SPSS Statistics for Windows, Version 25.0 (Armonk, NY:
IBM Corp). Continuous data are expressed as mean-
+ standard deviation. Significant between-group differences
are represented by *p <0.05 or **p <0.01. Normality was
tested by the Shapiro-Wilk test. Homogeneity of variance
was tested by the Levene test. A one-way analysis of variance
(ANOVA) was used when variance was homogeneous. For
samples with unequal variance, the Mann-Whitney test
was used.
In addition, the study protocol is shown in Figure 1.

3. Results

3.1. Targets of Disease-Related Compounds. A total of 187
active chemical compositions in JTD and 854 potential
targets for its herbal ingredients were screened from various
databases and published literature. A total of 4,709 VD genes
were obtained from the GeneCards, OMIM, and DrugBank
databases. The 416 disease-related compound targets were
obtained by a Venn diagram (Figure 2(a)). Among those
disease-related compound targets, Panax ginseng C.A. Meyer
had 322 potential targets, Gastrodia elata had 143 potential
targets, Atractylodes macrocephala had 84 potential targets,
Morindae Officinalis Radix had 88 potential targets, Acorus
tatarinowii Schott had 149 potential targets, Rhizoma cop-
tidis had 269 potential targets, and Semen Cuscutae had 139
potential targets (Figure 2(b)).

3.2. Construction of the JTD-VD PPI Network and Crucial
Targets. The active chemical compositions and disease-
related compound targets were imported into Cytoscape
3.9.1 to construct the herb-component-target network di-
agram (Figure 3), which consists of 3,671 edges and 585
nodes. The higher the degree value, the larger the node. The
top five degrees among all active chemical compositions
were quercetin, dauricine, kaempferol, deoxyharringtonine,
and panaxacol. Next, the 416 disease-related compound
targets were imported into the String database to build the
JTD-VD PPI network (Figure 4). The top 30 Hub genes were
selected and mapped using the CytoHubba plug-in of
Cytoscape 3.9.1, and the top-ranked genes were RAC-alpha
serine/threonine-protein kinase, cellular tumor antigen p53,
CREB-binding protein, ethylene-responsive transcription
factor ESR1, and cyclin-dependent kinase inhibitor 1
(Figure 5).

3.3. GO and KEGG Pathways Enrichment Analysis of Potential
Targets. To investigate potential signaling pathways or bi-
ological processes (BPs), GO and KEGG pathways were
analyzed for potential JTD targets. GO enrichment analysis
showed that potential targets were involved in 2,766 GO
terms: 3,414 in BP, 234 in cellular components (CC), and 395
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in molecular functions (MF). The top 20 GO enrichment
analyses are shown in Figure 6(a). GO-BP analysis showed
that potential targets focused mainly on the negative reg-
ulation of phosphorylation, the inflammatory response,
cellular calcium ion homeostasis, regulation of synapse
organization, the regulation of the lipid catabolic process,
and the cellular response to nitrogen compounds. GO-CC
analysis showed that potential targets were primarily focused

on the receptor complex, postsynaptic membrane, and
presynaptic membrane. Additionally, GO-MF analysis
showed that potential targets were concentrated mainly on
protease binding, copper ion binding, and lipoprotein
particle binding. KEGG enrichment analysis showed that
potential targets were involved in 236 pathways
(Figure 6(b)). Thus, the mechanisms of action of JTD in the
treatment of VD may be closely related to multiple pathways,
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FiGure 3: Network of herb-component-targets. Rectangles represent VD genes; ellipses and triangles represent active chemical

compositions.

including lipid and atherosclerosis, neurodegeneration in
multiple diseases, calcium signaling, fluid shear stress and
atherosclerosis, PI3K-Akt signaling, and MAPK signaling.

3.4. General Condition of Experimental Animals and Morris
Water Maze Results. No death was observed in the sham
group mice, and three mice in each of the JTD and model
groups died within three days post-surgery. The cause of
death of mice may be accidental death caused by vagus nerve
injury caused by excessive traction during operation. Two
mice in each of the JTD and model groups died during the
2 weeks. During this period, the cause of death in mice may
be due to the stress response, low mood, and inability to eat
and drink independently. The rest of the experimental mice
survived until the end of the experiment.

Morris water maze results are shown in Figures 7(a)-
7(d). All groups showed a progressive decrease in EL during
training, indicating that mice in each group could learn the
platform’s location. On trial days 2-5, EL was significantly
longer in the model group compared with the sham group
and significantly shorter in the JTD group compared with
the model group (p <0.01). When the hidden platform was
removed on day 6, compared with the sham group, TCP and
time spent in the platform quadrant (TSPQ) of the model
and JTD groups decreased significantly (p<0.01) and

increased significantly in the JTD group compared with the
model group (p <0.01).

3.5. DEPs Identification. MS analysis identified 5,236 pro-
tein groups and 50,097 unique peptides. There were 152
DEPs identified according to the stated criteria (fold-change
ratio >1.2 or <0.833, and p<0.05) (Figures 8(a)-8(e)).
Compared with the sham group, there were 32 upregulated
proteins and 21 downregulated proteins in the model group
(p <0.05). Compared with the model group, there were 39
upregulated proteins and 26 downregulated proteins in the
JTD group (p < 0.05). The Venn diagram shows DEP overlap
(Figure 8(a)). Cluster analysis showed that the up- or
downregulated model group proteins showed back regula-
tion in the sham and JTD groups (Figures 9(a) and 9(b)).
Alpha-1-antitrypsin 1-3 (serpinalc), potassium voltage-
gated channel subfamily C member 2, histone H2A, and
protein FAM234B showed upregulation in the model group
and downregulation in the JTD group. Adar and Ighg
showed downregulation in the model group and upregu-
lation in the JTD group. There were also three overlapping
proteins among the DEPs identified by proteomics and the
potential targets selected by the network pharmacology:
metabotropic glutamate receptor 2 (Grm2), carbonic
anhydrase 1, and glycolate oxidase 1.
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FIGURE 4: JTD-VD PPI network. Larger degrees are indicated by bigger nodes; darker colors indicate more important nodes.

3.6. GO Terms and KEGG Pathway Analysis of DEPs. GO
enrichment analysis revealed 163 BP terms, 35 CC terms,
and 68 MF terms between the model and sham groups; there
were 169 BP terms, 20 CC terms, and 53 MF terms between
the JTD and model groups (Figure 10).

GO analysis of the DEPs of the model and sham groups
showed that negative regulation of endopeptidase activity,
negative regulation of complement activation, the lectin
pathway, positive regulation of the fatty acid biosynthetic
process, and negative regulation of ATPase activity were the
primary BPs. These DEPs are mainly in the extracellular
space, the external plasma membrane, and the hemoglobin
complex. They are also associated with receptor binding, ion
exchange, and functions (Figure 11(a)).

Next, GO enrichment analysis was performed on the
DEPs of the JTD and model groups (Figure 11(b)).
GO-BP analysis showed that these DEPs are significantly
involved in plasma lipoprotein particle clearance, nega-
tive regulation of neurotransmitter secretion, the lipo-
protein metabolism process, positive regulation of
phagocytosis, definitive hemopoiesis, cellular calcium ion
homeostasis, and negative regulation of phosphorylation.
GO-CC analysis showed that these DEPs are mainly
located in the organelle membrane, receptor complex,
and outer side of the plasma membrane. The GO-MF
analysis showed they are associated with MFs like

cholesterol binding, lipoprotein binding, ion binding,
and protease activity.

KEGG pathway enrichment analysis showed that the top
five signaling pathways were complement and coagulation
cascades, African trypanosomiasis, tuberculosis, legion-
ellosis, and systemic lupus erythematosus in the DEPs of the
model and sham groups (Figure 12(a)). Similarly, the DEPs
of the JTD and model groups are mainly involved in vitamin
digestion and absorption, fat digestion and absorption, and
pyruvate metabolism (Figure 12(b)).

3.7. PPI Network. DEPs of the model and sham groups and
the JTD and model groups were combined and de-
duplicated to obtain 112 common DEPs. Next, Cytoscape
3.9.1 was used to construct a PPI network diagram for these
DEPs (Figure 13). Metascape analysis of this network in-
cluded regulation of the fatty acid biosynthetic process,
positive regulation of phagocytosis, response to inorganic
substance, pyruvate metabolism, and aerobic electron
transport chain (Figures 14(a) and 14(b)). Similarly, the
DEPs of the JTD and model groups were imported into
String to construct a PPI network (Figure 15). Based on the
CytoHubba plug-in of Cytoscape 3.9.1, 10 hub genes were
screened, including actin-like protein 6A, tyrosine-protein
kinase Mer, cysteine and glycine-rich protein 1, protein
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turtle homolog B, Apolipoprotein A-IV (Apoa4), radixin,
disheveled-associated activator of morphogenesis 2, Serpi-
nalc, and guanylate cyclase soluble subunit alpha-1. Grm2,
cytochrome c oxidase subunit 7C (Cox7c), and Slc30al (also
known as zinc transporter 1 (Zntl)) also participated in this
PPI network.

4, Discussion

VD is a cluster of cognitive disorder syndromes caused by
cerebrovascular lesions. Current risk factors for VD include
advanced age, diabetes, hypertension, hyperlipidemia, ath-
erosclerosis, and stroke [39]. In particular, VD risk nearly
doubles post-stroke [40]. Cerebral hypoperfusion from ce-
rebrovascular disorders may be a potential VD mechanism
[41, 42]. Neuropathology studies have reported that cerebral

hypoperfusion results in reduced glucose and oxygen sup-
plies, leading to cellular energy metabolism [43], ionic
imbalance [44], excitotoxicity [45], oxidative stress [46], and
neuroinflammation [47]. These mechanisms drive down-
stream structural changes, including blood-brain barrier
dysfunction, white matter lesions, microinfarcts, and hip-
pocampal atrophy, which may play a direct pathogenic role
in VD [48, 49]. VD accounts for ~15-20% of dementia cases,
and its incidence increases dramatically with age [50, 51].
VD both affects patient quality of life and increases the risk
of death [52]. Therefore, finding effective treatments remains
a research focus. JTD has long been used to effectively treat
VD [23, 24]. To further investigate the molecular mecha-
nisms of JTD in VD treatment, this study combined network
pharmacology and proteomics data to gain a global
overview.
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FIGURE 7: Morris water maze test results. (a) Escape latency (EL) of each mouse group. (b) Number of times for crossing platform (TCP) for

each mouse group. (c) Time spent in the platform quadrant (TSPQ) for each mouse group. (d) Representative trajectory plots for each group;
S indicates a sham group; M indicates a model group; JTD indicates the Jianpi Tianjing group. * p <0.05; ** p <0.01.
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4.1. Regulation of Mitochondrial Dysfunction. Mitochondrial
dysfunction has also been reported to be a significant factor
in VD [43]. Under anoxic conditions, the mitochondrial
electron transport chain is disturbed, leading to increased
reactive oxygen species (ROS) production [53]. Oxidative
stress, which occurs when the ROS-antioxidant balance is
disrupted, is increasingly understood to be involved in VD
[54]. Under normal conditions, the brain depends on
a constant energy supply from ATP through mitochondrial
oxidative phosphorylation [55]. However, oxidative stress

can cause mitochondrial dysfunction, triggering impaired
cerebral energy metabolism and neuronal death [56, 57].
Cyclooxygenases (COX) are the main enzyme in the mi-
tochondrial electron transport chain, which uses oxygen in
the generation of ATP via oxidative phosphorylation [58].
The network pharmacology and proteomic analyses herein
show that negative regulation of phosphorylation is another
important BP. Proteomics identified Cox7c to be involved in
oxidative phosphorylation and metabolism pathways.
Cox7¢, a member of the cytochrome ¢ oxidase complex
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responsible for mitochondrial respiration promotes ATP
synthesis and reduces mitochondrial dysfunction [59]. Re-
cent studies have revealed Cox7c to be a potential biomarker
of pathogenesis in Alzheimer’s disease [60]. However, the
effects of Cox7c in VD require further clarification. Herein,
Cox7c expression was upregulated in brain tissue of VD
mice treated with JTD, indicating that this CHF may play
a role in treating VD by attenuating mitochondrial
dysfunction.

4.2. Neuronal Glutamate Excitotoxicity Regulation. A main
cause of VD-induced cognitive dysfunction is excitotoxicity.
Glutamate excitotoxicity has been hypothesized to be ex-
cessively activated by excitatory glutamate receptors, causing
neuronal dysfunction or death [45]. Grm2 encodes

metabotropic glutamate subtype receptor 2, known as
mGIuR2. Past studies have shown that GRM2 may be in-
volved in regulating neural apoptosis, or cell death caused by
hypoxia and ischemia [61]. Herein, Grm2 was an overlap
protein between potential JTD targets and DEPs, which is
mainly involved in the regulation of neuronal death, glu-
tamate receptor activity, and glutamate secretion. Therefore,
JTD may regulate the GRM2 expression and modulate these
processes, reducing brain tissue damage and improving
cognitive function.

4.3. Cellular Ion Homeostasis Regulation. Cerebral ischemia
enhances synaptic activity, leading to increased zinc release.
However, high intracellular zinc levels may become toxic to
neurons and neuroglia [62], rapidly leading to cell death
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represents GO or KEGG terms, whose size is proportional to the number of genes under that term, and nodes of the same color belong to the

same cluster.

[63]. This may be another contributor to VD. Among the 65
DEPs, Slc30al was the only protein that regulates cellular
zinc ions and calcium ion homeostatic processes. Slc30al/
Znt] is well-known as a crucial regulator of zinc absorption
and transport [64]. Zntl reduces glial and neuronal zinc
levels, protecting these cells from zinc toxicity and reducing
their deaths [65, 66]. The proteomics data herein also
confirmed that Zntl levels are significantly increased in VD

mice treated with JTD, further confirming the neuro-
protective effects of JTD.

4.4. Atherosclerosis Regulation. Herein, the KEGG pathway
enrichment analysis revealed that ApoA4 participates in
several signaling pathways, including lipid and atheroscle-
rosis, fat digestion and absorption, and cholesterol meta-
bolism. Carotid artery stenosis and atherosclerosis are risk
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factors for cognitive impairment [67]. It is well accepted
that ApoA4 is a major component of high-density lipo-
protein and chylomicrons, which have anti-
atherosclerotic effects [68]. Exogenous administration
of ApoA4 reduces the incidence of acute rupture of ar-
terial plaques in the apolipoprotein E knockout mouse
model, confirming its ability to stabilize plaque [69]. In
addition, previous research has confirmed that ApoA4 is
involved in lipid uptake and metabolism [70] and anti-
atherosclerosis [71] and inhibits thrombosis [72]. This is
consistent with our results showing that, compared with
the model group, ApoA4 expression was upregulated in
the JTD group, further confirming its important role in
the anti-atherosclerotic effects of JTD.

5. Conclusions

Integrated network pharmacology and proteomics analysis
revealed that Cox7c, Grm2, Slc30al, and ApoA4 are critical
targets of JTD in VD treatment. In vivo mechanisms may be
involved in attenuating mitochondrial dysfunction, re-
ducing excitotoxicity, maintaining cellular ion homeostasis
and antiatherosclerosis.
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