Hindawi

Education Research International

Volume 2021, Article ID 9105342, 10 pages
https://doi.org/10.1155/2021/9105342

Research Article

Hindawi

A Study of First-Year Students’ Attitudes toward Programming in
the Innovation in Educational Technology Course

Virawan Amnouychokanant ®,' Surapon Boonlue,” Saranya Chuathong,’

and Kuntida Thamwipat’

Division of Learning Innovation and Technology, Faculty of Industrial Education and Technology,

King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
*Department of Educational Communications and Technology, Faculty of Industrial Education and Technology,

King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand

Correspondence should be addressed to Virawan Amnouychokanant; virawan.am@mail. kmutt.ac.th

Received 24 June 2021; Accepted 29 September 2021; Published 14 October 2021

Academic Editor: Enrique Palou

Copyright © 2021 Virawan Amnouychokanant et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The purpose of this study was to investigate the relationship between students’ attitudes toward programming, gender, and
learning performances. The survey used for measuring students’ attitudes toward programming consisted of 20 questions on a
five-point Likert scale in five dimensions (meaningfulness, interest in programming, self-efficacy, creativity, and collaboration).
Ninety freshmen who had basic programming experience by using block-based programming in the Innovation in Educational
Technology course were asked to take the survey. The overall reliability of the survey was found to be 0.93. The results showed that
there was no significant difference between male and female freshmen in attitude toward programming, but there was a significant
difference among different learning performances in dimensions of interest in programming, self-efficacy, and creativity. We
performed pairwise comparisons at the same level of significance by using Fisher’s least significant difference (LSD) method to test
which group differs from the other groups. The results found that low-performing students’ attitudes toward programming in
dimensions of interest in programming, self-efficacy, and creativity were the lowest of all types of students. This is a challenge for
instructors in planning learning activities to encourage low-performing students to have a more positive attitude

toward programming.

1. Introduction

Programming is an essential skill for students in the digital
era. The world economy is being transformed, and more and
more workers are being replaced by robots and artificial
intelligence (AI). Consequently, programming is one of the
high-demand skills in current and future job markets [1].
Many people think programming skills are only valuable for
people working in highly technical careers. In fact, for people
who work closely with developers and programmers,
learning basic programming makes them much more
valuable members of a team. Within programming in the
higher education context, students learn how to break down
a problem into smaller parts and design a step-by-step

procedure for creating a working program by using a lan-
guage that the computer understands [2]. These processes
related to decomposition and algorithm design in compu-
tational thinking give students new perspectives on prob-
lem-solving. Furthermore, learning to code offers students
the opportunity to have great earning potential in the future
and makes them become in-demand candidates in a rapidly
shifting digital economy [3, 4]. Nowadays, Thailand is
concentrating on digital technology as a solid foundation for
future business and as the main driving force in educational
reform. Thailand has developed a national socioeconomic
and educational development plan for human resources with
an eye to the job market of the future [5]. To support this
plan, higher education institutions must produce graduates

mailto:virawan.am@mail.kmutt.ac.th
https://orcid.org/0000-0001-8523-1892
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9105342

who are highly skilled in digital areas such as programming,
artificial intelligence, machine learning, data science, data
analytics, cloud computing, blockchain, cybersecurity,
mobile development, user interface design, and user expe-
rience design [6-12].

One member of our research team is an instructor who
teaches Innovation in Educational Technology. He wanted
to promote programming among students in his course
because he realized that programming is one of the high-
demand skills in the present and future. As a result of
completing the Innovation in Educational Technology
course, students will be able to apply basic programming and
computational thinking concepts to create innovative in-
ventions. This course is not a specialization in computer
science. Therefore, students do not need to be as proficient in
programming as computer science students, but they need to
have basic knowledge of programming to apply it in the
future. In this course, block-based programming is con-
sidered as an alternative to foster basic programming skills
because text-based coding is not easy for beginners to start
coding and the language syntax is a barrier for students’
understanding of computational thinking concepts [13].
Furthermore, block-based languages have a pallet of com-
mands, making memorizing commands unnecessary;
therefore, it is easy for novices [14]. To measure students’
attitudes toward programming, students were asked to take
the survey after completing the course.

Many studies explored the attitudes toward program-
ming of male and female students [15-18]. On the other
hand, the attitudes toward programming of students who
have different levels of performance have been scarcely
studied. The purpose of this study is to provide empirical
evidence that can help to answer a set of research questions:
what are the attitudes toward programming of male and
female students? What are the attitudes toward program-
ming of students who have different levels of performance
(high, medium, and low)? This paper is organized as follows:
Section 2 reviews the background literature on program-
ming in higher education and components of attitudes
toward programming; Section 3 outlines the methodology,
including the participants, instrument, and procedure;
Section 4 presents the results of the survey; Section 5
summarizes the discussion; and Section 6 presents the
conclusion.

2. Literature Review

2.1. Programming in Higher Education. Introductory pro-
gramming is important for undergraduate students in the
twenty-first century. Previous skills and background
knowledge are key for a novice student to learn basic
programming. The skills were divided into two categories:
programming-related skills and general educational skills
[19]. The goal of introductory programming courses is to
teach the students how to express solutions in a language
that the computer understands. Choosing an appropriate
language for teaching basic programming is critical. It has a
strong effect on novice students. If they understand the first
language they learn, they tend to continue coding and learn

Education Research International

more difficult programming languages [20]. Many re-
searchers emphasize that learning how to program requires
the use of problem-solving skills [21-23]. A lack of problem-
solving skills makes it difficult to learn programming [24].
Therefore, it is considered a prerequisite skill for learning
basic programming. In addition to problem-solving skills,
mathematical ability is cited as necessary for programming.
Most programming teachers state that lacking mathematical
ability is one of the difficulties that novice students en-
counter when programming. When students do not have
enough mathematical skills, they do not know how to
program [25]. It is noteworthy that students who have
mathematical skills and logical reasoning always succeed in a
programming course [26]. Porter and Zingaro [27] consider
previous knowledge as a predictor of success in program-
ming for novice learners in higher education. Students who
had prior programming experience tend to perform better
than those with no programming experience. Concerning
general educational skills, lacking knowledge of English is an
obstacle in programming because it is used in the syntax of
all programming languages. Students who are good at vo-
cabulary and English grammar were more likely to be
successful programmers than nonfluent ones [28].

Learning to program in higher education is difficult
because it requires problem-solving and higher-order
thinking skills [29-31]. The difficulty of expressing the so-
lution in a language understood by the computer is a barrier
for novice students. They need to understand many abstract
terms. Even students who have enough problem-solving
skills find it hard to turn the pseudocode into a syntactically
correct program. The syntax of programming languages is
important for novice students. Correcting syntax errors is a
time-consuming process and leads to random debugging
behavior [32]. Selecting the appropriate control structures
(sequences, loops, conditionals, recursion, and repetition)
for solving problems was also mentioned as one of the
difficulties for novice students in higher education [32-42].
Bringula et al. [43] found that most students failed the
programming examination because the level of difficulty of
the examination is not suitable to the students’ level and
allotted time. When they often cannot solve programming
errors, they experience anxiety, panic, and stress [44]. They
also sorrow and despair [45]. Finally, they tend to give up
and transfer to other degree programs when they cannot
overcome programming difficulties [31].

Basic programming is a challenge not only for novice
students but also instructors. Instructors attempt to find
ways to arouse students’ interest in programming [46]. The
style of teaching that does not attract students’ interest can
make them bored. Making higher education students in-
terested in programming is not an easy task. This is a
challenge for instructors when designing learning activities.
In addition to motivating the students, instructors should
provide novices with fundamental skills and simple problem
solving before starting the course so that novices have the
background needed to understand basic programming.
Previous studies have suggested various teaching methods:
live coding, gamification, team based-learning, interactive
computer tutors, mentor support, peer instruction, and pair

Education Research International

programming [47-54]. However, some of these teaching
methods do not always succeed. Hertz and Jump [55] used a
variety of methods in the classroom, including active
learning, demonstration, live coding, and canned examples.
Yet student performance was poor and retention rates were
low. In contrast, using only a trace-driven teaching method
decreased the dropout rate and grade failures. It can be
interpreted as showing that combining various teaching
approaches in courses may not always lead to positive re-
sults. Moreover, it is difficult for the instructors to foster the
development of programming skills in large classes with
students who have different levels of knowledge and learning
styles [46]. Some educators [56-58] suggested that tutors
and mentors would help make learning activities more fluid
and fewer differences in individual students. Another
challenge is the feedback process. Formative and summative
assessment can give quality feedback. In the formative as-
sessment, the instructors can get feedback about their
teaching and use the feedback to improve it. The instructors
also use summative assessment to determine whether the
students are ready to move onto the next lesson and help
identify weak areas for students [59]. Lastly, choosing the
first programming language to be taught to novice students
is significant. The instructors should consider easy languages
for beginners to start coding because the language syntax is a
barrier for them. Choosing languages that are too difficult
can affect students’ performance and their attitudes toward
programming [13, 14, 20].

2.2. Components of Attitude toward Programming. An un-
derstanding of students’ attitudes toward programming may
help to develop better teaching tools and methods. Students’
attitudes toward programming also affect their performance
in programming. In this study, we focus on five components
of attitudes toward programming including (1) meaning-
fulness, (2) interest in programming, (3) self-efficacy, (4)
creativity, and (5) collaboration.

(1) Meaningfulness is a student’s perceived value of
programming [60]. When students perceive programming
as meaningful, they will put more effort to overcome ob-
stacles when programming [61]. (2) Interest in program-
ming is the state of wanting to learn about programming.
Students with an interest in programming tend to have
better performance than other students. They are willing to
spend more time on programming. They are more likely
than others to view difficult programming tasks as a chal-
lenge and find effective solutions to complete it [62]. (3) Self-
efficacy is students’ belief in their ability to succeed in
programming [63]. When students have greater self-efficacy,
they have greater confidence in their ability to overcome
programming difficulties and are more likely to continue
working on it until completion [61]. (4) Creativity is a
student’s perception that he or she could try different
methods and ideas when faced with problems in pro-
gramming [61]. Although programming is related to logical
reasoning, students also believe creativity is important in
programming [64]. Computational thinking and program-
ming skills can develop through creative programming.

Creative programming encourages the students in the
process of designing and developing work through coding
[65]. (5) Collaboration is a student feeling toward doing
programming activities with peers. Programming has be-
come a collaborative task because today’s programs are too
difficult and long for a single programmer to complete.
Therefore, students should be familiar with collaboration
before making careers in the future [66]. Pair programming
plays an important role in higher education. Working in
pairs produces more rapid and effective solutions than
working alone. In addition, students with high program-
ming skills will help a partner who has lower programming
skills to complete their task [67]. Getting students to write
code together in pairs or small groups can also enhance
students’ programming performance and confidence
[52-54]. Students with greater collaboration attitudes tend
to make more effort and more efficiently solve problems
when working collaboratively with others [61].

3. Methodology

3.1. Participants. The respondents of this study were 90
freshmen attending the Department of Educational Com-
munications and Technology of King Mongkut’s University
of Technology Thonburi (KMUTT), Thailand. All of them
enrolled in the Innovation in Educational Technology
course. Before taking an online survey, all respondents had
basic programming experience by using block-based pro-
gramming [68]. In this study, we classified the students into
three groups: high-, medium-, and low-performing students.
The students’ classification details are shown in Table 1.

3.2. Instrument and Procedure. This survey drew on the
questionnaire developed by Kong et al. [61]. Some items of
their questionnaire were not directly related to freshmen’s
attitude toward programming. Since our purpose was to
develop the instrument to measure freshmen’s attitude to-
ward programming, we omitted some items in their survey
and changed some to reflect our purpose. Finally, we
constructed 25 items for our survey. Items were designed
using a 5-point Likert scale (5 = “strongly agree,” 4 = “agree,”
3 ="“neutral,” 2="“disagree,” and 1="“strongly disagree”).
Three experts in computer science and educational assess-
ment checked the items to ensure content validity. After
editing the questionnaire according to the recommendations
of the experts, nine freshmen (four males and five females)
read the questionnaire to check if they understand the
intended meanings of each item. Finally, 90 freshmen in the
Innovation in Educational Technology course were asked to
take the online survey.

Exploratory factor analysis was used to reduce data to a
smaller set of summary variables. Five items were deleted
due to insignificant factor loading. There were 20 items left
in five factors. Factors were named as “Meaningfulness,”
“Interest in programming,” “Self-efficacy,” “Creativity,” and
“Collaboration.” Table 2 shows Cronbach’s alpha value of
the survey. The reliability for the total scale was 0.93 and the
reliability of each dimension ranged from 0.80 and 0.89.

4 Education Research International
TaBLE 1: Students’ classification. TABLE 3: Survey items of the instrument.

GPa Level of performers Items

3.01 to 4.00 High 1. Meaningfulness

2.01 to 3.00 Medium 1.1. Programming is useful to me.

Less than 2.01 Low 1.2. Programming makes me solve problems systematically.
1.3. Programming helps me improve my thinking skills.
1.4. Programming offers the opportunity to have great earning

TaBLE 2: Cronbach’s « value of each dimension. potential.
Dimensions Number of items Reliability 2. Interest in progr amming .
; 2.1. Programming is catching my attention.
Meaningfulness 4 0.82 29 Th O
. . .2. The content of programming is fun.

Interest in programming 4 0.89 husiastic when it i . .
2.3. I am enthusiastic when it is programming time.

Self-efficacy 4 0.84 . . L

L. 2.4. T am very passionate about programming activities.

Creativity 4 0.80

Collaboration 4 0.83 3. Self-efficacy)

Total 20 0.93 3.1. T can learn how to code rapidly.

Cronbach’s alpha values of 0.7 or higher indicate acceptable
internal consistency [69]. Thus, each dimension of this
survey indicated acceptable reliabilities of the question-
naire’s scales. The survey items translated into English are
shown in Table 3.

4. Results

4.1. Attitudes toward Programming Results by Gender.
Table 4 shows an independent samples t-test comparing
gender differences in attitudes toward programming. There
was no significant difference between male and female
freshmen in attitudes toward programming. The average
scores in attitude toward programming of males and females
were very close. In Table 5, there was no significant dif-
ference between male and female freshmen in all dimen-
sions. However, the average scores of the meaningfulness
dimension were the highest. It can be assumed that both
male and female freshmen realized the importance of
programming. While the average scores of the self-efficacy
dimension were the lowest. It indicates that both male and
female freshmen lacked confidence in their ability to
program.

Figure 1 shows box plots for total scores of attitudes in
each dimension split by genders. Total attitude scores in each
dimension equal 20 points. Both males and females have the
highest scores in meaningfulness. The interquartile range
(Q3-Q1) of the meaningfulness in males is shorter than in
females. Hence, it can be stated that the attitude scores in the
meaningfulness of males have less variability than among
females. In addition to meaningfulness, attitude scores in the
creativity of males also have less variability than among
females. However, the attitude scores in interest in pro-
gramming and self-efficacy of males have more variability
than females. Furthermore, collaboration is the shortest
interquartile range among all dimensions, especially in fe-
males. It means that the attitude of males and females toward
collaboration in programming has the least variability of all
five dimensions. However, outliers are marked most in
collaboration. It indicates that there are abnormally high and
low attitude scores in collaboration.

3.2. I have confidence in my ability to code.
3.3. 1 can find and resolve programming errors.
3.4. T am good at programming.

4. Creativity

4.1. Programming is a creative activity.

4.2. Programming can inspire me to try new ideas to complete
tasks.

4.3. It is necessary to use creativity in programming.

4.4. An appropriate programming environment can develop my
creativity.

5. Collaboration

5.1. I like to code with my friends.

5.2. T have better ideas when I code with friends.

5.3. 1 can help my friends when they face problems in
programming,.

5.4. 1 finish tasks faster when I code with my friends.

TaBLE 4: Independent samples t-test comparing gender differences
in attitude toward programming.

Gender N Mdn M SD ¢ p
Male 31 4 386 080
Female 59 4 385 069 08 09

TaBLE 5: Independent samples t-test comparing gender differences
in dimensions of attitude toward programming.

Dimensions Gender N Mdn M SD t p
Meaningfulness Fi/[rriele g; i ggg 822 0.49 0.62
e e 430,
oo 0 2000 0
oy T 0
Collaboration Flet/[riﬁe g; i ;1;2 82; 1.49 0.14

4.2. Attitude toward Programming Results per Learning
Performances. Table 6 shows the medians (more repre-
sentative than the mean in asymmetric distribution),
means, and standard deviation of attitudes toward

Education Research International

25

20

15

10

Male

[J Meaningfulness
[l Interest in programming
[Self-efficacy

Female

[Creativity
[J Collaboration

FIGUure 1: Box plots for total scores of attitudes in each dimension split by gender.

TaBLE 6: Independent samples t-test comparing gender differences
in dimensions of attitude toward programming.

TABLE 7: Analysis of variance (ANOVA) results for attitude toward
programming among different learning performances.

Learning performances N Mdn M SD Source of the variance SS df MS F P
High 45 4 3.96 0.67 Between groups 2.567 2 1.283

Medium 43 4 3.78 0.73 Within groups 15875 87 0.183 7.033 0.001"
Low 2 3 2.90 0.93 Total 18.442 89 —

programming among students with different learning
performances (high, medium, and low). The results found
that high-performing students had the most positive at-
titudes toward programming of all types of students, while
low-performing students had the lowest average scores in
attitudes toward programming. Table 7 shows a significant
difference among students with different learning per-
formances in attitudes toward programming. In Table 8,
there was a significant difference among students with
different learning performances in dimensions of interest
in programming, self-efficacy, and creativity. We per-
formed pairwise comparisons at the same level of sig-
nificance by using Fisher’s least significant difference
(LSD) method to test which group differs from the other
groups. In Table 9, the results found that both high- and
medium-performing students had more interest in pro-
gramming than low-performing students. Concerning
self-efficacy in programming, Table 10 shows a significant
difference in all pairs. High-performing students had
more confidence in programming than medium- and low-
performing students, while medium-performing students
had more confidence in programming than low-per-
forming students. In Table 11, the results found that both

Notes: * p<0.05.

high- and medium-performing students had a more
positive attitude in creativity in programming than low-
performing students.

Figure 2 shows box plots for total scores of attitudes in
each dimension of attitude toward programming split by
level of learning performance. The interquartile range of
all dimensions in low-performing students (except for the
interquartile range of collaboration) is lower than for
high- and medium-performing students. The interquartile
range of collaboration in low-performing students is at the
same level as for high- and medium-performing students.
These results can be interpreted as showing that low-
performing students have the same positive attitude in
collaboration in programming as high- and medium-
performing students. Attitudes toward collaboration in
low-performing students have the highest scores among
all dimensions. We might assume that low-performing
students like to code with peers because it relieves anxiety
when facing problems in programming and allows them
to finish tasks faster. Outliers are found in high- and
medium-performing students but not in low-performing
students.

6 Education Research International
TaBLE 8: Analysis of variance (ANOVA) results among different learning performances in each dimension.
Dimensions Source of the variance SS df MS F p
Between groups 1.924 2 0.962
Meaningfulness Within groups 32.926 87 0.378 2.541 0.085
Total 34.85 89 —
Between groups 4.348 2 2174
Interest in programming Within groups 36.722 87 0.422 5.150 0.008~
Total 41.07 89 —
Between groups 8.482 2 4241
Self-efficacy Within groups 17.224 87 0.198 21.422 <0.001*
Total 25.706 89 —
Between groups 4.902 2 2.451
Creativity Within groups 20.123 87 0.231 10.596 <0.001*
Total 25.025 89 —
Between groups 0.894 2 0.447
Collaboration Within groups 21.345 87 0.245 1.821 0.168
Total 22.239 89 —

Notes: * p<0.05.

TABLE 9: Pairwise comparisons of interest in programming among
different learning performances.

. High Medium Low
Learning performances M 397 371 263
High 3.97 — 0.26 1.34*
Medium 3.71 -0.26 — 1.08*
Low 2,63 -1.34" -1.08" —

Notes: * p<0.05.

TaBLE 10: Pairwise comparisons of self-efficacy in programming
among different learning performances.

. High Medium Low
Learning performances M 3.85 335 538
High 3.85 — 0.50" 1.47*
Medium 3.35 -0.50" — 0.97*
Low 238 -147" -0.97" —

Notes: * p<0.05.

TaBLE 11: Pairwise comparisons of creativity in programming
among different learning performances.

. High Medium Low
Learning performances M 3.0] 372 538
High 3.91 — 0.19 1.53*
Medium 3.72 -0.19 — 1.34"
Low 2.38 -1.53" -1.34" —

Notes: * p<0.05.

5. Discussion

The purpose of this study is to provide empirical evidence
that can help to answer a set of research questions: what are
the attitudes toward programming for male and female
students? What are the attitudes toward programming of
students who have levels of different performance (high,
medium, and low)? The result showed that there were no
significant differences between male and female freshmen in
attitudes toward programming. This corresponds to the

result of Karaci [15] that indicated that there was no sig-
nificant difference between male and female students of
computer engineering in attitudes toward programming.
However, this result is inconsistent with the result of Baser
[16] that showed that females’ average scores of program-
ming attitude were significantly lower than those of males. In
this study, we found the average scores of the meaning-
fulness dimension were the highest. It can be assumed that
both male and female freshmen realized the importance of
programming, while the average scores of the self-efficacy
dimension were the lowest. That indicates that both male
and female freshmen lacked confidence in their ability to
program. Therefore, this is a challenge for instructors in
planning learning activities to encourage students to have
more confidence in programming. When students have
greater self-efficacy, they have greater confidence in their
ability to overcome obstacles when programming and are
more likely to continue working on it until completion [61].
Some educators realize the importance of students’ pro-
gramming self-efficacy. Tsai [70] used block-based pro-
gramming as an intervention. The results indicated that
block-based programming can increase students’ pro-
gramming self-efficacy, especially in students with moderate
and low self-efficacy.

In this study, there was a significant difference among
different learning performances in dimensions of interest in
programming, self-efficacy, and creativity. The result also
showed that high-performing students had the most positive
attitudes toward programming of all types of students, while
low-performing students had the lowest average scores in
attitudes toward programming. In terms of creativity, both
high- and medium-performing students had a more positive
attitude toward creativity in programming than low-per-
forming students. It can be assumed that high- and medium-
performing students believed that they could create new
ideas while programming. This result corresponds to the
result of Kong et al. [61] that indicated that students who
have greater creative self-efficacy are more likely to try
different methods and ideas when faced with problems in
programming. In relation to an interest in programming,

Education Research International

25

20

15

10

High Medium Low

[J Meaningfulness
[l Interest in programming
[Self-efficacy

[Creativity
[Collaboration

FIGURE 2: Box plots for total scores of attitudes in each dimension split by learning performances.

both high- and medium-performing students had more
interest in programming than low-performing students.
Students’ interest is crucial. Learning programming will be
difficult and boring if they are not interested in the subject.
The way the instructors conduct the class also can be a factor
that makes students uninterested in the subject [71]. Stu-
dents who have different performances have different levels
of interest and motivation. Thus, the instructors need to
consider ways of teaching programming to attract the at-
tention of students, especially low-performing students who
are more likely to lack interest in programming than other
types of students. Many educators have tried to find ways to
increase students’ interest and basic knowledge in pro-
gramming. For instance, Jawad [72] suggested that Android
development could increase students’ interest in program-
ming. Xu and Jin [73] proposed that game development
workshops delivered by peer mentors could increase student
curjosity and interest in an introductory programming
course. Pradhan [74] suggested that an open-source elec-
tronics platform based on easy-to-use hardware and soft-
ware such as Arduino could increase performance and
interest in programming for first-year engineering students.
Concerning collaboration, low-performing students in this
study had a positive attitude toward collaboration. There-
fore, allowing students to practice writing code together in
pairs or small groups can improve students’ programming
performance and confidence [52-54]. Working in pairs
produces more rapid and effective solutions than working
alone. In addition, students with high programming abilities
will assist their partners with low programming abilities in
completing their work [67].

Students’ attitudes affect performance in programming.
When students have a more positive attitude toward

programming, they have higher performance in program-
ming [16]. Therefore, the instructors need to know the
students’ attitude to design teaching methods, materials, and
learning activities appropriately.

6. Conclusion

This study used quantitative data to examine students’ at-
titudes toward programming in the Innovation in Educa-
tional Technology course. The results showed that there was
no significant difference between male and female freshmen
in attitudes toward programming, but there was a significant
difference among students with different learning perfor-
mances. Low-performing students’ attitudes toward pro-
gramming in dimensions of interest in programming, self-
efficacy, and creativity were the lowest of all types of stu-
dents. Although there were few low-performing students in
the class, they should not be neglected. The curriculum-
makers and instructors should find appropriate ways to
improve students’ attitudes toward programming. When
they are interested and confident in programming, they will
also achieve a good performance in programming.

6.1. Implications. This study indicates challenges for cur-
riculum-makers and instructors in planning and designing
courses to encourage positive student attitudes toward
programming. The findings show that low-performing
students had the lowest average scores in attitudes toward
programming and had self-efficacy, creativity, and interest in
programming significantly less than high- and medium-
performing students. However, low-performing students in
this study had a positive attitude toward collaboration.

Therefore, getting students to write code together in pairs or
small groups can enhance students’ programming perfor-
mance and confidence [52-54]. Pair programming produces
more rapid and effective solutions than solo programming
[75]. Furthermore, students with high programming skills
will help a partner who has lower programming skills to
complete their task [67]. Curriculum-makers and instructors
should pay attention to the student attitudes toward pro-
gramming because negative student attitudes toward pro-
gramming can increase the dropout rate and grade failures.
Students who lack interest and confidence in programming
were more likely to fail the programming examination and
eventually give up studying programming [76]. In a nutshell,
curriculum-makers and instructors need to be aware of the
importance of the student attitudes toward programming
and provide proper learning materials and strategies to
encourage positive student attitudes toward programming.

6.2. Limitations and Future Studies. The limitation of this
study is its sample. This sample only includes freshmen from
the Department of Educational Communications and
Technology of King Mongkut’s University of Technology
Thonburi. It is not a representative sample of freshmen in
Thailand. Future studies can examine freshmen from more
universities in Thailand. In addition, further research may
use qualitative data collection and analysis to get more
insights into the attitudes toward programming of students.
A face-to-face interview would help with noticing the body
language of students. Open-ended questions allow re-
spondents to give the data with more diversity than is
possible with a closed-question or forced-choice survey
measure.

Data Availability

The data used to support this study are included within the
article and are available from the corresponding author
upon reasonable request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors would like to express sincere thanks to Petchra
Pra Jom Klao Ph.D. Research Scholarship from King
Mongkut’s University of Technology Thonburi for sup-
porting the expense of research.

References

[1] S. W. Kim and Y. Lee, “The effect of robot programming
education on attitudes towards robots,” Indian Journal of
Science and Technology, vol. 9, no. 24, pp. 1-11, 2016.

[2] L. M. Pang, H. Ishibuchi, and K. Shang, “Decomposition-
based multi-objective evolutionary algorithm design under
two algorithm frameworks,” IEEE Access, vol. 8,
pp- 163197-163208, 2020.

Education Research International

[3] K. Dengler and B. Matthes, “The impacts of digital trans-
formation on the labour market: substitution potentials of
occupations in Germany,” Technological Forecasting and
Social Change, vol. 137, pp. 304-316, 2018.

[4] S. Fayer, A. Lacey, and A. Watson, “STEM occupations: past,
present, and future,” Spotlight on Statistics, vol. 1, pp. 1-35,
2017.

[5] The Office of the Education Council, “National scheme of

education,” 2020, https://www.onec.go.th/us.php/home/

category/ CAT0001145.

A. Jaiswal, C. J. Arun, and A. Varma, “Rebooting employees:

upskilling for artificial intelligence in multinational corpo-

rations,” International Journal of Human Resource Manage-

ment, pp. 1-30, 2021.

[7] D. Vrontis, M. Christofi, V. Pereira, S. Tarba, A. Makrides,
and E. Trichina, “Artificial intelligence, robotics, advanced
technologies and human resource management: a systematic
review,” International Journal of Human Resource Manage-
ment, pp. 1-30, 2021.

[8] M.-H. Huang, R. Rust, and V. Maksimovic, “The feeling
economy: managing in the next generation of artificial in-
telligence (AI),” California Management Review, vol. 61, no. 4,
pp. 43-65, 2019.

[9] G. Petropoulos, “The impact of artificial intelligence on
employment,” Praise for Work in the Digital Age, p. 119, 2018.

[10] J. Djumalieva and C. Sleeman, “Which digital skills do you
really need?” 2018, http://coneixement.ctecno.cat/sites/
default/files/publicos/Which_digital_skills_do_you_really_
need.pdf.

[11] E.van Laar, A.J. A. M. van Deursen, J. A. G. M. van Dijk, and
J. de Haan, “21st-century digital skills instrument aimed at
working professionals: conceptual development and empirical
validation,” Telematics and Informatics, vol. 35, no. 8,
pp. 2184-2200, 2018.

[12] G. Peng, “Do computer skills affect worker employment? an
empirical study from CPS surveys,” Computers in Human
Behavior, vol. 74, pp. 26-34, 2017.

[13] D. Topalli and N. E. Cagiltay, “Improving programming skills
in engineering education through problem-based game
projects with scratch,” Computers ¢ Education, vol. 120,
pp. 64-74, 2018.

[14] D. Weintrop and U. Wilensky, “Transitioning from intro-
ductory block-based and text-based environments to pro-
fessional programming languages in high school computer
science classrooms,” Computers ¢ Education, vol. 142, Article
ID 103646, 2019.

[15] A. Karaci, “Investigation of attitudes towards computer
programming in terms of various variables,” International
Journal of Programming Languages and Applications, vol. 6,
no. 1/2, pp. 1-9, 2016.

[16] M. Baser, “Attitude, gender and achievement in computer
programming,” Online Submission, vol. 14, no. 2, pp. 248-255,
2013.

[17] M. Derya Gurer, I. Cetin, and E. Top, “Factors affecting
students’ attitudes toward computer programming,” Infor-
matics in Education, vol. 18, no. 2, pp. 281-296, 2019.

[18] M. S. Gunbatar and H. Karalar, “Gender differences in middle
school students’ attitudes and self-efficacy perceptions to-
wards mblock programming,” European Journal of Educa-
tional Research, vol. 7, no. 4, pp. 925-933, 2018.

[19] R.P.Medeiros, G. L. Ramalho, and T. P. Falcdo, “A systematic
literature review on teaching and learning introductory
programming in higher education,” IEEE Transactions on
Education, vol. 62, no. 2, pp. 77-90, 2018.

[6

https://www.onec.go.th/us.php/home/category/CAT0001145
https://www.onec.go.th/us.php/home/category/CAT0001145
http://coneixement.ctecno.cat/sites/default/files/publicos/Which_digital_skills_do_you_really_need.pdf
http://coneixement.ctecno.cat/sites/default/files/publicos/Which_digital_skills_do_you_really_need.pdf
http://coneixement.ctecno.cat/sites/default/files/publicos/Which_digital_skills_do_you_really_need.pdf

Education Research International

[20] M. Ateeq, H. Habib, A. Umer, and M. U. Rehman, “C++ or

python? which one to begin with: a learner’s perspective,” in

Proceedings of the 2014 International Conference on Teaching

and Learning in Computing and Engineering), pp. 64-69,

Kuching, Malaysia, April 2014.

R. Mathew, S. I. Malik, and R. M. Tawafak, “Teaching problem

solving skills using an educational game in a computer

programming course,” Informatics in Education, vol. 18, no. 2,

pp. 359-373, 2019.

S. I. Malik, R. Mathew, and M. M. Hammood, “PROBSOL: a

web-based application to develop problem-solving skills in

introductory programming,” in Smart Technologies And In-
novation For a Sustainable Future, pp. 295-302, Springer,

Cham, Germany, 2019.

[23] A. K. Veerasamy, D. D’Souza, R. Lindén, and M.-]. Laakso,
“Relationship between perceived problem-solving skills and
academic performance of novice learners in introductory
programming courses,” Journal of Computer Assisted
Learning, vol. 35, no. 2, pp. 246-255, 2019.

[24] O. D. L. Tavares, C. S. de Menezes, and R. A. de Nevado,
“Pedagogical architectures to support the process of teaching
and learning of computer programming,” in Proceedings of the
2012 Frontiers in Education Conference Proceedings, pp. 1-6,
Seattle, WA, USA, October 2012.

[25] A.]J. Gomes and A. J. Mendes, “A study on student perfor-
mance in first year CS courses,” in Proceedings of the Fifteenth
Annual Conference on Innovation and Technology in Com-
puter Science Education, pp. 113-117, Ankara, Turkey, June
2010.

[26] A. Gomes and A. J. Mendes, “Studies and proposals about

initial programming learning,” in Proceedings of the 2010 IEEE

Frontiers in Education Conference (FIE), pp. 1-6, Washington,

DC, USA, October 2010.

L. Porter and D. Zingaro, “Importance of early performance

in CS1: two conflicting assessment stories,” in Proceedings of

the 45th ACM Technical Symposium on Computer Science

Education, pp. 295-300, Atlanta, GA, USA, March 2014.

[28] D. Horton and M. Craig, “Drop, fail, pass, continue: per-
sistence in CS1 and beyond in traditional and inverted de-
livery,” in Proceedings of the 46th ACM Technical Symposium
on Computer Science Education, pp. 235-240, Kansas City,
MO, USA, February 2015.

[29] M. Mladenovi¢, M. Rosi¢, and S. Mladenovi¢, “Comparing
elementary students’ programming success based on pro-
gramming environment,” International Journal of Modern
Education and Computer Science, vol. 8, no. 8, pp. 1-10, 2016.

[30] M. O. Pendergast, “Teaching introductory programming to IS

students: java problems and pitfalls,” Journal of Information

Technology Education: Research, vol. 5, pp. 491-515, 2006.

A. Robins, J. Rountree, and N. Rountree, “Learning and

teaching programming: a review and discussion,” Computer

Science Education, vol. 13, no. 2, pp. 137-172, 2003.

[32] T. Koulouri, S. Lauria, and R. D. Macredie, “Teaching in-

troductory programming: a quantitative evaluation of dif-

ferent approaches,” ACM Transactions on Computing

Education, vol. 14, no. 4, p. 26, 2014.

N. Eltegani and L. Butgereit, “Attributes of students en-

gagement in fundamental programming learning,” in Pro-

ceedings of the 2015 International Conference on Computing,

Control, Networking, Electronics and Embedded Systems En-

gineering (ICCNEEE), pp. 101-106, Khartoum, Sudan, Sep-

tember 2015.

T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang, “Ability-

training-oriented automated assessment in introductory

[21

[22

[27

(31

(33

[34

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

programming course,” Computers ¢ Education, vol. 56, no. 1,
pp. 220-226, 2011.

S. Xinogalos, “Designing and deploying programming
courses: strategies, tools, difficulties and pedagogy,” Education
and Information Technologies, vol. 21, no. 3, pp. 559-588,
2016.

T. Sirkid and J. Sorva, “Exploring programming miscon-
ceptions: an analysis of student mistakes in visual program
simulation exercises,” in Proceedings of the 12th Koli Calling
International Conference on Computing Education Research,
pp- 19-28, Koli, Finland, November 2012.

L. Ma, J. Ferguson, M. Roper, and M. Wood, “Investigating
and improving the models of programming concepts held by
novice programmers,” Computer Science Education, vol. 21,
no. 1, pp. 57-80, 2011.

H. Aris, “Improving students performance in introductory
programming subject: a case study,” in Proceedings of the 2015
10th International Conference on Computer Science & Edu-
cation (ICCSE), pp. 657-662, Cambridge, UK, July 2015.

M. Yamamoto, T. Sekiya, and K. Yamaguchi, “Relationship
between programming concepts underlying programming
skills,” in Proceedings of the 2011 International Conference on
Information Technology Based Higher Education and Training,
pp. 1-7, Izmir, Turkey, August 2011.

R. Cacceffo, S. Wolfman, K. S. Booth, and R. Azevedo,
“Developing a computer science concept inventory for in-
troductory programming,” in Proceedings of the 47th ACM
Technical Symposium on Computing Science Education,
pp. 364-369, Memphis, TN, USA, February 2016.

A. Robins, “Learning edge momentum: a new account of
outcomes in CS1,” Computer Science Education, vol. 20, no. 1,
pp. 37-71, 2010.

A. Berglund and R. Lister, “Introductory programming and
the didactic triangle,” in Proceedings of the Twelfth Austral-
asian Conference on Computing Education, pp. 35-44, Bris-
bane, Australia, January 2010.

R. P. Bringula, A. D. V. Aviles, M. Y. C. Batalla, and
M. T. F. Borebor, “Factors affecting failing the programming
skill examination of computing students,” International
Journal of Modern Education and Computer Science, vol. 9,
no. 5, pp. 1-8, 2017.

C. Rogerson and E. Scott, “The fear factor: how it affects
students learning to program in a tertiary environment,”
Journal of Information Technology Education: Research, vol. 9,
pp. 147-171, 2010.

S. Shuhidan, M. Hamilton, and D. D’souza, “A taxonomic
study of novice programming summative assessment,” in
Proceedings of the Eleventh Australasian Conference on
Computing Education, pp. 147-156, Wellington, New Zea-
land, January 2009.

A. Gomes and A. Mendes, “A teacher’s view about intro-
ductory programming teaching and learning: difficulties,
strategies and motivations,” in Proceedings of the 2014 IEEE
Frontiers in Education Conference (FIE), pp. 1-8, Madrid,
Spain, October 2014.

R. Ventura Roque-Hernandez, S. Armando Guerra-Moya,
and F. Carmina Caballero-Rico, “Acceptance and assessment
in student pair-programming: a case study,” International
Journal of Emerging Technologies in Learning, vol. 16, no. 9,
pp. 4-19, 2021.

R. Shen, D. Wohn, and M. Lee, “Programming learners’
perceptions of interactive computer tutors and human
teachers,” International Journal of Emerging Technologies in
Learning, vol. 15, no. 9, pp. 123-142, 2020.

10

(49]

(50

(51]

(52

(53

[54

(55]

[56

(57

(58

(59

(60]

(61]

(62]

N. Zacharis, “Evaluating the effects of virtual pair program-
ming on students’ achievement and satisfaction,” Interna-
tional Journal of Emerging Technologies in Learning (iJET),
vol. 4, no. 3, pp. 34-39, 2009.

S. I. Malik, M. Al-Emran, R. Mathew, R. M. Tawafak, and
G. AlFarsi, “Comparison of E-learning, M-learning and game-
based learning in programming education—a gendered
analysis,” International Journal of Emerging Technologies in
Learning (iJET), vol. 15, no. 15, pp. 133146, 2020.

B. T. Hieu and S. D. S. Mustapha, “Automated data-driven
hint generation in intelligent tutoring systems for code-
writing: on the road of future research,” International Journal
of Emerging Technologies in Learning, vol. 13, no. 9,
pp. 174-189, 2018.

Z. Nurbekova, V. Grinshkun, G. Aimicheva, B. Nurbekov, and
K. Tuenbaeva, “Project-based learning approach for teaching
mobile application development using visualization tech-
nology,” International Journal of Emerging Technologies in
Learning, vol. 15, no. 8, pp. 130-143, 2020.

Z. Nurbekova, T. Tolganbaiuly, P. Tazabekova, G. Abildinova,
and B. Nurbekov, “Enhance students’ motivation to learn
programming through projects,” International Journal of
Emerging Technologies in Learning (iJET), vol. 15, no. 21,
pp. 133-144, 2020.

Z.Nurbekova, T. Tolganbaiuly, B. Nurbekov, A. Sagimbayeva,
and Z. Kazhiakparova, “Project-based learning technology: an
example in programming microcontrollers,” International
Journal of Emerging Technologies in Learning (iJET), vol. 15,
no. 11, pp. 218-227, 2020.

M. Hertz and M. Jump, “Trace-based teaching in early pro-
gramming courses,” in Proceedings of the 44th ACM Technical
Symposium on Computer Science Education, pp. 561-566,
Denver, CO, USA, March 2013.

U. Nikula, O. Gotel, and J. Kasurinen, “A motivation guided
holistic rehabilitation of the first programming course,” ACM
Transactions on Computing Education, vol. 11, no. 4, p. 24,
2011.

M. Hertz and S. M. Ford, “Investigating factors of student
learning in introductory courses,” in Proceedings of the 44th
ACM Technical Symposium on Computer Science Education,
pp- 195-200, Denver, CO, USA, March 2013.

M. Apiola, N. Moisseinen, and M. Tedre, “Results from an
action research approach for designing CSI learning envi-
ronments in Tanzania,” in Proceedings of the 2012 Frontiers in
Education Conference (FIE), pp. 1-6, Seattle, WA, USA,
October 2012.

B. Hartanto, “Enhancing the student engagement in an in-
troductory programming: a holistic approach in improving
the student grade in the informatics department of the uni-
versity of Surabaya,” in Communications in Computer and
Information Science, R. Intan, C. H. Chi, H. Palit, and
L. Santoso, Eds., vol. 516, pp. 493-504, Springer, Berlin,
Germany, 2015.

M. H. Hur, “Empowering the elderly population through
ICT-based activities,” Information Technology ¢ People,
vol. 29, no. 2, pp. 318-333, 2016.

S.-C. Kong, M. M. Chiu, and M. Lai, “A study of primary
school students’ interest, collaboration attitude, and pro-
gramming empowerment in computational thinking educa-
tion,” Computers & Education, vol. 127, pp. 178-189, 2018.
R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivation
from a self-determination theory perspective: definitions,
theory, practices, and future directions,” Contemporary Ed-
ucational Psychology, vol. 61, Article ID 101860, 2020.

(63]

(64]

(65]

[66]

(67]

(68]

(69]

(70]

(71]

(72]

(73]

(74]

[75]

(76]

Education Research International

M. H. Hur, “Empowerment in terms of theoretical perspec-
tives: exploring a typology of the process and components
across disciplines,” Journal of Community Psychology, vol. 34,
no. 5, pp. 523-540, 2006.

A. P. Ambrésio, F. M. Costa, L. Almeida, A. Franco, and
J. Macedo, “Identifying cognitive abilities to improve CS1
outcome,” in Proceedings of the 2011 Frontiers in Education
Conference (FIE), pp. F3G-1-F3G-7, Rapid City, SD, USA,
October 2011.

M. Romero, A. Lepage, and B. Lille, “Computational thinking
development through creative programming in higher edu-
cation,” International Journal of Educational Technology in
Higher Education, vol. 14, no. 1, pp. 1-15, 2017.

O. Demir and S. S. Seferoglu, “The effect of determining pair
programming groups according to various individual dif-
ference variables on group compatibility, flow, and coding
performance,” Journal of Educational Computing Research,
vol. 59, no. 1, pp. 41-70, 2021.

J. T. Nosek, “The case for collaborative programming,”
Communications of the ACM, vol. 41, no. 3, pp. 105-108, 1998.
V. Amnouychokanant, S. Boonlue, S. Chuathong, and
K. Thamwipat, “Online learning using block-based pro-
gramming to foster computational thinking abilities during
the COVID-19 pandemic,” International Journal of Emerging
Technologies in Learning (iJET), vol. 16, no. 13, pp. 227-247,
2021.

J. C. Nunnally, Psychometric Theory 3E, Tata McGraw-Hill
Education, New York, NY, USA, 1994.

C.-Y. Tsai, “Improving students’ understanding of basic
programming concepts through visual programming lan-
guage: the role of self-efficacy,” Computers in Human Be-
havior, vol. 95, pp. 224-232, 2019.

M. Rahmat, S. Shahrani, R. Latith, N. F. M. Yatim,
N. F. A. Zainal, and R. A. Rahman, “Major problems in basic
programming that influence student performance,” Proce-
dia—Social and Behavioral Sciences, vol. 59, pp. 287-296,
2012.

H. M. Jawad, “Android mobile app development as a moti-
vation towards computer programming,” in Proceedings of the
2019 IEEE International Conference on Electro Information
Technology (EIT), pp. 169-175, Brookings, SD, USA, May
2019.

X. Xu and W. Jin, “Game development workshops designed
and delivered by peer mentors to increase student curiosity
and interest in an introductory programming course,” in
Proceedings of the 2021 ACM Southeast Conference, pp. 87-92,
New York, NY, USA, April 2021.

P. Pradhan, “The role of arduino for increasing performance
and interest in programming for first-year engineering stu-
dents,” Doctoral Dissertation, University of Cincinnati,
Cincinnati, Ohio, 2017.

S. Papadakis, “Is pair programming more effective than solo
programming for secondary education novice programmers?”
International Journal of Web-Based Learning and Teaching
Technologies, vol. 13, no. 1, pp. 1-16, 2018.

S. Dasuki and A. Quaye, “Undergraduate students’ failure in
programming courses in institutions of higher education in
developing countries: a Nigerian perspective,” The Electronic
Journal on Information Systems in Developing Countries,
vol. 76, no. 1, pp. 1-18, 2016.

