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Atherosclerosis (AS) is an infammatory disease, whose occurrence and development mechanism is related to a great number of
infammatory cytokines. β-sitosterol (BS), a natural compound extracted from numerous vegetables and plant medicines, has been
suggested to improve AS, but the underlying mechanism remains vague. Tis work focused on investigating how BS afected the
lipopolysaccharide (LPS)-treated human umbilical vein endothelial cells (HUVECs) and further exploring the potential targets
and mechanisms through network pharmacology (NP) and molecular docking (MD). According to in vitro experiments, LPS
resulted in an increase in the expression of infammatory cytokines like tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox-
2), and interleukin-6 (IL-6). Besides, secretion of IL-6, interleukin-1β (IL-1β), and TNF-α also increased in HUVECs, whereas BS
decreased the expression and secretion of these cytokines. NP analysis revealed that the improvement efect of BS on AS was the
result of its comprehensive actions targeting 99 targets and 42 pathways. In this network, MAPKs signaling pathway was the core
pathway, whereas MAPK1, MAPK8, MAPK14, and NFKB1 were the hub targets. MD analysis also successfully validated the
interactions between BS and these targets. Moreover, verifcation test results indicated that BS downregulated the abnormal
expression and activation of MAPKs and NF-κB signaling pathways in LPS-treated cells, including p38, JNK, ERK, NF-κB, and
IκB-α phosphorylation expressions. Furthermore, p65 nuclear translocation was also regulated by BS treatment. In conclusion, the
BS-related mechanisms in treating AS are possibly associated with infammatory response inhibition by regulating MAPKs and
NF-κB signaling pathways.

1. Introduction

Atherosclerosis (AS) is a special pathological condition
involving endothelial dysfunction, infammatory in-
fltration, and plaque formation [1]. Te chronic build-up
of plaques causes stenosis and thrombosis in sick vessels,
while the acute rupture of atheromatous plaques leads to
vessel occlusion and critical tissue hypoxia. Typically,
myocardial infarction (MI) and stroke, the most fatal
complications caused by plaque disruption and

thrombosis, have become the major causes of cardiovas-
cular mortality in the elderly, worldwide [2, 3]. Te
pathophysiological mechanisms of AS are complicated, but
evidence has indicated that endothelial cells are the major
player in the initiation of AS. Atherosclerotic lesions are
frequently formed in certain regions with fow perturbation
and endothelial dysfunction [4]. Te infammatory re-
sponses of endothelium and vascular leakage have provided
the areas for the entry of leukocytes and smooth muscle
cells, leading to fatty streak development, which is the
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earliest visible lesion in AS [5]. Te anti-infammatory
strategies of the endothelium seem to be the promising
treatments to reduce the risk of atherosclerotic diseases [6].
However, the clinically used therapies for preventing AS
are limited to drugs that lower cholesterol levels, while
treatments targeting infammatory properties of AS deserve
further investigation.

Phytosterols, a kind of natural dietary micronutrient,
are widely distributed in vegetables and fruits such as le-
gumes, seeds, and nuts, which exhibit their potent efects
on promoting human wellness in many diseases such as
cancers, diabetes, and cardiovascular diseases (CVDs) [7].
β-sitosterol (BS), one of the most common components of
phytosterols, is the Food and Drug Administration (FDA)-
approved potential herbal nutraceutical used to treat AS
[8]. Since the chemical structure of BS is similar to cho-
lesterol, the administration of BS can competitively sup-
press animal cholesterol absorption and reduce serum lipid
levels, and it has no deleterious side efects [9, 10]. Some
study also indicates that BS improves the viability and
morphology of human endothelial cells exposed to oxidized
low density lipoprotein (ox-LDL) [11]. In addition, BS
inhibits the monocyte chemotactic protein-1 (MCP-1) and
intercellular adhesion molecule-1 (ICAM-1) levels in a cell
model induced by ox-LDL and TNF-α, thus reducing the
migration and adhesion of THP-1 monocytes to endo-
thelial cells (ECs) [12]. Tese results suggest that BS may
not only regulate lipid metabolism, but also improve the
infammatory responses of ECs during the development of
AS, however, its associated mechanisms remain largely
unclear.

With the development of computational methodologies,
network pharmacology (NP) has been a novel discipline that
can identify drug targets and predict the underlying
mechanisms of chemical components [13]. As a branch of
NP, molecular docking (MD) can predict the quantitative
structure activity relationship (QSAR) between the com-
pound and target, thus achieving the high-throughput
screening of herb monomer and providing new insights
in the drug discovery and drug design [14]. Recently, these
computational methodologies are applied to reveal the
regulatory mechanism between the compound and target.
For example, Huang et al. successfully predicted and vali-
dated the anticancer efects of gentiopicroside by NP [15],
and Mu et al. used NP for exploring antiviral actions in
rhizoma polygonati [16].

Tis work focused on investigating if NP and MD were
useful for obtaining hub targets, the BS-related molecular
mechanisms and its efects against AS. Moreover, this study
tried to acquire an objective explanation for validating the
prevention of BS in AS by a series of in vitro assays.

2. Materials and Methods

2.1. Materials. BS was obtained in Chengdu Must Bio-
Technology (Sichuan, China), whereas LPS (Escherichia
coli, O55: B5) in Sigma Aldrich (St. Louis, MO, USA).
Besides, GAPDH (Cat#3033), p-p65 (Ser536, Cat#3033), p-
ERK (Tr202/Tyr204, Cat#4370), p-p38 (Tr180/Tyr182,

Cat#4511), p-IκB-α (Ser32/36, Cat#9246), p-JNK (Tr183/
Tyr185, Cat#58328, Cox-2 (Cat#12282), and GAPDH
(Cat#5174) primary antibodies were provided by CST
(Beverly, MA, USA). Anti-p65 (Cat#bs-23217R), anti-IκB-α
(Cat#bs-1287R), anti-p38 (Cat#bs-0637R), anti-JNK
(Cat#bs-2592R), anti-ERK (Cat#bsm-52259R), anti-IL-6
(Cat#bs-0782R), and anti-TNF-α (Cat#bs-0078R) anti-
bodies were provided by Biosynthesis Biotechnology Co.
Ltd. (Beijing, China). Other reagents were obtained
commercially.

2.2. Cell Culture and Treatment. HUVECs were obtained
from Chinese Academy of Sciences Cell Bank (Shanghai,
China). After acquisition, cells were cultivated within the
endothelial cell medium (ECM), basal medium (Carlsbad,
USA) that contained 10% fetal bovine serum (FBS, Gibco,
USA) and incubated under 37°C and 5% CO2 conditions.
Tis work adopted the thawed cells in the initial 5 passages.
Lipopolysaccharide (LPS), an infammatory agent, was
provided by Sigma (St. Louis, USA), followed by dilution to
20 μg/mL with ECM. In the meantime, BS of over 98% purity
was obtained in Chengdu Must Bio-technology Co. Ltd
(Sichuan, China), followed by dilution to indicated con-
centrations with ECM before experiments. Ten, HUVECs
were subject to 24 hours BS pretreatment and later 24 hours
LPS treatment.

2.3. Western Blot (WB) Analysis. After diferent treatments,
proteins were harvested and their contents were determined
by the BCA protein assay kit (Beyotime, China). Tereafter,
10%–12% SDS-PAGE was applied in separating 30 μg
proteins, followed by transfer onto the PVDF membranes
(Millipore, USA). Te membranes were later immersed in
5% BSA for a 2 hours period, followed by overnight in-
cubation under 4°C using the primary antibodies as follows:
NF-κB, p-NF-κB, IκB-α, p-IκB-α, JNK, p-JNK, p38, p-p38,
ERK, p-ERK, TNF-α, IL-6, Cox-2 (1 :1000), and GAPDH (1 :
2000). Ten, horseradish peroxidase (HRP)-conjugated
secondary antibodies (Afnity Biosciences Co. Ltd., China)
were added to further incubate membranes. WB assay re-
sults were analyzed with the ECL system and ImageJ
software.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA).
HUVECs were pretreated under diferent conditions. In line
with specifc instructions (Dakewe, China), the supernatant
was collected and incubated with biotinylated antibody and
streptavidin-HRP. Te absorbance (OD) values determined
at 450 nm were used to calculate the contents of in-
fammatory cytokines in the supernatant.

2.5. Real-Time Quantitative PCR (qRT-PCR).
Infammatory cytokine mRNA expression was measured by
qRT-PCR. TRIzol reagent was added in cells to extract the
total RNA, while RNA quality was determined based on the
A260/A280 ratio. According to specifc protocols, Prime-
Script RT reagent kit was utilized to collect cDNA by using
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gDNA Eraser (Takara, Japan). Te SYBR Green (Takara,
Japan) was employed for qRT-PCR, while the 2−ΔΔCt ap-
proach was utilized to measure gene levels. Table 1 displays
the sequences of all primers.

2.6. Immunofuorescence (IF) Analysis. P65, the NF-κB
subunit, is related to IκB/NF-κB pathway activation via
nuclear import. Tis work used IF analysis to measure the
translocation of p65. In line with specifc protocols (Beyo-
time, China), HUVECs were subject to fxation, washing,
blocking, incubation, and staining by diverse reagents. A
laser scanning confocal microscope was employed for result
observation.

2.7. Statistical Analysis. Results were represented by
mean± SD. Statistical analysis was completed with one-way
ANOVA, while the least-signifcant diference (LSD) test
was utilized to compare two groups. p< 0.05 stood for
statistical signifcance.

2.8. Exploration of Potential Mechanisms Based on NP.
Tis work collected the 3D structure format for BS in
PubChem (https://pubchem.ncbi.nlm.nih.gov/), and then
uploaded it to PharmMapper (https://www.lilab-ecust.cn/
pharmmapper/) to screen the putative targets. Other data-
bases, including BATMAN (https://bionet.ncpsb.org/
batman-tcm/) and TCMSP (https://tcmspw.com/tcmsp.
php) were also utilized to predict the targets of BS. In the
meantime, the keyword was “atherosclerosis” for selecting
AS-associated genes from OMIM (https://www.omim.org/)
and GeneCards (https://www.genecards.org/). Target species
of “Homo sapiens” was corrected to ofcial symbols by the
UniProt database (https://www.uniprot.org/). Moreover,
those overlapping targets between BS and AS were acquired
using Venn diagrams (https://bioinformatics.psb.ugent.be/
webtools/Venn/).

For analyzing target interactions, some bioinformatic
methods were applied. Tis work also built the protein-
protein interaction (PPI) network based on diferent evi-
dence channels via STRING (https://string-db.org/). A high
pooled score greater than 0.7 was set and the tsv format fle
was downloaded. Tis fle was thereafter imported into
Cytoscape 3.7.2 for visualization. Gene functions in the PPI
network were analyzed through DAVID (https://david.
ncifcrf.gov/). With DAVID, Gene Ontology (GO) as well
as Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis was conducted for investigating biological prog-
resses together with signaling pathways enriched by BS-
related genes against AS.

In addition, the plunge-in CytoNCA of Cytoscape was
employed to calculate the “degree centrality (DC)” within
genes. Te top 30 targets with the highest DC values were
selected as the core targets. With the comprehensive analysis
of targets, some core targets closely correlated with AS were
considered as the hub targets. Te 3D PDB fles of these hub
targets were provided by RCSB PDB (https://www.rcsb.org/
search), and then utilized in the MD analysis.

2.9. Validation of Hub Genes with MD. In this study,
AutoDock Vina was applied to display the binding con-
formation between BS and hub genes. Te crystal struc-
tures of hub genes were prepared by AutodockTools to
separate local ligand, remove water, add hydrogen, and
regulate atom distribution prior to MD, respectively. Te
3D structure of BS was also prepared as the ligand.
According to the tutorial of AutoDock Vina, the results of
semifexible docking superimposed on the crystal struc-
tures of hub genes were obtained. Results with the binding
energy <7 kcal were considered as strong
combination [17].

3. Results

3.1. Efects of BS on Infammatory Factor Levels. Te contents
of infammatory cytokines were measured by WB, qRT-
PCR, and ELISA assays. As a result, IL-1β, IL-6, TNF-α, and
Cox-2 levels increased after LPS stimulation. Compared with
the LPS group, HUVECs treated with BS produced less
infammatory cytokines, indicating the potential anti-
infammatory efects of BS (Figures 1(a)–1(f)).

3.2. Target Identifcation and Analysis. BS showed its ex-
cellent ability to attenuate the expression and secretion of
proinfammatory cytokines. In the following analysis, NP
was conducted for exploring the BS-related mechanisms
against infammation. Tis work acquired altogether 139
targets in BS in Pharm Mapper, TCMSP, and BATMAN
databases, while 4942 targets related to AS were acquired.
After overlapping the targets via Venn diagram, 99 potential
targets were fnally identifed and chosen in the PPI analysis
(Figure 2(a)).

Te disconnected nodes were hidden, and PPI analysis
results are shown in Figure 2(b), with 93 nodes and 314
edges in the network. Nodes were labeled as targets while
edges were defned as interactions among nodes. Besides,
the font size of the node represented the importance degree
in the network. For elucidating BS-related mechanism
against AS, GO, and KEGG analyses were performed via

Table 1: Oligonucleotide and primer sequence.

Names Primer sequences
GAPDH,
human 5ʹ-ATCATCAGCAATGCCTCCTG-3ʹ (forward)

GAPDH,
human 5ʹ-ATGGACTGTGGTCATGAGTC-3ʹ (reverse)

IL-6, human 5ʹ-GGTGTTGCCTGCTGCCTTCC-3ʹ (forward)

IL-6, human 5ʹ-GTTCTGAAGAGGTGAGTGGCTGTC-3ʹ
(reverse)

TNF-α,
human 5ʹ-GCTGCACTTTGGAGTGATCG-3ʹ (forward)

TNF-α,
human 5ʹ-CTTGTCACTCGGGGTTCGAG-3ʹ(reverse)

IL-1β,
human

5ʹ-AGCTCGCCAGTGAAATGATGG-3ʹ
(forward)

IL-1β,
human 5ʹ-AGTGGTGGTCGGAGATTCGT-3ʹ(reverse)
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DAVID, and results were screened with a false discovery
rate (FDR) <0.05. Consequently, this study discovered
altogether 43 GO biological processes as well as 42 KEGG

pathways. Te top fve functions were steroid hormone-
regulated pathway, IκB kinase/NF-κB pathway negative
regulation, transcription initiation from RNA polymerase
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Figure 1: Efects of BS on infammatory factor levels. (a, b) Te expression analysis of IL-6, TNF-α, and Cox-2 via western blot. (c) mRNA
detection of IL-6, TNF-α, and IL-1β via qPCR. (d–f) Te secretion of IL-6, TNF-α, and IL-1β via ELISA. #p< 0.05 and ##p< 0.01 compared
with the normal control; ∗p< 0.05 and ∗∗p< 0.01 compared with the LPS group.
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Figure 2: Continued.
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II promoter, response to estrogen, and signal transduction
response. Moreover, KEGG analysis showed that genes
were mainly enriched into the cancer pathway, MAPK
pathway, prolactin pathway, insulin resistance, and thyroid
hormone pathway. According to these results, there were
multiple mechanisms of BS against AS, which were mainly
correlated with hormone homeostasis, metabolism, and
infammation. Te top 15 representative GO terms and
KEGG pathways are shown in Figures 2(c) and 2(d). In
addition, genes with the highest DC values are listed in
Figure 2(e). Some genes such as MAPK8, MAPK1,
MAPK14, and NFKB1 were not only the important nodes
in the PPI network, but also the major players in biological
pathways, which were identifed as the hub genes and
validated in further study.

3.3. Target Validation via MD. PDB fles of hub genes
MAPK8, MAPK1, MAPK14, and NFKB1 (PDB numbers:
2g01, 3w55, 6sfo, and 1nf, respectively) were downloaded
from the RCSB PDB database. MD was performed with the
AutoDock Vina software. Te best models between BS and
targets were identifed as those exhibiting the lowest binding
energy. Te optimal conformations with hydrogen or hy-
drophobic bonds are presented in Figures 3(a)–3(d). BS
contacted with MAPK8 on a stable hydrophobic core
consisting of several residues including ASP-169, LEU-168,
VAL-40, and ILE-32, and it is also bound to MAPK14 by
forming a hydrophobic region around the residues. Besides,
hydrogen bonds with GLU-109 (2.81 Å) and MET-108
(2.62 Å) were formed between BS and MAPK1, while
a hydrogen bond with GLU-97 (2.31 Å) was also found
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Figure 2: Target identifcation and analysis. (a) Venn plot of the common targets in AS and BS. (b) PPI network of common targets in AS
and BS. (c, d) GO and KEGG analysis of the PPI network. (e) Number of adjacent nodes of key targets between AS and BS.
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between BS and NFKB1. Te MD results showed the strong
binding between BS and hub targets, indicating that the
drug-target interactions might be the basis of the biologic
activity. Tis fnding also demonstrated that BS exerted its
anti-AS efect via the combined action of multiple targets.

3.4. Efects of BS in NF-κB and MAPKs Pathway-related
Protein Levels. As previously reported, MAPK and IκB-
α/NF-κB pathways have a critical efect on regulating in-
fammatory cytokine production. After pretreatment with
BS (1, 5, and 25 μmol/mL), the phosphorylation levels of IκB-
α and NF-κB were reduced in HUVECs exposed to LPS
(Figures 4(a) and 4(b)). Furthermore, the activation of
MAPKs family was enhanced in HUVECs after LPS in-
duction. However, BS declined p-p38, p-ERK, and p-JNK
expression within MAPKs family to varying degrees dose-
dependently (Figures 4(c) and 4(d)). IF staining revealed the
bright red-stained nuclei following LPS treatment, while BS
inhibited the abovementioned alterations, indicating that
nuclear translocation of NF-κB (p65) was blocked by the BS
treatment (Figure 4(e)). All these fndings were consistent
with their prediction.

4. Discussion

Many studies regarding vascular infammation in athero-
sclerotic plaques have reported that the imbalance between
anti-infammatory and proinfammatory responses is crucial
for AS development. As the most common proinfammatory
factors in infammatory responses, IL-1β, IL-6, TNF-α, and
Cox-2 are recognized to be atherogenic factors. Tere is
evidence supporting that the deletion of TNF-α gene reduces
the atherosclerotic areas in apoE−/− mice without afecting
their serum cholesterol level [18]. Similarly, the plaques
narrow in IL-1β−/−/apoE−/− mice or IL-6−/−/apoE−/−mice
[19, 20]. Some studies have demonstrated that Cox-2 de-
pends on the previous release of IL-1β and plays an im-
portant role in modulating atherosclerotic plaque stability or
instability [21]. Other studies report that these cytokines
have a great impact on the vascular homeostasis, particularly
in the regulation of vascular permeability, coagulation,
leukocyte adhesion, and aggregation, which aggravate the
disorders of ECs [22]. Blocking proinfammatory factor
levels has been recognized as a candidate approach for

preventing AS-related CVDs [6]. Treatments using mono-
clonal antibodies specifcally targeting molecules like IL-1β,
IL-6, and TNF-α markedly decrease the relapsed cardio-
vascular events among patients developing stable
CADs [23].

BS, the dietary phytosterol with bioactivity within plants,
is used as a pharmaceutical product for a long history.
Tough only 5% of BS is obtained from daily intake, it can
still lower the serum lipid levels [24, 25]. Besides, BS has
displayed its potential in vivo and in vitroanti-
infammatoryand immunomodulatory activities [8]. To
elucidate how BS afected proinfammatory factors, this
work measured IL-1β, IL-6, TNF-α, and Cox-2 levels within
LPS-treated ECs; as a result, BS declined these infammatory
cytokines to varying degrees. Tese results laid the possible
pharmacological foundation for the application of BS in
treating AS, but detailed mechanisms should be further
explored.

With NP, the potential targets of BS to exert anti-AS
efects, the biological progresses, signaling pathways, and
networks were displayed. A total of 99 targets were screened,
which participated in 43 GO biological processes and 42
KEGG pathways. Te GO biological processes were roughly
divided into three parts, including protein kinase activity,
signaling pathway transduction, and hormone regulation.
Most biological processes were closely related to the treat-
ment of AS, such as IκB-α kinase/NF-κB pathway negative
regulation, cholesterol homeostasis regulation, and steroid
signaling pathway. Some studies have demonstrated the
protective efects of estrogen (a major kind of steroid
hormone) in the development of CVDs [26]. High-fat diet
can induce atherosclerotic lesion, oxidative stress, ICAM-1,
and NF-κB in mice, while these sicknesses of atherogenic
diet-fed mice are improved after the estrogen treatment [27].
Our KEGG analysis also showed that the estrogen pathway
had a critical efect on treating AS by BS. Other studies have
suggested that estrogen receptors (ESRs) encoded by ESR1
and ESR2 may exert favorable efects on cells and molecules
implicated in vascular infammation, which can impede the
development of AS [28]. In addition, KEGG analysis also
identifed other pathways associated with immune and in-
fammatory responses, such as MAPK, T cell receptor, TNF,
and NOD-like receptor pathways. In addition, hub genes
were obtained by network analysis. Some targets, such as
MAPK8, MAPK1, MAPK14, and NFKB1, were selected as
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Figure 3: Target validation via MD. (a–d) Interaction analysis between MAPK8, MAPK1, MAPK14, and NFKB1 and BS via molecular
docking, respectively.
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Figure 4: Continued.
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the hub genes for further MD because they were not only the
important nodes in the network, but also the major players
in the infammatory signaling pathway. Our MD results
showed that BS had a strong binding activity to MAPK8,
MAPK1, MAPK14, and NFKB1, respectively. It has been
reported that hydrogen bonds and the role of intermolecular
forces can be found between small molecule and the active
region of target protein. As a result, the small molecule
creates inhibition on the target [29], which enables us to
conclude that BS can inhibit the activation of MAPK8,
MAPK1,MAPK14, andNFKB1. Based on the NP data, it was
speculated that the powerful anti-infammatory efects of BS
on AS might be correlated with the inhibition of MAPK8,
MAPK1, MAPK14, and NFKB1. NP ofers the fast and ef-
fective way for drug research; nonetheless, experiments
should be conducted to validate targets.

According to our results of in vitro study, IκB-α andNF-κB
activation in HUVECs was remarkably impeded after the BS
treatment. Moreover, LPS also activated the subunit of NF-κB
(p65), resulting in its translocation from cytoplasm to nucleus.
However, BS attenuated this process. Te IκB-α/NF-κB
pathway accounts for a critical pathway that is activated upon
infammatory stress response [6]. Te phosphorylation of IκB
contributes toNF-κB dimers release from cytoplasmic IκB-NF-
κB complex, their subsequent nuclear import, and regulation of
genes that encode proinfammatory factors like IL-1β, IL-6, and
TNF-α, as well as the encoding enzymes such as Cox-2 in ECs
[30]. Numerous studies have suggested that IκB-α/NF-κB
pathway suppression can protect ECs from various stimuli in
the development of AS. Song et al. reported that IκB over-
expression in ECs signifcantly inhibited the NF-κB activity,
mitigated the spontaneous atherosclerotic lesions, and allevi-
ated AS resulting from chronic intermittent hypoxia and

cholesterol diet, confrming that the internal endothelial NF-κB
pathway was related to atherogenic response [31]. A phar-
macologic inhibitor of NF-κB, BAY11-7082 has been proven to
suppress proinfammatory factors such as TNF-α and IL-6 and
inhibit prothrombotic efects for protecting the
endothelium [32].

Te authors’ results also suggested that the activation of
JNK, ERK, and p-38 was inhibited in HUVECs exposed to
LPS after the BS treatment. In addition to NF-κB pathway,
the MAPK pathway is important for regulating cell growth,
survival, as well as infammatory stimulation responses [33].
JNK, ERK, and p-38, which are members of MAPKs family,
regulate the proinfammatory genes encoding IL-1, IL-6,
TNF-α, and Cox-2 during ECs activation and contribute to
AS progression [34, 35]. Yamawaki et al. indicated that the
normal blood fow restored TNF-α-induced infammation
by the inhibition of JNK and p38 MAPK in ECs [36].
Moreover, some studies have suggested that there is cross-
talk between MAPKs and NF-κB pathways. Inhibiting
MAPKs can inhibit NF-κB phosphorylation, fnally blocking
the amplifcation of endothelial infammation [37], in-
dicating that BS acts via the MAPKs and NF-κB pathways to
terminate the infammatory cascade in ECs.

 . Conclusion

By conducting NP and experiments, this study verifes that
BS may alleviate the infammatory cascade via inactivating
MAPK and NF-κB pathways within ECs, which may be
possible mechanisms of BS in treating AS. However, only
in vitro assays about infammation are conducted, some
targets related to metabolism and hormone detected in this
work must be further explored. Nevertheless, our research
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Figure 4: Efects of BS in NF-κB and MAPKs pathway-related protein levels. (a–d) Te expression analysis of p-IκB-α, p-NF-κB, p-p38, p-
JNK, and p-ERK via western blot, respectively. (e) Nuclear translocation detection of NF-κB (p65) from the cytoplasm via immuno-
fuorescence staining. ##p< 0.01 compared with the normal control; ∗p< 0.05 and ∗∗p< 0.01 compared with the LPS group.
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not only provides new insights into the pharmacological
actions of BS but also lays the scientifc foundation for
applying BS in treating AS.
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