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Computational thinking (CT) is an essential problem-solving skill that students need to successfully live and work with developing
technologies. There is an increasing call in the literature by researchers and policy leaders to integrate CT at the elementary level
into core subjects to provide early and equitable access for all students. While some critics may claim the concepts and skills of CT
are developmentally advanced for elementary age students, subjects such as science can provide real-world and relevant problems
to which foundational CT components can be applied. By assessing how CT concepts and approaches integrate authentically into
current science lessons, policymakers, and district leaders can be more intentional in supporting implementation efforts. This
research used an exploratory survey design to examine the frequencies of CT concepts (decomposition, algorithms, abstraction,
and pattern recognition) and approaches (tinkering, creating, debugging, perseverance, and collaboration) that exist in science in
K–5 schools in a northeast state in the United States as reported by elementary science teachers (n= 259). Hierarchical linear
modeling was used to analyze the influence of teacher and district factors on the amount of time CT concepts and approaches were
integrated in the science lessons. Experience, grade level, confidence, and participation in a research–practice partnership were
found to be significant predictors of CT. This study contributes to a better understanding of variables affecting CT teaching
frequency that can be leveraged to impact reform efforts supporting CT integration in science.

1. Introduction

Teaching and learning in a rapidly changing society where
technology is ubiquitous poses many challenges in educa-
tion. As computers become more pervasive in young chil-
dren’s everyday life, schools need to reassess the delivery of
science, technology, engineering, and math (STEM) educa-
tion to include computational thinking (CT). There is a need
to increase access to computer science subject matter by
concentrating on CT in schools; not only does it address
workforce skills needed in the digital age, but learning the
components of CT can provide a foundation for developing
critical thinking and data analysis skills [1–3]. Increasing access
to computer science by teaching CT to all elementary children
will provide more opportunities for underrepresented groups
and students from urban, rural, and low-socioeconomic areas to
participate in this rapidly expanding field [4].

CT is a key element of computer science. In 2006, Wing
[5] introduced this process in her seminal paper in which she

described CT as “a fundamental skill for everyone, not just
for computer scientists. To reading, writing, and arithmetic,
we should add CT to every child’s analytic ability” [5, p. 33].
There are many definitions for this term and its component
parts found throughout the literature, which has caused chal-
lenges in communication between policymakers and practi-
tioners [5–12]. However, just like Wing indicated in her
definition, other definitions support the idea of CT being a
foundational skill that all children should learn. The follow-
ing definition guided the researchers of this project to better
understand CT experiences at the elementary level.

“A problem-solving process that includes a num-
ber of characteristics and dispositions. CT is essen-
tial to the development of computer applications,
but it can also be used to support problem-solving
across all disciplines, including the humanities,
math, and science. Students who learn CT across
the curriculum can begin to see a relationship
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between academic subjects, as well as between life
inside and outside of the classroom.” [13, p.1].

“Computational thinking allows us to take a
complex problem, understand what the problem
is and develop possible solutions. We can pres-
ent these solutions in a way that a computer, a
human, or both, can understand.” [14]

The characteristics, which form the core concepts of CT,
consist of creating algorithms, using abstraction, using decom-
position, and recognizing patterns. The dispositions, which
provide approaches for engaging in CT, consist of tinkering,
creating, debugging, persevering, and collaborating [15, 16].
Figure 1 shows the definitions of theCT concepts (characteristics)
and approaches (dispositions) examined in this paper [17].

These concepts and approaches are from a framework
created by Computing [17] at Schools (CAS), an organization
from the United Kingdom that has been a leader in support-
ing computer science education in schools since 2008. A
design-based implementation research (DBIR) team com-
posed of 25 participants with various expertise and current
job titles including elementarymath and science coaches, K–5
teachers, district curriculum coordinators, and university
educators across STEM plus computer science content, chose
this framework after a rigorous process of conducting a
literature review and crosswalking of state, national, and
international standards. The research team chose the CAS
components for CT because the language was easy to under-
stand and provided clear guidance for teachers who may not
be familiar with CT. The concepts (algorithms, pattern recog-
nition, abstraction, and decomposition) also utilize the same
terminology as the International Society for Technology in
Education (ISTE). These concepts and approaches provide a
shared language and foundation for integrating CT into core
subject disciplines, like science, which is essential to the devel-
opment of computer applications which allows students to see

a relationship between the different subjects [16, 17]. While
the CT concepts and approaches described in this paper may
not be unique to CT which lays foundations for computer
science, they are digestible for elementary teachers because
of the versatility of the terms. The real work comes with
making these terms more explicitly connected to the work
of computer science professionals.

Exposing children to CT at an early age has been shown
to motivate them to develop computer science skills [18–21].
However, for early experiences with CT to have positive
impacts on future learning, school systems need resources
to effectively integrate the concepts and approaches into
their epistemology, content, pedagogy, and practice [22].
Curriculum efforts have not been spread school-wide nor
have best practices been established to educate teachers on
how to integrate effectively [23]. In addition, systematic
research is needed before large-scale implementation can
take place and be sustainable.

The purpose of this exploratory study is twofold: first to
examine the frequency of CT concepts and approaches cur-
rently taught in elementary science classrooms; second,
based on ecological perspectives [24], to explore the extent
to which teacher factors (grade level, teaching experience,
professional development, confidence, and level of concern)
and district-level factors (classification, socioeconomic status
(SES), and science curriculum) affect CT frequency levels.
This study builds on the foundation for research and imple-
mentation of CT integration into science by addressing the
following research questions:

RQ1: How often are CT concepts and approaches cur-
rently taught in K–5 science classrooms?
RQ2: To what extent are teacher characteristics (grade
level, teaching experience, professional development, confi-
dence, and level of concern for implementing CT) and dis-
trict contexts and policies (district classification, SES, and
science curriculum) related to the frequency of teaching CT
concepts and approaches in K–5 science classrooms?

The definitions for the CT concepts [17]

Algorithm:
Decomposition:
Patterns:
Abstraction:

“a set of rules to get something done”
“breaking down a task into smaller more manageable parts”
“spotting similarities and differences”
“identifying what’s important without worrying too much
  about detail”  

The definitions for the CT approaches [17]

Tinkering:
Creating:
Debugging:

“plan and make things”
“find and fix errors through predicting what should happen,
  find out exactly what did happen, work out where something
  went wrong”          

Persevering:
Collaborating:

“be determined, resilient, and tenacious”
“work with others to ensure the best results”  

“explore and experiment to try things out”

FIGURE 1: Definitions for CT.
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2. Literature Review

2.1. CT in Elementary Science. The goal to integrate CT into
elementary science instruction is supported by research and
policy, yet barriers prevent the type of instruction needed to
make this a reality. Although CT can be taught as a stand-
alone subject, it is best learned when embedded in class
subjects such as science and taught in context using an inter-
disciplinary approach [25]. When CT is integrated into
required core subjects, it is more likely to reach all children,
allowing for a more diverse population to develop an interest
in and pursue STEM and computing careers [26]. Weintrop
et al. [27] contend that “science and mathematics are mean-
ingful contexts in which we can successfully situate the con-
cepts and practices of computational thinking” (p.128) and
address the issue of reaching all students by occurring in
a core discipline. They created a taxonomy for integrating
CT into science instruction that consists of data practices,
modeling and simulation, computational problem solving,
and systems thinking [27].

Past initiatives in computer science have paid more atten-
tion to addressing the college and secondary levels rather than
the elementary level [28–33]. However, efforts and attention
are now being focused on the teaching and learning of CT in
elementary classrooms [12, 34]. The rationale for integrating
CT at the elementary level is to introduce key concepts and
experiences to children at an early age to develop positive
attitudes toward disciplines; it has influence in career choice
and allows more access to foundational skills and higher pay-
ing jobs [33, 35, 36]. Engaging in CT involves complex sys-
tems thinking that takes time to develop but can be broken
into manageable concepts and approaches for students to
acquire overtime. Foundational CT concepts and approaches
have been successfully taught to children as young as four
[20, 37]. As found with many educational innovations, inter-
ventions that begin early have stronger positive outcomes
than the interventions that start later [38, 39].

There are some systems in place that may help with the
integration of CT in science content. For example, most
states in the United States of America, including the north-
east state in this research study, have adopted the Next Gen-
eration Science Standards that were developed in 2013. These
science standards include CT as one of the eight engineering
practices [9]. However, when viewing the disciplinary core
ideas of the NGSS, the opportunities for CT at the elemen-
tary level in science content instruction are limited as
opposed to the secondary level. Countries across the globe
indicate CT is a relevant skill set all students should engage in
and have established frameworks like the NGSS, but with
diverse terminology and varying implementation efforts
[22, 32, 40, 41]. The ISTE have identified the skills, mindsets,
and knowledge that practitioners can use to integrate CT
across K–12 content areas with students of different ages
[16]. These frameworks can be built upon to make CT at
the elementary level more universal and widespread.

2.2. Implementation Challenges. School systems are facing
challenges in implementing CT in elementary science instruc-
tion. A lack of teachers available with computational skills, the

shortage of funds to hire qualified teachers and purchase CT
materials, the prioritization of instructional time devoted to
mandatory testing subject likemath and ELA, the limited time
for planning CT-infused lessons, and the overwhelming nature
of CT integration especially when teachers are not confident,
knowledgeable, or experienced with science or CT, are just a
few of the implementation challenges [29, 42–44]. In addition,
teaching science can sometimes be a challenge for elementary
teachers because they lack the pedagogical knowledge and
experience necessary to teach children scientific concepts
and practices confidently. Elementary teachers are often gen-
eralists who are responsible for teaching and keeping up with
the latest content in a multitude of subject areas. Furthermore,
educators need to teach different scientific disciplines such as
life, earth and space, and physical science utilizing reform-based
scientific practices [45]. In addition, administrators and district
leaders need support to help teachers implement science and
CT content successfully.

The number of years of teaching experience varies greatly
among elementary teachers which also can influence imple-
mentation. More experienced teachers often promote higher
order thinking which leads to advances in critical thinking
[46]. This is the kind of skill set needed by all teachers when
implementing CT. In addition, the amount of time devoted
to science instruction varies too. Curran Kitchin J [47] ana-
lyzed data from the early longitudinal childhood study and
found more time teaching science increases academic achieve-
ment in science because it provides more opportunities to
learn. However, the amount of time spent on science instruc-
tion can be dismally low at the elementary level. Since time
available to teach science varies, implementation efforts prior-
itizing what is important for students to learn is something
districts need to reflect on constantly with our rapidly chang-
ing world.

Other challenges with implementation include the need
to increase awareness of CT, develop shared language, build
leadership, and have professional development opportunities
on how to integrate CT. It is particularly challenging for
school leaders to support teachers because not all educators
share the same definition for CT, and there is no clear-cut
way for CT to be positioned in the curriculum. It needs to be
understood that CT is not just a skill set that can be used for a
lesson here or there but something that may be woven into
multiple lessons [25]. To form a shared understanding,
information must be collected on what researchers, practi-
tioners, and policymakers are envisioning for CT at the ele-
mentary level. There is a need to figure out how to place CT
in an already overburdened curriculum, consider what is
developmentally appropriate for the different grade levels
and how it applies in various contexts. A systematic rollout
should be considered for teacher professional development
and suitable student assessments. In last, CT integration will
require effective communication and continued support for
the educators [22].

2.3. CT Curriculum. Both computer-based (building-block
programing, tangible programing, digital game creation,
and robotics) and unplugged programs exist to teach CT at
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the elementary level [48]. Unplugged activities do not use a
computer; instead, teachers use curricula such as Thinker-
smith, Code.org, and CS unplugged [49]. Many of these
programs are taught as stand-alone instruction accessed by
some students; however, more emphasis is now being placed
on programs and curricula that integrate into core subjects
that can be easily accessed by all students. Examples of CT
integrated into the science curriculum are becoming more
prevalent. Bers [37] created models where concepts of CT are
integrated into core subjects with children as young as four
using a tangible program called KIBO. It utilizes open-ended
activities and an approach, referred to as a “playground,” to
create sequences or algorithms [37]. Sengupta et al. [50] used
CT in Simulation and Modeling (CTSiM) to teach science
lessons using decomposition and abstraction and found sig-
nificant learning gains between pre- and posttests. Water-
man et al. [51] provided a framework for taking existing
science lessons and enhancing and extending them using
CT to support science learning. These are examples of cur-
ricula that embedded some of the CT concepts and
approaches in science lessons, indicating opportunities for
integration.

2.4. Teacher Development. Designing professional develop-
ment for preservice and in-service teachers is essential for CT
implementation [12, 34, 52]. Factors that impact the effec-
tiveness of the professional development include the concern
or buy-in of the teachers regarding implementation, the loca-
tion of the school and grade level being taught, student
demographics, and the confidence or self-efficacy of the
teacher with computer science innovations. Hall and Hord
[53] believe when starting the implementation process, it is
best to determine the teachers’ level of concern and address
their concerns through various methods such as coaching,
mentoring, or explaining in more detail the importance of
the change.

District location (such as urban or rural) and grade level
also play a role in teachers’ motivation, students’ physical
skills, and users’ access to CT [54]. In addition, teachers
educating students in less affluent districts might need addi-
tional support. Karpinski et al. [35] reported data from the
2018 International Computer and Information Literacy
Study indicating students from less advantaged backgrounds
have lower levels of CT skills than those from more advan-
taged backgrounds. Therefore, designing effective CT profes-
sional development to address this inequity is necessary.
Research has also indicated professional development in
CT helps build teachers’ self-efficacy when integrating it
into their teaching [55, 56]. The thoughtful design of profes-
sional development using modeling experiences helps to
increase teachers’ confidence or self-efficacy by allowing tea-
chers to believe in their ability to complete a task which gives
them the confidence and skills to do it [57]. Factors that con-
tribute to being a confident science teacher include\a strong
science background, the desire to implement reform-based
practices, and experience teaching elementary science [58].

2.5. Research–Practice Partnerships (RPPs). RPPs are a viable
strategy for integrating CT in the science classroom where both

researchers and practitioners benefit from the partnership.
When school districts belong to an RPP, teachers are more
likely to receive research-based curricula and pedagogy sup-
port [59]. RPPs are characterized as long-term collaborations
between researchers and educators focused on continuous
improvement and paying close attention to solving problems
of practice [60]. RPPs benefit both researchers and practi-
tioners because the relationships develop shared knowledge.
Researchers can evaluate and develop instructional activities
that are more easily translated into classroom practice. At the
same time, practitioners can be provided opportunities to
investigate problems of interest to them and feel supported
while taking risks in the classroom. RPPs provide opportu-
nities for new voices, questions, and observations when
conducting research [61, 62]. Cadieux Boulden et al. [63]
experienced some success integrating CT into a middle
school science classroom while being part of an RPP. They
found that best practice consisted of finding teachers willing
to engage in the process and take risks. At the same time,
having researchers who are flexible with school schedules,
meeting teachers at their comfort level and making frequent
visits to the classroom for support is also helpful. They also
suggested that both researchers and practitioners need to
engage in timely and thoughtful communication to success-
fully integrate CT [63]. Research has clearly shown progress
is being made in integrating CT in science. These studies
provide a foundation for further research to respond to
the growing need for students to gain CT skills and con-
cepts at the elementary level. This research aimed to find
out the different ecological system factors that affect the
learning and development for successful CT integration and
implementation.

3. Theoretical Framework

This study adopts the ecological systems theory to support
the multilevel modeling research design and the complex
systems that impact curricular decisions of a teacher and
district. The theory demonstrates the complexity with four
layers, the microsystem, the mesosystem, the exosystem, and
the macrosystem, that influence the learners directly and
indirectly. The microsystem incorporates people who directly
influence the child, such as teachers and parents. The meso-
system consists of the relationships among different struc-
tures in the microsystem such as interactions with parents,
teachers, peers and how they affect the child. The next layer is
the exosystem, the indirect environment that can influence
the child’s development, such as district-level personnel who
make curricular decisions. The outermost layer, the macro-
system, includes social and cultural values that influence the
inner layer systems, such as SES, ethnicity, and poverty.
Figure 2 provides a diagram of the layers in Bronfenbrenner’s
ecological model [64].

Although all layers of the system could influence the
integration of CT in the science curriculum, this study exam-
ines the microsystem and exosystem that exist in this multi-
layer context. The microsystem, or the qualities of the
teacher that directly influence the students, will be examined
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to determine if variables such as experience, confidence,
grade level, or level of concern affect the teaching of CT.
The exosystem, or the indirect environment, will be exam-
ined to determine if contextual variables such as location
(rural, suburban, and urban), SES, and district-level curricula
policies impact the use of CT in the science classroom as
modeled in Figure 3.

In this study, district contexts and policies were selected
as predictors for the exosystem layer as they influence teacher
perceptions and behaviors, especially the participation in an
RPP which is decided at the district level. Although this study
does not include all four levels of ecological systems theory, it
recognizes the multilevel characteristics of nested data (tea-
chers are nested within districts) by utilizing a multilevel ana-
lytic tool, hierarchical linear modeling (HLM). A few recent
studies have looked at these variables independently. In a
small-scale study, Kale et al. [54] found teachers in rural set-
tings had significantly lower CT skills than teachers in urban
environments. Karpinski et al. [35] found that students from
less advantaged backgrounds have fewer CT skills than stu-
dents from more advantaged backgrounds. District-level cur-
ricula decisions such as belonging to an RPP have also been
found to impact CT skills in the classroom [63]. This study
fills a gap in the literature by analyzing large scale quantitative
data with multilevel modeling that allows researchers to exam-
ine the effects of both teacher characteristics and district-level
policy and context. Research has shown that explicit modeling
of nested data structure would provide more accurate esti-
mates of the cross-level inferences [65].

4. Methods

4.1. Participants. Elementary school teachers in grades K–5
in a northeast state were invited to participate in the CT

survey as part of the larger STEM+C research study which
investigated how teachers perceived CT within their current
lessons across the core domains of math, science, social stud-
ies, and ELA. After IRB approval from the university was
obtained, the teachers were invited directly via emails
obtained from school websites and through contact with
their superintendents and principals via emails and written
mailed letters using contacts provided by the Department of
Education database. The total number of elementary teachers
who took the survey was 560, with a response rate of 12% of
the state’s teacher population. Of the 560 teachers who
responded, 259 teachers from 30 different districts taught
science. The achieved sample included only the teachers
who took the survey and taught science: 94.2% females,
94.6% White/Caucasian, and 77.7% having over 10 years of
teaching experience. The teachers ranged from only having 1
year of teaching experience to over 20 years of experience
with a mean being 16 years of experience. These findings are
similar to the demographics of the population of elementary
teachers who participated in the National Survey of Science
and Mathematics Education Survey (NSSME+) [66]. The
grade levels taught by the teachers who took the survey were
similarly represented from the kindergarten to fifth grade.

There are 185 elementary schools in this northeast state
with 62,499 students and ∼4,500 teachers. The overall demo-
graphics of students being taught by these teachers are 8%
African American, 3% Asian, 25% Hispanic, 4% Multiracial,
1% Native American, and 59% White. Of this population,
47.5% of the students are eligible for subsidized lunch, and
15% of the population receives special education services [67].

4.2. Instrument and Variables. The CT survey was created by
the university researchers using the tailored design method
[68]. The CT survey was examined for face, construct, and
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content validity by a DBIR group composed of 25 profes-
sionals: elementary science and math coaches, elementary
teachers, district curriculum coordinators, and university
educators with STEM+C backgrounds. After a pilot study
of 125 elementary teachers, a test–retest procedure using
Spearman’s rank-order correlation was implemented to
determine reliability of the survey questions which was
found to be statistically significant (i= 0.840, p< :01) [69].
Minor changes were made to improve the questions, format,
and frequency scales by the DBIR team after discussing the
survey. The revised survey was conducted in the academic
year of 2019–2020.

The survey contained 55 questions and took teachers
∼30min to complete. The web-based survey questions
included the frequencies of each concept and approach
integrated into the science lessons. The survey was educa-
tive in describing the concepts (decomposition, abstraction,
pattern recognition, and algorithm) and approaches (perse-
verance, creativity, tinkering, debugging, and collaboration)
involved in CT. To establish a mutual understanding of
these concepts and approaches across teachers, they were
described in the same type of structure with a definition,
examples, and a picture described by Barefoot Computing
at school curriculum (see a table showing a description
and example of each concept and approach in Table 1.
The appendix is a copy of the survey given to the elemen-
tary teachers).

The dependent variables in this study are the frequencies
(average minutes) of CT concepts and approaches taught in
science classes. The variables were calculated based on two
questions: total minutes per week teachers report teaching
science and the total percentage of time teachers are engaged
in the teaching and learning of CT concepts and approaches
throughout the school year.

Independent variables were various teacher-level and
district-level factors. Teacher characteristics include K–5
grade level taught (GRADE), years of teaching experience
(YRSEXP), and the amount of time spent engaging in com-
puter science professional development (PDHRS). In addition,
the level of confidence teaching CT (CONFID) was measured
on a 5-level Likert scale ranging from “not at all confident” to

“extremely confident.” The level of concern for implementing
CT (CONCERN) was measured at seven stages about imple-
menting CT into their lessons based on the stages of concerns
based adoption model [70]. District characteristics include the
district location (LOCATION—urban, urban ring, suburban,
and rural) and SES as the percentage of families in the district
below the poverty level (National Center for Education Statis-
tics, n.d.). The type of curriculum used in the district (Stem-
scopes, Gizmos, Kit-based, Make My Own, and GEMS-NET)
was another variable of interest in the study. The GEMS-Net
curriculum is part of an RPP that uses FOSS kit-based materi-
als and has ongoing progressive and mandatory professional
development on research-based pedagogies. Belonging to an
RPP is a critical component that differentiates the GEMS-Net
curriculum from any other kit-based curriculum. As the emerg-
ing literature demonstrates promising insights for using an RPP
framework when integrating CT [63], this study used a dichot-
omous variable (RPP) indicating whether the district partici-
pates in an RPP or not.

4.3. Data Analysis. Based on the ecological model [24],
this study used a multilevel model that examined how the
teacher-level and district-level factors are related to the inte-
gration of CT concepts and approaches into science instruc-
tion. Most of the current research on the integration of CT in
science is exploratory and qualitative [32]. Moreover, a larger
ecological system such as district contexts and policies were
rarely examined with the consideration of the nested data
structure. HLM takes consideration of the nested data struc-
ture (teachers are nested within districts) and allows for
partitioning the variation into within- and between groups
with fewer assumptions for between and within-group dif-
ferences [71]. HLM is more efficient at accounting for vari-
ance among variables at different levels than other existing
analyses and thus allows us to consider impacts in the com-
plex systems of education [65, 72]. Of specific interest was
the relationship between the CT concepts and approaches
(level-1 outcome variables) and both the teacher-level back-
ground and attitudes such as grade level, years of experience,
stages of concern, confidence levels, and professional devel-
opment frequencies (level-1 predictor variables) and their

TABLE 1: CT concepts and approaches definitions and examples.

CT concepts and approaches Definition and example at elementary level modified from barefoot computing at school [19]

Decomposition
“Process of breaking down a task into smaller, more manageable parts” example: planning a research
project or labeling a life cycle

Patterns “Spotting similarities or common differences” example: see similarities and differences in data collected

Abstraction
“Identifying what is important without worrying too much about detail” example: making notes or charts
of the most important information

Algorithm
“Find and fix errors through predicting what should happen, find out exactly what did happen, work out
where something went wrong” Example: How to get dressed or brush their teeth

Creating “Planning and making things” example: making models
Persevering “Be determined, resilient, and tenacious” example: tackling difficult problems while experiencing confusion
Tinkering “Explore and experiment to try things out” example: figuring out how things work
Debugging “Finding and fixing errors” example: fixing errors in their work
Collaborating “Work with others to ensure the best result” example: working as a team
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district classification, participation in an RPP, and district
SES (level-2 predictor variables). The results can guide in-
service science teacher professional development and curric-
ulum development for integrating CT into what is already
done in the classroom.

Level-1 equation examines the relationship between CT
frequencies and teacher-level variables as follows:

CTMINij¼ β0j þ β1j GRADEð Þij þ β2j EXPð Þij þ β3j PDð Þij
þ β4j CONFIDð Þij þ β5j CONCERNð Þij þ rij:

ð1Þ

Level-2 equation models the influence of district factors
as follows:

βj ¼ γ00 þ γ01 LOCATIONð Þj þ γ02 SESð Þj þ γ03 RPPð Þj þ uj:

ð2Þ

5. Results

5.1. RQ1: Frequency of Teaching Computational Thinking
(CT) Concepts and Approaches. CT concepts and approaches
are currently being taught at different frequencies. Figure 4
shows the average minutes per week teachers spent teaching
the different CT concepts and approaches. The amount of time
was calculated using the total minutes of science taught per
week multiplied by the percentage of time teachers indicated
teaching the different CT concepts and approaches. Based on
this data, the concept with the greatest average amount of
minutes spent was decomposition with a mean of 89.75min
per week, followed by the teaching patterns (78.32min), algo-
rithms (75.17min), and abstraction (73.18min). The approach
with themost time spent was collaboration with a mean of 108

min per week. This was followed by perseverance (95.20min),
tinkering (89.58min), creating (73.56min), and in last debug-
ging (69.79). Time spent on collaboration was significantly
more than debugging and creating.

Further analysis revealed 20% of teachers were teaching
the different concepts and approaches for less than 30min
per week in comparison to the average teaching time of
science at 151min per week. This average teaching time is
higher than the national average reported by the National
Survey of Science and Math Education (NSSME) of 20min
per day but only half the National Science Teachers Associa-
tion (NSTA) recommended amount of time of at least 60
min per day [73, 74]. More than half of the teachers spent
less than an hour per week teaching algorithms, patterns,
abstraction, debugging, and creating. More than 25% of the
teachers spent over 2-hr teaching students how to decom-
pose problems. More than 25% of teachers also taught les-
sons that included tinkering, persevering, and collaborating
more than 2 hrs a week. When analyzing the times of the
different CT concepts and approaches it is important to note
that they are not taught independently of one another but
can be taught intertwined with other content goals. This
means creating and debugging can be happening at the
same time as collaboration is happening in instruction.

5.2. RQ2: Impact of Teacher and District Characteristics on
the Frequency of Teaching CT Concepts and Approaches. This
question asks how district contexts and policies along with
teacher characteristics affect the frequency of teaching CT
concepts and approaches. When deciding on the most
appropriate models, a series of steps and decisions were
made. First, unconditional models were analyzed using an
original data set consisting of science teacher responses from
30 different districts collected for each outcome variable,
consisting of total minutes per week of the algorithms,

C
ol

la
bo

ra
tio

n

Pe
rs

ev
er

an
ce

D
eb

ug
gi

ng

Cr
ea

tin
g

Ti
nk

er
in

g

Ab
str

ac
tio

n

Pa
tte

rn
s

D
ec

om
po

sit
io

n

A
lg

or
ith

m
s

Av
er

ag
e m

in
ut

es
 o

f s
ci

en
ce

pe
r w

ee
k0

50

100M
ea

n

150

200

Average minutes of CT in science per week

Error bars: 95% CI

FIGURE 4: Average minutes of science instruction and CT components per week.

Education Research International 7



decomposition, patterns, abstraction, tinkering, creating,
debugging, perseverance, and collaboration. An uncondi-
tional model denotes the model with no predictors at either
level. This model provides valuable information on the reli-
ability of the slope estimates and the proportion of variance
within and between districts. Out of 30 districts in the origi-
nal data, only 15 districts had 5 or more participants. The
effects of Level 2 predictors are not measured reliably if the
number of participants per unit in level-2 is small. It was
decided to run the subsequent analyses using the 15 districts
with five or more teachers per district (N= 222). First,
unconditional models with no predictors at both teacher
and district levels were examined as a baseline to which other
models are compared. This model provides valuable infor-
mation on the reliability of the slope estimates and the pro-
portion of variance within and between districts.

Once the baseline unconditional models (Model 1 in
Tables 2–10) were determined, the full saturated models
were examined, allowing the slopes of all level-1 predictors
(years of teaching experience, levels of concern, confidence,
grade level, and professional development frequency) to be
random. After examining the random slope models, it was
decided to fix all the slope parameters as many slopes did not
vary across districts (no significant random variations).

Among the five level-1 predictors, only three were statis-
tically significant predictors of the outcomes: teacher experi-
ence, grade level, and teacher confidence levels. Levels of
concern and professional development frequency were not
significant factors for all nine dependent variables. To build
the most parsimonious level-1 model, it was decided to
include only three predictors (Model 2 in Tables 2–10).
Next, full level-2 models included two district-context

TABLE 2: HLM models for algorithms.

Algorithms

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 75.76 7.59 9.98∗∗ 75.68 7.49 10.10∗∗ 69.11 7.75 8.91∗∗ 65.09 8.04 8.10∗∗

RPP curriculum (γ01) 24.16 14.10 1.713 32.96 14.05 2.34∗

Poverty (γ02) −1.07 0.65 −1.63
Teaching experience (γ10) 5.87 3.98 1.47 5.87 3.98 1.48 5.87 3.97 1.48
Grade level (γ20) 10.97 3.23 3.40∗∗ 10.97 3.22 3.40∗∗ 10.97 3.22 3.41∗∗

Confidence (γ30) 17.16 7.97 2.15∗ 17.16 7.96 2.16∗ 17.16 7.95 2.16∗

Random effect Variance Variance Variance Variance

Level 1 (r) 3,895.40 3,423.94 3,414.22 3,404.40
Level 2 (u0) 390.05 417.19 161.93 248.67

Variance Partitioned Explained Explained Explained

Level 1 90.90% 12.10% 12.35% 12.60%
Level 2 9.10% 61.19% 40.39%

Deviance (df ) 1,635.21 (2) 1,598.09 (2) 1,582.61 (2) 1,587.87 (2)
∗p<0:05, ∗∗p<0:01.

TABLE 3: HLM models for decomposition.

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 90.12 8.61 10.46∗∗ 89.72 8.45 10.61∗∗ 81.79 10.15 8.05∗∗ 79.82 9.66 8.26∗∗

RPP curriculum (γ01) 25.78 18.37 1.40 30.96 16.82 1.84
Poverty (γ02) −0.66 0.87 −0.76
Teaching experience (γ10) 7.83 4.25 1.84 7.83 4.25 1.84 7.83 4.25 1.84
Grade level (γ20) 12.55 3.45 3.64∗∗ 12.55 3.45 3.64∗∗ 12.55 3.44 3.64∗∗

Confidence (γ30) 28.78 8.52 3.38∗∗ 28.78 8.50 3.38∗∗ 28.78 8.50 3.39∗∗

Random effect Variance Variance Variance Variance

Level 1 (r) 4,784.91 3,909.95 3,897.74 3,893.70
Level 2 (u0) 524.99 578.11 478.82 457.15

Variance Partitioned Explained Explained Explained

Level 1 90.11% 18.29% 18.54% 18.63%
Level 2 9.89% 17.17% 20.92%

Deviance (df ) 1,665.83 (2) 1,618.46 (2) 1,605.62 (2) 1,609.58 (2)
∗∗p<0:01.
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TABLE 4: HLM models for patterns.

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 81.20 8.01 10.14∗∗ 81.05 7.88 10.28∗∗ 74.56 9.22 8.09∗∗ 71.36 9.00 7.93∗∗

RPP curriculum (γ01) 22.10 16.69 1.32 29.88 15.70 1.90
Poverty (γ02) −0.96 0.78 −1.22
Teaching experience (γ10) 10.37 4.19 2.48∗ 10.37 4.18 2.49∗ 10.37 4.17 2.49∗

Grade level (γ20) 8.88 3.40 2.61∗∗ 8.88 3.38 2.62∗ 8.88 3.39 2.62∗∗

Confidence (γ30) 29.43 8.38 3.51∗∗ 29.43 8.35 3.52∗∗ 29.43 8.35 3.52∗∗

Random effect Variance Variance Variance Variance

Level 1 (r) 4,518.75 3,785.74 3,760.20 3,762.63
Level 2 (u0) 415.77 462.79 335.35 359.51

Variance Partitioned Explained Explained Explained

Level 1 91.58% 16.22% 16.79% 16.73%
Level 2 8.42% 27.54% 22.32%

Deviance (df ) 1,656.37 (2) 1,612.48 (2) 1,598.83 (2) 1,603.49 (2)
∗p<0:05, ∗∗p<0:01.

TABLE 5: HLM models for abstraction.

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 75.16 7.80 9.64∗∗ 74.83 7.64 9.79 71.16 8.76 8.13∗∗ 66.65 8.95 7.45∗∗

RPP curriculum (γ01) 15.19 15.89 0.96 25.33 15.63 1.62
Poverty (γ02) −1.20 0.74 −1.62
Teaching experience (γ10) 9.87 4.28 2.31∗ 9.87 4.27 2.31∗ 9.87 4.27 2.31∗

Grade level (γ20) 13.77 3.47 3.97∗∗ 13.77 3.46 3.98∗∗ 13.77 3.46 3.98∗∗

Confidence (γ30) 29.19 8.57 3.41∗∗ 29.19 8.55 3.42∗∗ 29.19 8.55 3.41∗∗

Random effect Variance Variance Variance Variance

Level 1 (r) 4,996.69 3,956.27 3,938.95 3,939.53
Level 2 (u0) 325.58 394.57 247.04 334.47

Variance Partitioned Explained Explained Explained

Level 1 93.88% 20.82% 21.17% 21.16%
Level 2 6.12% 37.39% 15.23%

Deviance (df ) 1,669.16 (2) 1,617.44 (2) 1,603.79 (2) 1,609.37 (2)
∗p<0:05, ∗∗p<0:01.

TABLE 6: HLM models for tinkering.

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 89.92 7.73 11.63∗∗ 89.67 7.69 11.67∗∗ 83.44 9.34 8.94∗∗ 80.74 8.87 9.10∗∗

RPP curriculum (γ01) 1.26 16.93 1.26 27.89 15.51 1.80
Poverty (γ02) −.82 0.79 −1.03
Teaching experience (γ10) 5.36 4.42 1.21 5.36 4.40 1.22 5.36 4.40 1.22
Grade level (γ20) 12.64 3.58 3.53∗∗ 12.64 3.57 3.54∗∗ 12.64 3.57 3.54∗∗

Confidence (γ30) 23.53 8.84 2.66∗∗ 23.53 8.80 2.67∗∗ 25.53 8.81 2.67∗∗

Random effect Variance Variance Variance Variance

Level 1 (r) 4,901.09 4,210.82 4,177.74 4,185.22
Level 2 (u0) 321.83 378.42 311.35 299.26

Variance Partitioned Explained Explained Explained

Level 1 93.95% 19.38% 14.76% 14.61%
Level 2 6.05% 17.72% 20.92%

Deviance (df ) 1,666.38 (2) 1,625.72 (2) 1612.82 (2) 1,617.09 (2)
∗∗p<0:01.
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TABLE 7: HLM models for creating.

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 75.88 7.23 10.49∗∗ 75.73 7.16 10.58∗∗ 74.18 8.11 9.14∗∗ 69.48 8.50 8.17∗∗

RPP curriculum (γ01) 8.94 14.73 0.61 19.29 14.83 1.30
Poverty (γ02) −1.27 0.69 −1.85
Teaching experience (γ10) 7.52 4.00 1.88 7.52 3.99 1.88 7.52 4.00 1.88
Grade level (γ20) 7.80 3.24 2.40∗∗ 7.80 3.24 2.41∗ 7.80 3.24 2.40∗

Confidence (γ30) 22.83 8.00 2.85∗∗ 22.83 7.99 2.86 22.83 8.00 2.85∗∗

Random effect Variance Variance Variance Variance

Level 1 (r) 3,892.84 3,449.70 3,445.58 3,450.14
Level 2 (u0) 319.19 348.03 205.89 311.05

Variance Partitioned Explained Explained Explained

Level 1 92.42% 11.38% 11.49% 11.37%
Level 2 7.58% 40.84% 10.63%

Deviance (df ) 1,633.93 (2) 1,597.92 (2) 1,584.74 (2) 1,590.85 (2)
∗p<0:05, ∗∗p<0:01.

TABLE 8: HLM models for debugging.

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 74.45 7.55 9.86∗∗ 74.26 7.40 10.03∗∗ 68.42 7.75 8.83∗∗ 63.83 7.94 8.04∗∗

RPP curriculum (γ01) 23.49 14.17 1.66 33.10 13.97 2.37∗

Poverty (γ02) −1.07 0.65 −1.66
Teaching experience (γ10) 9.41 4.39 2.14∗ 9.41 4.37 2.15∗ 9.41 4.37 2.15∗

Grade level (γ20) 13.90 3.56 3.90∗∗ 13.90 3.55 3.92∗∗ 13.90 3.55 3.92∗∗

Confidence (γ30) 27.70 8.79 3.15∗∗ 27.70 8.75 3.17∗ 27.70 8.75 3.17∗∗

Random effect Variance Variance Variance Variance

Level 1 (r) 5,148.82 4,162.14 4,128.70 4,126.19
Level 2 (u0) 263.49 325.08 95.17 172.61

Variance Partitioned Explained Explained Explained

Level 1 95.13% 19.16% 19.81% 19.86%
Level 2 4.87% 70.72% 46.90%

Deviance (df ) 1,672.42 (2) 1,623.29 (2) 1,607.51 (2) 1,612.88 (2)
∗p<0:05, ∗∗p<0:01.

TABLE 9: HLM models for perseverance.

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 100.42 8.93 11.24∗∗ 100.26 8.87 11.30∗∗ 91.72 9.04 10.15∗∗ 86.41 9.29 9.30∗∗

RPP curriculum (γ01) 31.00 16.44 1.89 42.99 16.26 2.64∗

Poverty (γ02) −1.36 0.76 −1.78
Teaching experience (γ10) 7.25 4.66 1.56 7.25 4.62 1.57 7.25 4.63 1.57
Grade level (γ20) 15.44 3.78 4.09∗∗ 15.44 3.75 4.12∗∗ 15.44 3.75 4.11∗∗

Confidence (γ30) 33.79 9.32 3.63∗∗ 33.79 9.25 3.65∗∗ 33.79 9.26 3.65∗∗

Random effect Variance Variance Variance Variance

Level 1 (r) 5,920.08 4,680.57 4,611.21 4,624.78
Level 2 (u0) 488.93 596.24 222.84 326.08

Variance Partitioned Explained Explained Explained

Level 1 92.37% 20.94% 22.11% 21.88%
Level 2 7.63% 62.63% 45.31%

Deviance (df ) 1,695.18 (2) 1,643.10 (2) 1,625.04 (2) 1,631.21 (2)
∗p<0:05, ∗∗p<0:01.
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variables and one policy variable: location, SES, and partici-
pation in an RPP. In searching for the most appropriate and
parsimonious level-2 models, a decision was made to exclude
district-classification variables, include an RPP curriculum,
and present the results with and without percentages of
families below the poverty level (Model 3 and Model 4 in
Tables 2–10).

Model 1: unconditional model (CTMINij= γ00+u0j+ rij))

Model 1 (unconditional models) shows that over 90% of
the variance in CT concepts and approaches lay within dis-
tricts and less than 10% lay among districts, indicating most
of the variances lie at the teacher level, ranging from 95%
(debugging) to 90% (decomposition). Model 1 also serves as
a baseline model against which the following models are
compared in terms of variance explained in the model.

Model 2: fixed level-1 model (CTMINij= β0j+ β1j
∗(EDUTIMEij)+β2j ∗(GRADELEVij)+β3j ∗(CONFIDij)+ rij)

Model 2 includes the three teacher-level predictors: teach-
ing experience, grade level, and confidence. The teaching
experience was a significant predictor for the concepts of
abstraction and recognizing patterns but not for algorithms
or decomposition. The teaching experience was significant for
the CT approaches of debugging and collaboration but not for
tinkering, creating, or persevering. Both grade-level and con-
fidence levels were significant for all the concepts and
approaches. As grade levels increased from kindergarten to
fifth grade, the time spent teaching computational concepts
and approaches increased, which aligns with children being
able to participate in more problem-solving skills as they
increase in age [75]. As confidence levels increased, so did
time teaching concepts and approaches. Teachers who believe
they can do something well are more likely to spend more
time doing it than someone uncertain of their ability [57].

The explained variance in Model 2 was different for each
of the CT concepts and approaches. Abstraction had the

highest variance among the CT concepts explained by the
teacher-level factors at 20.82%, whereas algorithms were
explained by only 12.10%. Perseverance was the CT
approach with the highest variance explained at 20.94%,
whereas creating had the lowest of the CT approaches at
11.38%. It is noted that 20.82% of variance explained in
Model 2 is out of 93.88% of variance that lies between tea-
chers for abstraction.

Model 3: full model with an RPP and district SES
(CTMINij= γ00+ γ01 ∗RPPNETj+ γ02 ∗POVERTYj+ γ10
∗EDUTIMEij+ γ20 ∗GRADELEVij+ γ30 ∗CONFIDij+u0j+ rij)

Model 3 includes two level-2 predictor variables: participat-
ing in an RPP and SES using the percentage of families with
income below the poverty level as a proxy. None of the district-
level predictors were significant when they were entered
together. The proportion of variances explained by the two dis-
trict variables ranged from 17.17% (decomposition) to 61.19%
(algorithms) for the CT concepts. It ranged from 17.72% (tin-
kering) to 70.72% (debugging) for the CT approaches.

Model 4: full model with an RPP only (CTMINij=
γ00+ γ01 ∗RPPj+ γ10 ∗EDUTIMEij+ γ20 ∗GRADELEVij+ γ30
∗CONFIDij+ u0j+ rij)

Model 4 included only one level-2 predictor (participa-
tion in an RPP) because it was suspected there was a lot of
shared variance when using the two predictor variables. This
variable was of particular interest because it is a policy trace-
able variable whereas others were context variables. Partici-
pation in an RPP was found to have significant effects on the
algorithms, debugging, and perseverance, after controlling
for the effects of teacher-level predictors. It was not a signifi-
cant predictor for decomposition, abstraction, recognizing
patterns, tinkering, creating, and collaborating. The percent-
age of between-district variances explained by the RPP vari-
able was 40.39% for algorithms, 46.90% for debugging, and
45.31% for perseverance.

TABLE 10: HLM models for collaboration.

Fixed effect
Model 1 Model 2 Model 3 Model 4

Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio Coeff. S.E. t-Ratio

Intercept (γ00) 108.36 8.60 12.60∗∗ 108.07 8.42 12.83∗∗ 101.5 9.36 10.84∗∗ 97.07 9.37 10.36∗∗

RPP curriculum (γ01) 24.55 17.00 1.44 34.56 16.39 2.11
Poverty (γ02) −1.19 0.79 −1.51
Teaching experience (γ10) 9.27 4.63 2.00∗ 9.27 4.61 2.01∗ 9.27 4.61 2.01∗

Grade level (γ20) 15.31 3.75 4.08∗∗ 15.31 3.74 4.09∗∗ 15.31 3.74 4.09∗∗

Confidence (γ30) 27.37 9.27 2.95∗∗ 27.37 9.23 2.97∗ 27.37 9.23 2.96∗∗

Random effect Variance Variance Variance Variance

Level 1 (r) 5,711.10 4,628.21 4,590.10 4,596.16
Level 2 (u0) 430.62 496.98 273.66 341.24

Variance Partitioned Explained Explained Explained

Level 1 92.99% 18.96% 19.63% 19.52%
Level 2 7.01% 44.94% 31.34%

Deviance (df ) 1,689.42 (2) 1,640.34 (2) 1,625.16 (2) 1,630.57 (2)
∗p<0:05, ∗∗p<0:01.
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Results showed that the teacher-level variables played a
significant role in determining the time spent teaching CT
skills. The bottom portion of Tables 2–10 shows the percent-
age of variance explained by the different models. The tea-
cher’s years of experience, grade level being taught, and
confidence levels explained 11%–21% of the level-1 variances
(between teachers). The engagement in an RPP explains
40%–47% (Model 4) of these CT concepts and approaches.

6. Discussion

Elementary classrooms are nested in the complex social and
political layers that impact curricular decisions and teachers of
young students are impacted by competing priorities among
content experts. As teachers and districts gather research, abide
by educational policy, and react to current events, their daily
decisions about how much time is spent teaching which subject
varies. With consideration for the social layers and competing
content priorities that elementary classrooms already face, the
growing need to implement CT calls for creative and thoughtful
implementation. This study was performed to explore the
landscape of what already exists in classrooms throughout a
northeast state and analyze variables at the teacher level
(microsystem layer) and the district level (exosystem layer)
that are conducive to incorporating CT within the school day.

In answering the first research question concerning how
often CT concepts and approaches are currently taught in
K–5 science classrooms, teachers reported that CT concepts
and approaches overlapped with approximately half of their
science instruction. While it is promising that CT exists so
readily in current science instruction, the research also found
that the elementary teachers only spent 7% of their instruc-
tional time each week teaching science. Decomposition, col-
laboration, persevering, and tinkering were more likely to be
included in the lessons than algorithms, patterns, abstrac-
tion, and debugging. Example responses from teachers who
took this survey include decomposition, “determining/label-
ing the parts of a cell”, collaboration, “working as a team to
solve a problem”, persevering, “when creating a structure to
hold a book, multiple trials are needed”, and tinkering, “fig-
uring out how to make a light bulb light up with wires and a
battery. After determining where the concepts and approaches
exist in the curriculum, teacher efforts should enhance the CT
examples by explicitly identifying and stating the CT terminol-
ogy (decomposition, collaboration, persevering, etc.) in their
lessons. Teachersmay need additional support when integrating
creating, debugging, recognizing patterns, and using abstraction
into science instruction because these are the areas where more
complex thinking and skills are involved. They may need possi-
ble opportunities identified for them as to where these concepts
and approaches could exist in their curriculum. Prioritizing
more time on science at the elementary level has potential for
more CT opportunities which instill early computer science
knowledge and skills with minimal curricula shifts.

Teacher factors from the microsystem layer and district
factors from the exosystem layer were analyzed using an
HLM to determine if they had an impact on the teaching
of CT skills. In answering the second research question,

concerning the analysis of teacher characteristics in relation
to the frequency of CT concepts and approaches, the results
show that experience in teaching, grade level, and confidence
were significant predictors, whereas professional development
experience and levels of concern were not significant predic-
tors. Teachers with more experience are more likely to engage
in science activities that include CT concepts and approaches
of debugging, collaboration, patterns, and abstraction. The
concepts of recognizing patterns and abstraction involve uti-
lizing higher order thinking skills when taught. Perhaps expe-
rienced teachers are more intentional in promoting higher
order thinking, which successfully advances critical thinking
[46]. Experienced teachers could serve as mentors to novice
teachers for helping them integrate CT concepts.

As the grade level increases, the frequency of teaching CT
concepts and approaches increases. This finding was not sur-
prising at all because developmentally, students can engage in
more complex thinking as they progress through the grades that
teachers consider when teaching their lessons. Rijke et al. [75]
found that students between the ages of 6 and 12 increased their
usage of performing abstraction on a task as they increased in
age. Kale et al.’s [54] study looking at teachers’ CT skills and
usage found primary school teachers used significantly fewer CT
skills than teachers from the secondary level. The NGSS in the
United States [9] also have CT standards which increase in
frequency with rising grade levels. Examples from the ISTE
standards for educators for finding CT opportunities in existing
lessons also show an increase in the number of concepts con-
sisting of the abstraction, algorithms, pattern recognition, and
decomposition for rising grade levels [16].

Teachers’ level of confidence in teaching CT was also a
significant variable for determining CT frequency. This is a
noteworthy finding because districts can provide resources to
help increase their staff ’s confidence levels by implementing
professional development that utilizes engaging tools and
support structures [43, 47, 51, 55, 76]. Strategies used during
professional development that should be considered are
active learning, reflection, collaboration, receiving feedback
from coaches and instructors, and mentoring [58, 77]. Four
factors responsible for increasing confidence or self-efficacy
are mastery, vicarious experience, social and verbal persua-
sion, and increasing physical and emotional states [57]. Effec-
tive professional development for mastery includes teaching
both content and pedagogy. Creating vicarious experiences
can happen through collaboration and mentoring. Social
and verbal persuasion can improve confidence through a sup-
portive culture and providing positive feedback. Increasing
physical states can be achieved through student-centered
instruction and increasing positive emotional states through
getting teachers to have a shared vision of making a difference
in student learning [57, 58, 78, 79]. Teachers aremore likely to
engage in a practice if they feel like they can be successful at
achieving results [57] so building communities of practice
that evaluate instruction and student work and provide infor-
mative feedback will also build confidence. In addition, pro-
fessional development opportunities have been shown to
improve teachers’ confidence and self-efficacy when integrat-
ing CT [55, 80, 81].
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While high-quality professional development is com-
monly linked to implementation and understanding inter-
disciplinary science concepts [82, 83], 70% of teachers had
“no to little” professional development in computer science
implementation, only 30% had more than 3 hrs. The overall
lack of professional development experience, the professional
development’s relevance to elementary instruction, and
those with professional development might have more criti-
cally judged their science activities for CT, might explain
these outcomes. Therefore, professional development should
not be a factor that is ruled out when working toward build-
ing teachers’ confidence. Students will not understand CT
until teachers understand and feel confident about their abil-
ities [44]. This study did not disprove the effects of profes-
sional development on the integration of CT in science.
Future studies are required to identify the influence of pro-
fessional development on the use of CT in the science
instruction, especially the PDs using strategies that increase
teachers’ confidence.

A similar pattern was seen in the teachers’ level of con-
cern for implementing CT in that they had low stages of
concern. Research has indicated that as teachers increase
their concern for an innovation, they engage in the innova-
tion more often [53, 84]. Teachers’ level of concern for
implementing CT was at the early stages in this study. In
fact, most teachers (61%) reported that they only “may have
heard something about it” or “might want to know more
about it, but that other responsibilities take priority.” Aware-
ness of the importance of CT needs to be built through
professional learning opportunities and district initiatives.
Stages of concern most likely will change once teachers learn
the value of CT and start engaging with it in their teaching
and learning.

The analysis of district-level variables in relation to the
frequency of CT concepts and approaches, show that loca-
tion was not a significant predictor whereas district SES and
participation in an RPP may be significant predictors for the
use of CT in the science instruction. When each variable was
examined alone, both SES and the RPP variable were signifi-
cant predictors. However, they lost significance when the two
variables were entered together. When using only SES as the
predictor variable, there were differences in the teaching and
learning of algorithms, abstraction, creating, debugging, per-
severance, and collaboration. As the percentage of families
with low-SES increased, the use of CT concepts and approaches
decreased. There were also differences when using only the RPP
curriculumas the predictor variable for algorithms, debugging,
and perseverance. The interaction between SES levels and par-
ticipation in an RPP was less significant due to the shared vari-
ance created by an RPP curriculum districts beingmore affluent
when using only the 15 districts through the HLM analysis.
When analyzing the percentage of families with income below
the poverty level (11%–40% below poverty) from these 15 dis-
tricts, 57% of the RPP districtsmade up this population, whereas
districts without RPPs made up 75%. Although there is some
indication that the RPP influences the use of CT integration in
science, further studies involving more participation by less
affluent districts in the RPP are warranted to accurately

determine if an RPP predicts more CT usage for all concepts
and approaches.

The RPP that teachers belong to in this study is man-
dated at the district level and has been supporting science
education for 21 years. Teachers receive on-going mandatory
professional development on standards-based science instruc-
tion. Prior to this study the RPP had not intentionally aimed to
integrate CT into the science instruction, beyond what is called
for in the science and engineering standards. However, all
teachers had professional development that encouraged stu-
dents to engage in the deep-thinking work of scientists. RPPs
help teachers to becomemore aware of effective practices based
on the current research and allow them to bemore comfortable
in taking risks by having others to share in their successes and
failures [63]. This research study has demonstrated that dis-
tricts using an RPP curriculum may be more apt to integrate
CT into their everyday lessons. Being part of an RPP with
continuous mandatory PD affords teachers the resources to
facilitate the learning of more complex concepts by having time
and space to discuss what is going well in their instruction.

6.1. Implications and Recommendations. This research brings
awareness to the complex systems associated with elementary
school instruction that impact the implementation of new inno-
vations. Based on the data from teachers’ surveys, there is excit-
ing potential to integrate CT into daily science instruction.
While the concepts and approaches of decomposition, collabo-
ration, persevering, and tinkering might integrate more effort-
lessly, creating, debugging, patterns and abstraction may need
extra support through professional development and targeted
curricula. In addition, CT is integrated into science lessonsmore
often as grade levels progress. Extra support for understanding
and implementing CT at the earliest grades would have the
greatest impact, particularly as the concern for the digitally
literate problem-solvers increase to meet the needs of our com-
plex world. The increase of teachers’ years of experience with
teaching and their confidence in teaching CT predicted a greater
amount of CT integration. Therefore, preservice teacher prepa-
ratory programs should incorporate CT integration in their
content methods courses and ongoing professional develop-
ment should be provided to increase self-efficacies for the all
teachers. In addition, pairing experienced, confident teachers
with less experienced and less confident teachers may increase
CT integration. While teacher-level factors had a greater influ-
ence on the integration of CT than the district level, participa-
tion in an RPPmay positively influence CT integration and SES
may have a negative influence. Providing more resources at all
layers of the educational system, but particularly for schools in
low-income areas is needed to ensure children develop CT skills
effectively and equitably so they can be active participants in a
digitally rich and problem-driven society.

Schools should be encouraged to join an RPP with their
local universities. Without follow-up support for teachers,
the outcomes from professional development decline over
time [85]. Being part of a sustained RPP would prevent
this decline and provide the support needed as new best
practices emerge from research and new concepts and skills
are needed as technology advances. Additional research is
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needed on how the systems approach and sustainable teacher
development of an RPP may leverage science curricula and
increase science teachers’ ability to integrate CT into their
instruction.

Appendix

Computational Thinking in Elementary School
Classrooms

Welcome to the Computational Thinking Survey. This survey
is being conducted to understand the concepts and approaches
to computational thinking being used in K–5 Schools. Your
participation is voluntary. No personally identifiable informa-
tion will be associated with your responses in any reports of the
data. Upon completion of this survey, a form from URI will be
available to print out for 1 PLU (professional learning unit)
credit. If you have any questions or comments about the survey,
please feel free to contact Sara Sweetman, the study director, by
email at sara_sweetman@uri.edu or by phone (401) 874-600.

(1) Do you agree to participate in this survey?
○ Yes, I agree to participate.
○ No, I do not agree to participate.

(2) Which statement best describes your concern about
teaching computational thinking curriculum in ele-
mentary school?
○ “I’m concerned about the changes I will need to

make in my routine.”
○ “I’m concerned about how much time it will take

to get ready to teach with this new approach.”
○ “Howwill this new approach impact my students?”
○ “I incorporate computational thinking skills into

my lessons now and have ideasabout how to do it
better.”

(3) How would you rate your confidence level incompu-
tational thinking?
○ Extremely confident
○ Very confident
○ Somewhat confident
○ Not so confident
○ Not at all confident

(4) How would you define your gender?
○ Female
○ Male
○ Nonbinary
○ Prefer to self-describe.

(5) Which race/ethnicity best describes you? (Please choose
only one)
○ American Indian or Alaskan Native
○ Asian/Pacific Islander
○ Blackor African American

○ Hispanic
○ White/Caucasian
○ Multiple ethnicity/other (Please specify)

_______________________________________

(6) In which school district or educational organization
are you employed or are representing?

_________________________________________

(7) What is the name of your school?

_________________________________________

(8) How long have you been an educator?
○ 0–3 years
○ 4–6 years
○ 7–10 years
○ 11–15 years
○ 16–20 years
○ 20+ years

(9) How long have you been in your current position?
○ 0–3 years
○ 4–6 years
○ 7–10 years
○ 11–15 years
○ 16–20 years
○ 20+ years

(10) What areas are you certified in?

_________________________________________

(11) What is the highest level of education you have
completed?
○ Bachelor’s Degree
○ Some graduate school
○ Master’s Degree
○ Master’s Degree plus additional credits
○ PhD/EdD

(12) What grade(s) do you teach? Select all that apply.
□ Kindergarten
□ First Grade
□ Second Grade
□ Third Grade
□ Fourth Grade
□ Fifth Grade
□ Other (please specify)

_______________________________________

(13) What subjects do you teach? Select all that apply.
□ Math
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□ Science
□ Social Studies
□ English or Language Arts
□ After school computer programming
□ Other specialization (please specify)

_______________________________________

(14) On average how many days a week are your stu-
dents taught each of the following subjects?

(15) On average how many minutes is a typical lesson in
each of the following subjects?

(16) What type of science curriculum are you using?
(Check all that apply)
□ Stem scopes
□ Gizmos
□ Gems-Net/Foss
□ Kit-based curriculum
□ Open SciEd
□ Make my own lessons.
□ Other (please specify)
______________________________________

(17) How often do you use technology for instruction in
your classroom?
□ Most lessons each day
□ Afew lessons each day
□ One lesson a day
□ A few lessons each week
□ A few lessons each month
□ A few lessons each year
□ Never

(18) Briefly describe or list the types of technology you
or your students are using.

________________________________________

(19) CT is a problem-solving process that includes a number
ofcharacteristics and dispositions. CT is essential to the
development ofcomputer applications, but it can also be
used to support problem-solving across all disciplines,
including the humanities, math, and science. Students
who learn CT across the curriculum can begin to see a
relationship between academic subjects, as well as
between life inside and outside of the classroom (“Goo-
gle Computational Thinking for Educators,” n.d.).
CT allows us to take a complex problem, understand
what the problem is and develop possible solutions in a
way that a computer, a human, or both, can under-
stand (https://www.bbc.com/bitesize/guides/zp92mp3/
revision/1).
Based on these definitions, how often do you think
you apply computational thinking in your classroom?
○ Most lessons each day
○ A few lessons each day
○ One lesson a day
○ A few lessons each week
○ A few lessons each month
○ A few lessons each year
○ Never
For each of the CT concepts and approaches, we
describe the concept or approach and then ask you
to share how often you teach or use the concept or
approach in each subject. Finally, we ask for an exam-
ple of how you might teach this in the classroom. You
do not have to give an example for each concept and
approach. It is our hope that out of the different con-
cepts and approaches you pick just a few to share a
short (a few sentences) example description with us.

Concept: Algorithms. An algorithm is “a sequence of instruc-
tions or a set of rules to get something done. Computer
scientists strive for algorithms which solve problems in the
most-effective and efficient ways-getting the most accurate
results, in the quickest time, with the fewest resources (mem-
ory or time)” (Barefoot Computing, n.d.).

When students come up with their own sequences of
instructions, for example, how to get dressed or clean their teeth,
create a plan for a story, write instructions for a game or sport,
develop rules for grammar or math, the are creating algorithms
as shown in Figure 5 (https://www.barefootcas.org.uk).

(20) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson
did you spend teaching about or having the students
engage in algorithms?

0 1 2 3 4 5

ELA ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Math ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Science ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Social studies ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Specialization ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

0–20
min

21–40
min

41–60
min

61–80
min

81–100
min

>than
100min

ELA ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Math ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Science ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Social studies ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Specialization ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
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(21) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time
in that subject do you spend teaching algorithms?

(22) In a sentence or two describe a lesson you taught
that includes algorithms in the teaching and learn-
ing process (optional).

_________________________________________

Concept: Decomposition. Decomposition is “the process
of breaking down a task into smaller, more-manageable
parts. It has many advantages. It helps us to manage large
projects and makes the process of solving a complex prob-
lem less daunting and much easier to take on” (Barefoot
Computing, n.d.). Whenever students are labeling, adding
detail to concept maps, or creating instructions, life cycles,
and timelines, they are practicing their decomposition skills
(Figure 6). Solving a math problem, getting dressed for PE,
planning a research project, or organizing a school event are
other examples (https://www.barefootcas.org.uk).

(23) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson

did you spend teaching about or having the students
engage in decomposition?

(24) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time in
that subject do you spend teaching decomposition?

(25) In a sentence or two describe a lesson you taught
that includes decomposition in the teaching and
learning process (optional).

_________________________________________

How to make 
a tomato sandwich

1

2

3 4 5

Ingredients

(iStock.com/andricolt, 2019)

FIGURE 5: This is an example of an algorithm for making a tomato
sandwich.

Sepal
Petal

Stamen
Filament

Anther

Common flower parts

Stigma

Style Pistil

Ovary
(iStock.com/brgfx,2019)

FIGURE 6: A flower is broken down into smaller parts.

FIGURE 7: Students look for patterns to construct a Sierpinski
triangle.

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________
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Concept: Patterns. Patterns are described as “spotting simi-
larities and common differences. By identifying patterns, we
can make predictions, create rules, and solve more general
problems” (Barefoot Computing, n.d.).

When children learn to recognize repeating melodies in
music or phrases in stories, when they see similarities and
differences in data collected in science, or rules or number
sequences in math, they are identifying patterns (Figure 7)
(https://www.barefootcas.org.uk).

(26) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson
did you spend teaching about or having the students
engage in patterns?

(27) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time
in that subject do you spend teaching patterns?

(28) In a sentence or two describe a lesson you taught
that includes patterns in the teaching and learning
process (optional).

_________________________________________

Concept: Abstraction. “Abstraction is about simplifying
things-identifying what’s important without worrying too
much about detail” (Barefoot Computing, n.d.). For example,
math word problems involve students identifying the key
information and learning how to present the problem in
the language of numbers. In geography, students use maps
to represent an area without showing the complexity of the
environment. Other examples of abstraction include creating
a story plan or mind map where details are left out, making
notes and charts of the most important properties in sci-
ence, creating a presentation with key points on a topic, or
making an argument with supporting information (Figure 8)
(https://www.barefootcas.org.uk).

(29) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson
did you spend teaching or having the students
engage in abstraction?

(30) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time
in that subject do you spend teaching abstraction?

(31) In a sentence or two describe a lesson you taught
that includes abstraction in the teaching and learn-
ing process (optional).

_________________________________________

Approach: Tinkering. Tinkering is an approach to thinking
about where you try things out. This is the play-based, explo-
ration and an experimentation phase of learning. Examples
include children trying things out through role playing,
exploring, asking why and how questions, figuring out how
things work, building and creating, and testing new ideas
(Figure 9) (https://www.barefootcas.org.uk).

FIGURE 8: A timetable is an abstraction of the school day; much is
omitted to summarize this occurrence.

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________
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(32) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson
did you spend teaching about or having the students
engage in tinkering?

(33) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time
in that subject do you spend teaching tinkering?

(34) In a sentence or two describe a lesson you taught
that includes tinkering in the teaching and learning
process (optional).

_________________________________________

Approach: Creating. “Creating is about planning and making
things. Some endeavors involve various media, each providing
an outlet forcreative expression. Software and digital media
allow scope for creativity and, by mastering software tools and
digital devices, we develop confidence, competence, and inde-
pendence which we can use playfully, experimentally, and
purposefully in the expression of our ideas and insights
(Figure 10) (Barefoot Computing, n.d.). Examples include
students making games, animations, quizzes, models, artwork,
toys, and inventions (https://www.barefootcas.org.uk).

(35) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson

did you spend teaching or having the students
engage in creating?

(36) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time
in that subject do you spend teaching creating?

(37) In a sentence or two describe a lesson you taught
that includes creating in the teaching and learning
process (optional).

_________________________________________

Approach: Debugging. Debugging is an approach to thinking
where students are finding and fixing errors through a process
such as predicting what should happen, finding out exactly
what did happen, working out where something went wrong,
and fixing it (Figure 11). Examples include students find and
fix errors in their work and their peers’ work and find oppor-
tunities for improvement (https://www.barefootcas.org.uk).

(38) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson
did you spend teaching about or having the students
engage in debugging?

FIGURE 9: A boy is tinkering with different materials.
FIGURE 10: The girl is creating a camouflage shirt to blend into the
background.

Subject Percent of lessons

ELA __________
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Subject Percent of lessons
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Subject Percent of lessons
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(39) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time
in that subject do you spend teaching debugging?

(40) In a sentence or two describe a lesson you taught
that includes debugging in the teaching and learning
process (optional).

_________________________________________

Approach: Perseverance. Persevering is an approach to think-
ing where you never give up, you are determined, resilient,
and tenacious. Examples occur in music, sports, and dance
where students need to practice, train, and rehearse to
improve their skills. Solving puzzles, building complex mod-
els, participating in activities that take many days, tackling
difficult problems while experiencing confusion are other
examples where students persevere (Figure 12) (https://
www.barefootcas.org.uk).

(41) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson
did you spend teaching or having the students
engage in perseverance?

(42) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time
in that subject do you spend teaching perseverance?

(43) In a sentence or two describe a lesson you taught
that includes perseverance in the teaching and learn-
ing process (optional).

_________________________________________

Approach: Collaborating. Collaborating is an approach to
thinking where you work with others to ensure the best result.
Examples include students taking turns, working together, lis-
tening to each other, providing feedback, helping each other, and
working as teams (Figure 13) (https://www.barefootcas.org.uk).

(44) Think about the last lesson you taught in each of the
following subjects. What percentage of that lesson
did you spend teaching or having the students engage
in collaboration?

FIGURE 12: The children are persevering with learning to play music
together.

FIGURE 11: The girl just debugged her program with the robot by
fixing the algorithm.
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(45) Think about each subject curriculum as a whole
(yearlong). On average, what percentage of time
in that subject do you spend teaching collaboration?

(46) In a sentence or two describe a lesson you taught
that includes collaboration in the teaching and
learning process (optional).

_________________________________________

(47) How often have you participated in professional
development in computer science, computing, or
computational thinking?
○ I have not had any professional development.
○ 1–3 hrs
○ 4–6 hrs
○ 7–10 hrs
○ 11–20 hrs
○ More than 20 hrs

(48) Could you describe the professional development
you have received?

_________________________________________

(49) What is your interest level in attending professional
development for computational thinking?
○ Extremely interested
○ Very interested
○ Somewhat interested
○ Not so interested
○ Not at all interested

(50) Do you think computational thinking should be a
priority in education?
○ Strongly agree
○ Agree

○ Neither agree nor disagree
○ Disagree
○ Strongly disagree

(51) Does your school district encourage computational
thinking?
□ Yes
□ No

Please comment on your choice

_________________________________________

(52) What supports would you like to see in the future to
help you integrate computational thinking into your
curriculum (optional)?

_________________________________________

(53) Computational thinking is relevant to my current
job functions.
○ Strongly agree
○ Agree
○ Neither agree nor disagree
○ Disagree
○ Strongly disagree

Now that you knowmore about computational thinking…

(54) Which statement best describes your concern about
teaching computational thinking curriculum in ele-
mentary school?
○ “I’ve heard something about it, but other respon-

sibilities take priority.”
○ “This seems interesting, and I would like to know

more about it.”
○ “I’m concerned about the changes I will need to

make in my routine.”
○ “I’m concerned about how much time it will take

to get ready to teach with this new approach.”
○ “How will this new approach impact my students?”
○ “I’m looking forward to sharing some ideas about

it with other teachers.”
○ “I incorporate computational thinking skills into

my lessons now and have ideas about how to do
it better.”

(55) How would you rate your confidence level in
computational thinking?
○ Extremely confident
○ Very confident
○ Somewhat confident
○ Not so confident
○ Not at all confident

(56) Overall, how often do you think you apply compu-
tational thinking in your classroom?
○ Most lessons each day

FIGURE 13: The students collaborate with their project.

Subject Percent of lessons

ELA __________
Math __________
Science/engineering __________
Social studies __________
Specialization __________
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○ A few lessons each day
○ One lesson a day
○ A few lessons each week
○ A few lessons each month
○ A few lessons each year
○ Never

Data Availability

The data that support the findings of this study are available
from the corresponding author, (JP), upon reasonable request.

Additional Points

Limitations. There are several limitations that should be con-
sidered from this study. The first limitation is data were
collected from a self-reported survey. Although a detailed
description of each CT concept and approach using defini-
tions, pictures, and examples were provided so teachers
would have a common set of knowledge, the questions asked
the teachers to remember lessons from the previous dates
and weeks. Observations of actual lessons would provide
more accurate data. Social desirability bias is likely because
teachers would want to report they engage in high-level
thinking practices and were likely to inflate the number of
minutes they spent on each CT concept and skill. In addition,
teachers who participated in taking the survey may have a
higher level of interest and motivation around the subject
matter than the typical elementary teacher population caus-
ing additional response bias.

The second limitation was the insufficient sample size for
district-level analysis. The study was only able to include 15
out of 30 districts that participated in the survey due to
insufficient numbers of teachers within each district
responding to the survey. HLM was used to understand
the nested nature of the data but the requirements for reliable
estimates in the HLM analysis, caused a decrease in sample
size from N= 259 to N= 222. Preliminary analysis shows
that the excluded districts were mostly those serving lower
SES communities. The effects of district RPP participation
may be bigger for those districts serving the lower SES com-
munities as it provides critical support for ongoing profes-
sional development activities. To investigate the effects of
SES and RPP participation clearly and fully, data from these
districts need to be collected in the future studies.

The third limitation is the DBIR team created the CT
survey with the most up to date definitions at the time.
Although these definitions were developed with the goal of
teacher-friendliness, it is recognized that definitions are a
work in progress and are constantly evolving. There still is
no agreed upon definition in the literature. Moreover, the
definitions may change as the needs and contexts change.
Therefore, it is important that the computer science and
education communities come together and decide on shared
terminology of what CT is along with the skills involved at
the elementary level. By having shared language, measuring

progress on implementation efforts can be more accurately
assessed.

There is a limitation in the availability of the data. The
study did not include all layers of systems from the ecological
systems theory. Moreover, learner outcomes are not included.
Future studies examining the relationship between integra-
tion of CT in science and student learning outcomes would
be interesting and beneficial.
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