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Background and Purpose. Electroacupuncture (EA) is efective on rheumatoid arthritis (RA), an autoimmune disease, but the
mechanisms involved remain poorly understood. Tis study was designed to investigate the analgesic and anti-infammatory
efects of EA in a chronic infammatory animal model of collagen-induced arthritis (CIA) and its underlying molecular
mechanisms. Experimental Approach. For the male Sprague–Dawley (SD) rats were immunized with bovine type II collagen
followed by a booster injection 7 days later. Two weeks after the frst immunization, EA stimulation (2/100Hz, 1mA, lasting for
30min/day) was delivered to Zusanli (ST36), and Sanyinjiao (SP6) or OxPAPC (TLR2/TLR4 inhibitor, 1.5mg/kg) was injected by
tail vein for 28 days. After intervention, the analgesic efect was evaluated from the aspect of pain responses including thermal
withdrawal latency (TWL) and mechanical withdrawal thresholds (MWT). Te anti-infammatory efect was assessed by paw
edema detection, histopathological analysis, and Meso Scale Discovery (MSD) testing of tumor necrosis factor-alpha (TNF-α),
interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). Te underlying molecular mechanism was analyzed through western blotting
and double-immunofuorescence labeling. Results. EA intervention andOxPAPC injection could relieve mechanical allodynia and
thermal hyperalgesia caused by CIA. Paw edema and pathological damage of synovium were signifcantly ameliorated after EA
intervention and OxPAPC injection. Furthermore, EA intervention and OxPAPC injection markedly reduced the contents of
serum TNF-α, IL-1β, and IL-6, as well as the protein expression levels of synovial TLR2, TLR4, MyD88, and NF-κB p-p65. In
particular, the expression of TLR2 and TLR4 on synovial fbroblasts and macrophages in synovium was signifcantly reduced by
EA intervention. Conclusions. Repeated EA stimulation at ST36 and SP6 can efectively relieve joint pain and synovial in-
fammation caused by RA in CIA rats. Te analgesic and anti-infammatory efect of EAmay be closely related to the inhibition of
innate immune responses driven by the TLR2/4-MyD88-NF-κB signaling pathway in the synovium.

1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune poly-
articular disease that can afect all ages, genders, and eth-
nicities [1]. RA has a worldwide prevalence of 0.5%–1% and
is clinically characterized by marked synovial infammation,
joint swelling, joint pain, bone erosion, and progressive
disability [2]. It severely degrades the suferers’ quality of life
and is even life-threatening [3]. Existing antirheumatic
drugs, including nonsteroidal anti-infammatory drugs
(NSAIDs), disease-modifying antirheumatic drugs
(DMARDs), or bio-agents, only partially halt the RA

progression and have many adverse efects [4, 5]. Growing
evidence suggests that acupuncture, one of the non-
pharmacological alternative therapies, is efective on RA
[6–8]. It was reported that acupuncture signifcantly im-
proved disease activity scores, pain and overall mobility,
joint swelling, and health-related quality of life in patients
with RA [9–11]. Although it is generally accepted that EA
can be used as adjuvant therapy for the treatment of RA, its
precise mechanisms remain to be elucidated.

RA is the consequence of dysregulation of the immune
system and is characterized by an excessive autoimmune
response to synovial membrane. Te process involves the
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activation of synoviocytes, infammatory cells infltration in
synovium, and the increase of pro-infammatory cytokines,
such as tumor necrosis factor-alpha (TNF-α), interleukin 1
beta (IL-1β), and interleukin 6 (IL-6), leading to chronic
localized synovial and systemic infammation, joints pain, as
well as cartilage and bone erosion [12]. At present, it is
widely accepted that the cytokine network plays a vital role
in RA pathogenesis [13], and anticytokines therapy in pa-
tients with RA has proven to be efective [14]. Moreover, EA
has been previously reported to reduce the serum levels of
pro-infammatory cytokines in RA patients [15] and RA
animal models [16, 17], which suggests the possible im-
munomodulatory mechanism of EA in alleviating RA.

Toll-like receptors (TLRs) are functionally key pattern
recognition receptors (PRRs) in the innate immune system,
which are mainly expressed in the innate immune cells and
play a critical role in the initiation of infammatory responses
[18]. Numerous studies have demonstrated that TLRs and
their downstream signaling molecules are involved in the
development of autoimmune diseases such as RA [19, 20].
Te human TLRs family includes 11 members, mainly
distributing in cell membranous structures. Among them,
TLR2 and TLR4 are closely associated with the pathogenesis
of RA [18, 21]. Additionally, growing in vivo and in vitro
studies have emphasized that TLR2 and TLR4 signaling play
pivotal roles in the onset and maintenance of synovial in-
fammatory responses in RA [22–25]. However, it remains
unknown whether the TLR2/4 signaling is the regulatory
target through which EA exerts its antiarthritic efects
on RA.

In the present study, we established a collagen-induced
arthritis (CIA) model in rats to investigate the ameliorative
efects of EA on RA synovitis and arthralgia through TLR2/4
and their downstream signaling cascades. Our fndings
highlighted the importance of the synovial TLR2/4-MyD88-
NF-κB signaling pathway in the analgesic and anti-
infammatory efects of EA intervention for RA.

2. Materials and Methods

2.1. Animals. Animal care and experimental protocols were
approved by the Ethics Committee of the Institute of
Acupuncture and Moxibustion, China Academy of Chinese
Medical Sciences (ethical approval number: D2017-08-16-1).
All experimental animals were cared according to the
guidelines provided by the U.S. National Institutes of Health
for the Care and Use of Laboratory Animals. 200–250 g male
Sprague–Dawley (SD) rats were purchased from Beijing
Union Medical College and were housed (up to 5/cage) in
standard plastic cages with water and standard mouse feed
under controlled temperature (22–24°C), humidity
(55± 5%), and 12-hr alternating light/dark cycle (lights were
turned on between 7:00 a.m. and 7:00 p.m.).

2.2. Establishment of the CIA Model. Te CIA model was
established according to reference [26–28]. Briefy, bovine
type II collagen (CII; Chondrex, Redmond, WA, USA)
(dissolved in 0.1M acetic acid) was emulsifed 1 :1 (v: v) with

complete Freund’s adjuvant (CFA; Sigma-Aldrich, Darm-
stadt, Germany) at a fnal concentration of 1mg/mL. Rats
were immunized with intradermal injection of the 300 μl CII
emulsion at the base of the tail on day 0, followed by the
same booster injection 7 days later. Te animals with no
signs of swelling in joints were removed. Controls were
handled in the same way except that they were injected with
150 μl of 0.1M acetic acid.

2.3. Experiment Design

2.3.1. Experiment 1. To determine the analgesic and anti-
infammatory efects of EA treatment on the CIA rats, we
randomly divided 36 SD rats into three groups: control
(normal), CIA (model only), and CIA+EA (model with EA
treatment at ST36 and SP6 acupoints) (n� 12 each group).

2.3.2. Experiment 2. To assess the role of the TLR2/TLR4
signaling pathway in the maintenance of infammation and
joint pain in CIA rats, further 16 rats were randomly
assigned to two groups after inducing the CIA model: the
CIA+ vehicle group (CIA rats treated with normal saline)
and the CIA+OxPAPC group (CIA rats treated with the
TLR2/TLR4 inhibitor OxPAPC) (n� 8 each group).

2.3.3. Experiment 3. To determine the expression of TLR2
and TLR4 in synovial macrophages and synovial fbroblasts
in the synovium tissue, we evenly separated 12 SD rats into
the same three groups as in Experiment 1. Te rats in the
CIA+EA group received EA intervention as in Experiment
1 for two weeks.

2.4. Electroacupuncture (EA) Intervention and Sampling in
Experiment 1. Rats in the CIA+EA group received EA
intervention at ST36 (located about 5mm inferior to the
capitulum fbulae and posterolateral to the hindlimb knee
joint) and SP6 (located at the medial side of the hind leg,
10mm directly above the tip of the medial malleolus) on day
14 after the initial immunization. Briefy, rats were lightly
anesthetized with isofurane (1.5% in oxygen) delivered via
an anesthesia unit (Matrix Company, Midmark Animal
Health, Versailles, OH, USA) and underwent EA stimulation
by inserting needles (0.5× 32mm, Suzhou, China) at ST36
and SP6 in a depth of about 5mm and 3mm, respectively.
Te inserted needles were further connected to an electronic
acupuncture treatment instrument (Hans-100A, Nanjing
Jisheng Medical Technology, Co., Ltd., China). Te EA
parameters were alternating frequency of 2Hz/100Hz,
a pulse width of 0.2–0.6ms, and an intensity of 1mA. Te
stimulation procedure was performed for 30min every day
for 28 consecutive days (Figure 1). Rats in the control group
and the CIA group were anesthetized in the same manner as
those in the CIA+EA group but did not receive EA
stimulation.

Upon completion of EA intervention, all rats were
anesthetized with pentobarbital sodium (50mg/kg, i.p.) for
blood collection and then sacrifced through decapitation
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(on day 42 after the frst immunization). Blood (n� 12 per
group) was taken via the tail vein and collected into pro-
coagulation tubes (BD Vacutainer, Franklin Lakes, New
Jersey, USA) for the separation of serum. Ten, it was di-
vided into aliquots and kept under −80°C for serological
determinations. Te ankle joints of hind paws (n� 6 per
group) were separated for further histopathological analysis.
Te ankle synovial membrane tissues of hind paws (n� 6 per
group) were isolated and kept under −80°C for further
western blotting analysis.

2.5. PawEdemaAnalysis. Tepaw edema of each rat’s bilateral
hind limbs (up to the ankle joint) was examined once a week
from day 0 to day 42 (Figure 1) with a water displacement
plethysmometer (Ugo Basile, Comerio, Varese, Italy).Temean
values of water displacement volume were calculated from 3
measurements to judge the extent of paw edema [29].

2.6. Nociceptive Behavioral Tests. Te pain responses of each
rat’s bilateral hind paws, including mechanical withdrawal
threshold (MWT) and thermal withdrawal latency (TWL),
were measured once a week from day 0 to day 42 (Figure 1).
MWT was examined by electronic Von Frey (38450, Ugo
Basile, Comerio, Varese, Italy). TWL was examined by
a thermal plantar analgesia instrument (37370, Ugo Basile,
Comerio, Varese, Italy) [30], with a heat intensity of 50 units
and a cut-of time of 30 s. Mean MWT and TWL were cal-
culated from 3 individual tests with a 5-min interval to rep-
resent the mechanical allodynia and thermal hyperalgesia.

2.7. Radiographic and Histopathological Analysis of Ankle
Joints. For radiographic analysis, the hind limbs were im-
aged on a multimodality in vivo imaging system (Kodak
Company, Rochester, NY, USA) shortly before the rats were
sacrifced. Te exposure time was 10 s, and the f-stop factor
was 2.5.

For histopathological analysis, the protocol was per-
formed as previously described [31]. Briefy, the fresh ankle
joints were fxed with 4% paraformaldehyde (Servicebio,
Wuhan, China) and then decalcifed with 10% ethylene
diamine tetraacetic acid (EDTA, Servicebio, Wuhan, China)
at room temperature for 40 days. Te processed joints were
dehydrated, embedded, and sectioned at 4 μm thickness in
a sagittal plane. Sections were then stained with
hematoxylin-eosin (HE) for assessing EA’s efect on the
histopathological damage in joints. Images were acquired
and observed under an upright light microscope (Nikon
Inc., Tokyo, Japan). HE staining score was evaluated by an
investigator who was blinded to the experimental protocol.
Te following morphological criteria were considered as
follows [32]: score 0, no damage; score 1, edema; score 2,
presence of infammatory cells; score 3, bone resorption.

2.8. Serum Cytokine Levels Detection. Serum TNF-α, IL-1β,
and IL-6 were measured by Meso Scale Discovery (MSD)
electrochemiluminescence technology with a V-PLEX custom
rat cytokine kit (K153AOH-1, MSD, Rockville, Maryland,
USA) according to the manufacturer’s instructions [33]. In
short, the 96-well plate was washed 3 times with 150μl wash
bufer. After the washing, wells were incubated with 50μl
serum sample for 2h at room temperature with shaking.
Twenty-fveμl of detection antibody solution was then added
and incubated for 2h at room temperature with shaking. After
adding 150μl of 2× read bufer T to each well, the 96-well plate
was detected with MESO QuickPlex SQ 120 machine (MSD,
Rockville, Maryland, USA), and data were analyzed via MSD
Discovery Workbench software version 4.0.12.

2.9. Western Blotting Analysis. For western blotting analysis,
total proteins were obtained from the ankle synovium tissues
with RIPA lysis bufer (Beyotime Biotechnology, Shanghai,
China), containing 1% PMSF. Protein concentrations were
quantitatively determined with a BCA protein assay kit
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Figure 1: Experimental design for the efect of EA on CIA rats (experiment 1 and experiment 2). Male SD rats were initially immunized at
the base of the tail on day 0 and boosted on day 7. From day 14 to day 42, rats in the CIA+EA group and the CIA+OxPAPC group received
EA intervention or inhibitor injection every day, respectively. From day 0 to day 42, paw edema and pain responses were tested weekly in
each group of rats.
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(Beyotime Biotechnology, Shanghai, China). Proteins were
separated by 10% SDS-PAGE gel, transferred onto a 0.45μm
PVDF membrane (Millipore, Burlington, Massachusetts, USA),
and blocked with 5% BSA (Amresco, Solon, Ohio, USA). After
the blocking, the membranes were blotted with primary anti-
bodies overnight at 4°C as follows: anti-TLR2 (sc-21760, Santa
Cruz, Dallas, Texas, USA), anti-TLR4 (sc-293072, Santa Cruz,
Dallas, Texas, USA), anti-MyD88 (4283, Cell Signaling Tech-
nology, Danvers, Massachusetts, USA), anti-Phospho-NF-κB
p65 (3033S, Cell Signaling Technology, Danvers, Massachusetts,
USA), and anti-β-actin (4970, Cell Signaling Technology,
Danvers, Massachusetts, USA) and then incubated with the
corresponding secondary antibodies (Jackson,
ImmunoResearch Laboratories, West Grove, PA, USA) for
2h at room temperature. Protein visualization was fulflled
with the enhanced chemiluminescence reagents (Millipore,
Burlington, Massachusetts, USA) on a gel imaging system
(Tanon Science and Technology Co., Ltd., Shanghai, China).
Band density (quantifcation) was determined through TotalLab
Quant analysis software (TotalLab Limited, England) after the
subtraction of the background and normalization against
β-actin.

2.10. Drug Administration in Experiment 2. Oxidized 1-
palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine
(OxPAPC) (tlrl-oxp1, InvivoGen, San Diego, USA), a dual
TLR2 and TLR4 inhibitor, was dissolved in normal saline
(1mg/ml). Rats in the CIA+OxPAPC group and the
CIA+ vehicle group in Experiment 2 were administrated
with OxPAPC (1.5mg/kg) and normal saline, respectively,
via the tail vein injection once a day for 4 consecutive weeks.

2.11. Double-Immunofuorescence Labeling in Experiment 3.
Serial 4-μm-thick parafn sections from CIA synovial tissues
were deparafnized in xylene and rehydrated through
a graded ethanol series. Ten, the sections were immersed in
the 0.01M citrate bufer (pH 6.0), and microwave irradiation
was performed three times (8min/time) for antigen re-
trieval. Te sections were incubated in 5% goat serum for 1 h
before immunostaining. In double-labeling experiments, the
sections were incubated with anti-CD68 (pAb, 1:200,
ab125212, Abcam, British; mAb, 1:100, NBP2-32831,
NOVUS, USA), anti-Vimentin mAb (1:200, ab92547,
Abcam, British; 1 : 200, ab20346, Abcam, British), anti-TLR2
pAb (1:150, 17236-1-AP, Proteintech, China), and anti-
TLR4 mAb (1 :100, sc-293072, Santa Cruz, USA) at 4°C
overnight, followed by incubated with secondary antibodies,
goat anti-rabbit IgG H&L(FITC) (1 : 200, ab6717, Abcam,
British) or goat anti-mouse IgG H&L (Cy3) (1:200, ab97035,
Abcam, British). Te poststaining sections were examined
with a full-spectrum scanning confocal microscope
(FV1200, Olympus, Japan), and pairs of images were
superimposed for colocalization analysis.

2.12. Statistical Analysis. Data were reported as mean-
± standard deviation (SD) and were examined by one-way
ANOVA, followed by the least signifcant diference (LSD)

test for comparisons among multiple groups. Te LSD test
was run only if F-value achieved P< 0.05, and there was no
signifcant variance in homogeneity. P< 0.05 was considered
statistically signifcant. All analyses were performed using
Statistical Package for the Social Sciences (SPSS) version 23.0
(SPSS Inc., Chicago, Illinois, USA).

3. Results

3.1. EA Intervention Reduced CIA-Induced Hind Paw Edema.
Te hind paw edema was employed for the assessment of EA’s
efect on RA progression. As expected, the hind paw edema in
the CIA group obviously increased from day 14 after the frst
immunization and lasted to day 42 compared with that in the
control group (Figure 2, p< 0.01). EA stimulation at ST36 and
SP6 showed marked alleviation of paw edema in the CIA+EA
group after two weeks of EA intervention compared with that
in the CIA group (Figure 2, p< 0.05).

3.2. EA Intervention Attenuated Allodynia and Hyperalgesia
in CIA. To explore the analgesic efects of EA, MWT and
TWL were detected in all groups of rats. After successful
induction of CIA (day 14 after the frst immunization),
MWT in the CIA group was much less than that in the
control group with marked diferences (Figure 3(a),
p< 0.01). However, in comparison with the CIA group,
MWTstarted to prominently recover in the CIA+EA group
after two weeks of EA stimulation at ST36 and SP6
(Figure 3(a), p< 0.05). Similar results were corroborated in
TWL detection (Figure 3(b), p< 0.01, p< 0.05).Tese results
implicated that the long-term EA intervention may atten-
uate the arthritic infammatory hyperalgesia in CIA rats.

3.3. EAIntervention ImprovedHistopathologicalLesions in the
Ankle Joint of CIA Rats. On day 42 after the frst immu-
nization, the visual redness and swelling of the hind paws in
the CIA+EA group showed a great relief compared with
those in the CIA group (Figure 4(a)).

As shown in the representative radiographs, bone ero-
sion in the ankle joint was exacerbated in the CIA group
compared to the control group whereas EA could distinctly
reduce articular bone destruction and reverse the above
trend in CIA rats (Figure 4(b)).

Consistent with the clinical behaviors, histopathological
observations of ankle joints revealed signs of severest arthritis
in the CIA rats.Tere was no evidence of infammatory activity
or joint erosion in the control group, while the massive in-
fammatory cell infltration, synovial hyperplasia, and joint
erosion were presented in the CIA group. Te histological
damage scores were higher in the CIA group (Figure 4(d),
p< 0.001). After 28days of EA intervention, these histo-
pathological features signifcantly ameliorated in the CIA+EA
group, and the HE staining score of the CIA+EA group also
decreased remarkably (Figures 4(c) and 4(d), p< 0.001).

3.4. EA Intervention Showed the Anti-Infammatory Efect on
CIA Rats. It is well documented that pro-infammatory
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cytokines play a vital role in the maintenance of chronic
infammation and tissue damage during RA progression.
MSD test was conducted to assess the contents of serum
TNF-α, IL-1β, and IL-6. As shown in Figure 5, compared
with those in the control group, contents of serum TNF-α,
IL-1β, and IL-6 noticeably elevated in the CIA group (5,
p< 0.001). On the contrary, the serum levels of these cy-
tokines signifcantly decreased in the CIA+EA group after
28 days’ EA intervention (Figure 5, p< 0.01, p< 0.001).

3.5. EA Intervention Inhibited the Activation of TLR2/4-
MyD88-NF-Κb Signaling Pathway in CIA. To further elu-
cidate the underlying molecular mechanisms of analgesic
and anti-infammatory efects of EA intervention, we
adopted western blotting to detect the expression levels of
key proteins in the TLR2/4-NF-κB pathway in the ankle
synovium. Te results indicated that expression levels of
TLR2, TLR4, MyD88, and NF-κB p-p65 in the CIA group
were signifcantly upregulated by diferent degrees in

comparison with those in the control group (Figure 6,
p< 0.05, p< 0.01) whereas those in the CIA+EA group were
remarkably downregulated compared with those in the CIA
group (Figure 6, p< 0.05, p< 0.01). Tis illustrated that EA
at ST36 and SP6 may ameliorate infammation by inhibiting
the TLR2/4-MyD88-NF-κB pathway.

3.6. Blockade of TLR2/4 SignalingMimicked theAnalgesic and
Anti-Infammatory Efects of EA in CIA Rats. To further
assess whether the anti-infammatory and analgesic efects of
EA were mediated by the TLR2/4 signaling pathway, a dual
TLR2 and TLR4 inhibitor, OxPAPC, was administered to
CIA rats. Subsequently, behavioral tests and experiments
such as and WB were conducted. Te results indicated that
the hind paw edema in the CIA+OxPAPC group decreased
from day 28 to day 42 compared with that in the
CIA+ vehicle group (Figure 7(a), p< 0.05). Rats in the
CIA+OxPAPC group had signifcantly increased MWTand
TWL compared to rats in the CIA+ vehicle group but
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signifcantly lower serum levels of TNF-α, IL-1β, and IL-6
(Figures 7(b)–7(d), p< 0.05, p< 0.01). Histopathological
observations showed visible infammatory cell infltration
and synovial hyperplasia in the CIA+ vehicle group, while
the pathological changes in the ankle joint of rats in the
CIA+OxPAPC group were signifcantly improved
(Figure 7(e), p< 0.01). Sure enough, the expression levels of
NF-κB p-p65 were notably downregulated in the
CIA+OxPAPC group (Figure 7(f ), p < 0.05). All these
results suggested that OxPAPC could relieve the in-
fammation and joint pain in CIA rats, inversely verifying
that the TLR2/4 signaling pathway plays an important role in
the EA treatment of CIA.

3.7. EA Intervention Suppressed the Expression of TLR2 and
TLR4 on Synovial Fibroblasts and Macrophages in Synovium.
To characterize the TLR2 and TLR4 expressing cells in the
joint synovium, tissue sections were double immunofuo-
rescence stained for TLR2 or TLR4 and the macrophages
marker CD68 or the fbroblasts marker Vimentin, re-
spectively. Figure 8 shows representative staining patterns of
CD68 or Vimentin and TLR2 or TLR4 expression in the
synovium tissue. In all three groups, the majority of TLR2
and TLR4 expression was detected on macrophages and
synovial fbroblasts in the lining layer and sublining layer of
the synovium, and in particular, there were pronounced
TLR2 and TLR4 expression in the synovial lining layer.
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Compared with the control group, the number of positive
staining cells for TLR2 and TLR4 on synovial fbroblasts and
macrophages in synovial lining and sublining layers was
signifcantly increased in CIA rats (Figure 8). EA in-
tervention signifcantly reduced the number of positive
staining cells for TLR2 and TLR4 on synovial fbroblasts and
macrophages in synovium tissues (Figure 8).

4. Discussion

In the present study, an experimental RA model of the rat
was established through immunization with CII collagen,
a major component of hyaline cartilage, combined with
CFA, which is the most commonly used method for de-
veloping an autoimmune model of RA [26]. Our results
showed that CIA rats exhibited severe evoked joint pain and
paw edema compared with rats in the control group. Ra-
diographic and histopathological analysis confrmed the
obvious pathological changes such as degeneration of joint
structures, synovial hyperplasia, infammatory cell in-
fltration, and bone erosion in the arthritic joints of CIA rats.
Also, the contents of pro-infammatory cytokines TNF-α,

IL-1β, and IL-6 in serum were signifcantly elevated, and the
expression levels of TLR2, TLR4, MyD88, and NF-κB p-p65
were signifcantly upregulated in the synovium of CIA rats.
Tese are consistent with the previous results obtained from
patients with RA [34, 35] and experimental RA model an-
imals [36–39], indicating that CIA rats showed signifcant
infammatory responses and hyperalgesia at arthritic joints,
accompanied by the enhanced activation of the TLR2/4
signaling in the synovium.

Acupuncture is one of the oldest therapeutic strategies in
the world and now has been widely reported to possess
analgesic and anti-infammatory efects in autoimmune
diseases [40, 41]. In clinical practice, ST36 is the most fre-
quently used acupuncture point for treating RA [42]. And in
the studies of acupuncture efects on experimental RA an-
imals, ST36 is also commonly used [43–45]. Meanwhile,
a systemic review has shown that ST36 alone or combined
with other acupoints is benefcial to the clinical status of RA
[7]. Terefore, in this study, we selected two acupoints, ST36
and SP6, for EA intervention. Te results showed that EA at
ST36 and SP6 had a distinct anti-infammatory and analgesic
efect on CIA rats, as evidenced by reduced articular
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swelling, improved arthro-pathology, decreased levels of
pro-infammatory cytokines, and relieved mechanical allo-
dynia and thermal hyperalgesia.

Te synovium is the principal target tissue of in-
fammation in RA [46], and persistent chronic infammation
of the synovial membrane in RA causes infammatory pain,
which is known to be difcult to treat [47]. Emerging studies
have indicated that EA has signifcant analgesic efects on
infammatory pain in CIA rats, which is related to the central

descending pain inhibitory system mediated by adrenergic,
cholinergic, and serotonergic receptors [48, 49]. However, it
has been reported that pro-infammatory cytokines, such as
TNF-α, IL-1β, and IL-6, could directly increase the sensi-
tivity and excitability of the primary aferents in the infamed
joints, leading to both peripheral and central sensitization
[50, 51]. Our results also showed a positive correlation
between nociceptive behavioral responses and articular in-
fammation in CIA rats. Terefore, inhibiting the secretion

TLR4/CD68 TLR4/VimentinTLR2/CD68 TLR2/Vimentin

Control

CIA

CIA+EA

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(a)

0

100

200

300

400

co
-la

be
le

d 
ce

ll 
co

un
tin

g 
nu

m
be

r

TLR2/CD68 TLR2/Vimentin TLR4/CD68 TLR4/Vimentin

**

****

***

##

##

#
#

Control
CIA
CIA+EA

(b)
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of pro-infammatory cytokines in RA can efectively relieve
joint pain.

Over the past two decades, increasing data have sup-
ported the critical role of the innate immune system in the
pathogenesis of RA [52, 53]. Specifcally, TLRs, the key
recognition structures of the innate immune system, can
recognize microbial products and endogenous ligands re-
leased upon cell damage and necrosis and are expressed on
cells within the RA joint [20, 54]. Meanwhile, a variety of
endogenous TLR ligands, including heat shock proteins,
high mobility group box-1 protein (HMGB1), host DNA,
fbrinogen, and tenascin-C, have been identifed in the
synovium of patients with RA, predominantly TLR2 and/or
TLR4 agonists [55, 56]. Te functions of TLR2/4 signaling
have been extensively studied in RA. A large body of evi-
dence obtained from in vivo animal models and in vitro
human explants has confrmed that the activation of TLR2
and TLR4 by endogenous TLR ligands in arthritic joints can
trigger the innate immune response and initiate the pro-
duction of pro-infammatory cytokines, chemokines, and
proteases, which are proposed to be responsible for the
perpetuating infammation and joints destruction of RA
[22, 57–60]. Terefore, the pivotal role of TLR2/4 signaling
in the pathogenesis of RA had been well established, and our
study focused on the modifcation of the TLR2/4 signaling
pathway in EA intervention.

At present, the development of promising therapeutic
strategies for the treatment of RA targeting TLRs is emerging
[61]. Several preclinical studies have shown that the blockade
of TLR2 signifcantly inhibited the production of pro-
infammatory cytokines TNF-α, IL-1β, and IL-6 in cul-
tured synoviocytes from RA patients [62]. Inhibition of
TLR4 not only alleviated the severity of experimental ar-
thritis and suppressed IL-1β expression in arthritic joints of
CIAmice [63] but also ameliorated infammatory symptoms
in adjuvant-induced arthritis (AIA) rat model and inhibited
the secretion of IL-6 and IL-8 in both serum of the AIA rats
and human synovial fbroblasts [64]. In addition, a recent
study indicated that blocking TLR4 could efectively at-
tenuate monoiodoacetate-induced arthritis in rats by re-
lieving joint pain and reducing the expression of TNF-α, IL-
1β, and matrix metallopeptidase-13 (MMP13) [65]. Similar
to the results of these studies, our fndings suggested that the
blockade of TLR2/4 signaling by the TLR2/4 inhibitor
OxPAPC could efectively alleviate articular infammation
and joint pain. Meanwhile, evidence from animal models
suggested that EA can also alleviate arthritis by inhibiting
TLR2 and/or TLR4 signaling [66, 67]. In line with these
fndings, our results indicated EA exerted anti-infammatory
and analgesic efects by inhibiting the infammatory re-
sponses driven by the TLR2/4-MyD88-NF-κB signaling
pathway in the synovium of CIA rats.

Te synovium is a connective tissue structure mainly
comprised of resident macrophages and synovial fbroblasts
[68]. Te resident and infltrating macrophages and the
synovial fbroblasts are the principal innate immune efector
cells of RA and are mainly activated by TLRs signaling
[69, 70]. Biological agents targeting the pro-infammatory
cytokines TNF-α and IL-1β, predominantly produced by

macrophages, have been proven clinically efective in RA
[71]. Meanwhile, classical (M1, pro-infammatory pheno-
type) macrophage activation occurs in the infammatory
environment of the RA joint dominated by TLRs signaling
[72]. Numerous studies have confrmed that TLR2 and/or
TLR4 were highly expressed on the synovial fbroblasts and
triggered the production of the pro-infammatory cytokines
such as IL-6, chemokines, and tissue destroying mediators
leading to infammatory response and joints destruction
[23, 59, 73–76]. In view of the important arthritic functions
of TLRs signaling, especially TLR2 and TLR4 signaling in
macrophages and synovial fbroblasts, we examined the
efect of EA intervention on the expression of TLR2 and
TLR4 on these two types of synovial cells of CIA rats. Our
results showed that EA intervention markedly reduced the
expression of TLR2 and TLR4 on macrophages and synovial
fbroblasts in the synovial lining and sublining layers of CIA
rats. In fact, the cellular and molecular mechanisms un-
derlying the pathogenesis of RA are not fully understood by
far, which undoubtedly increases the difculty of elucidating
the precise mechanism by which EA alleviates this disease.
Inhibition of the innate immune response driven by TLRs
signaling in the synovium seems to be the promising
mechanism by which EA intervention alleviates the severity
of RA, but the precise cellular and molecular mechanisms
need to be further studied.

5. Conclusion

Taken together, the present fndings indicate that EA
markedly alleviated the severity of CIA in the rats by re-
ducing paw swelling, serum levels of pro-infammatory
cytokines, and relieving joint pain. EA also can suppress
the expression of TLR2/4-MyD88-NF-κB signaling
pathway-related proteins in the synovium, especially the
TLR2 and TLR4 expression on synovial fbroblasts and
macrophages, and inhibition of TLR2/4 signaling could
mimic the analgesic and anti-infammatory efects of EA.
Tese data suggested that the anti-infammatory and anal-
gesic efects of EA treatment on RA are closely related to the
inhibition of innate immunity-mediated infammatory re-
sponse in the macrophages and synovial fbroblasts driven
by TLR2/4-MyD88-NF-κB signaling pathway in the
synovium.
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