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The difficulty of allocating a balanced educational syllabus to academic periods of a curriculum, also known as curriculum
balancing, has long been a source of consternation for any institution of higher education attempting to connect learners and
teachers. The balanced academic curriculum challenge entails assigning courses to academic times while adhering to all load
restrictions and prerequisite requirements. The balanced academic curriculum problem (BACP) includes assigning subjects to class
hours that fulfill standards even while managing students’ burden in terms of credits, course load, and perquisites that includes
subjects covered in the previous semesters/periods. The number of credits every semester corresponds to the academic load. As a
result, educational frameworks must be “balanced,” which means the credits for each period should be equivalent in order for
students to bear minimum work. As a result, it is desirable to reduce this cost by developing a study plan that employs an algorithm
that conducts this work automatically. Using an optimization method, this article provides a solution to the challenge of curricula
balancing based on the discrete firefly algorithm (DFA). In research, FA has already been used to solve the BACP problem.
However, the basic FA is modified to DFA with a local search mechanism inbuilt that helps to reach optimum solution in less
number of iterations. A series of tests on standard and real data instances are done to check the efficiency of the suggested
approach, with the objective of producing a platform that would simplify the procedure of building a curriculum system at
institutions of higher learning. The results show that the proposed solution obtained a rather rapid solution and hit the recognized
optimum in most of the iterations.

1. Introduction

A balanced curriculum is one in which activities and subjects
for various grades of students are chosen in accordance with
the overall development of the personality. A curriculum cov-
ers all elements of human activity and growth. This style of
curriculum incorporates the learner’s evolving interests as
well as the changing surroundings. A well-rounded curricu-
lum should foster the development of all key areas of human
capability. A balanced curriculum balances scientific and arts
topics, vocational/technical and academic, and urban and
rural learners. It suggests an order in its breadth and advances
all of the educational objectives mentioned. According to

Ornstein and Hunkins, “A balanced curriculum is one in
which students have opportunities to master knowledge and
to conceptualize it in ways that are appropriate for their per-
sonal, social, and intellectual goals” [1].

In the academic world, time scheduling is a prominent
study topic. It deals with a variety of real-world issues, such as
rostering and job planning. Curriculum development, test
administration, and course planning are some of the most
essential planning responsibilities for academic organizations.
A university’s study curriculum (program) is typically built
around some professional academic topic (e.g., computer
science, economics, medicine, etc.). Such study curricula are
made up of many courses that are generally divided into as
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many study times as feasible (semesters/periods). Since cer-
tain subjects are much harder to understand over others, each
subject is awarded a number of credits based on the number
of study hours required to master the relevant information.
Furthermore, certain subjects may not be taught before others
due to prerequisites. In such cases, an obvious goal would be
to arrange the courses over semesters such that the students’
burden (in terms of learning hours) is balanced among differ-
ent semesters. This is referred to as the balanced academic
curriculum problem (BACP), which is also a constraint satis-
faction problem (CSP). The objective of a CSP is to satisfy all
of the relevant restrictions while improving the solution qual-
ity produced [2]. Many ways to resolve the BACP have been
investigated, with this problem typically handled utilizing the
idea of programing with restrictions and hybrid methods
based on evolutionary algorithms, cooperative systems, and
local searches, among other methods.

Many real-world issues may be represented as CSPs.
Solving a CSP entails finding acceptable values (as solutions)
to problem variables from the domain of variables so that all
constraints of the problem are fulfilled. Formally, any CSP
may be defined as follows: (1) a collection of variables, (2) a
set of finite values as the domain for each variable, and (3) a
set of constraints limiting the values that variables can take at
the same time. Dealing with CSPs in acceptable ways has
been a focus of attention since practically all real-world
issues include restrictions, and so finding proper ways to
handle these restricted problems has been critical. CSPs
have typically worked with classical systematic procedures,
the most well-known of which being backtrack search.
However, because the systematic technique has an exponen-
tial cost, academicians have been seeking other algorithms
for solving CSPs problems, such as graph coloring. N-queen
problems are among the most well-known constraint fulfill-
ment problems, as are implementations such as planning and
management, arrangement, timetables, gear train layout, ten-
sion/compression spring architecture, and pressure vessel
design problems. CSPs are NP-complete problems, which
implies that addressing them utilizing typical methods like
search strategy takes an increasing amount of time. A CSP
with parameters and a scope size d will, in the worst case,
need a backtrack search algorithm with O(d) computation
time. Backtrack search is the most well-known systematic
strategy for resolving CSPs. However, this method has cer-
tain downsides, the most prominent of which is thrashing.
That is, the algorithm is unable to detect and recall the true
source of the conflict and hence fails again for the same
reason. Constraint propagation has been proposed to allevi-
ate this limitation and is achieved utilizing look-ahead tech-
niques such as maintaining arc consistency (MAC) and
forward checking (FC). These methods enable the program
to prune branching that would otherwise fail. In addition to
pruning early of those branches of the search tree that would
lead to failure, FC ensures local consistency between the
present constant (the variable being assigned) and the future
variables (the nonassigned variables associated with the cur-
rent variable via constraints). Full local coherence on current
and future variables is computed using MAC (also known as
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full look ahead or FLA). MAC has the advantage of predict-
ing future constant clashes and so cutting more branches
than FC. This, nevertheless, takes much longer than FC.
While reducing the size of the problem space by FC or
MAC (by deleting some contradictory variables from the var-
iable ranges) increases the backtrack search’s time efficiency,
it still struggles from its exponential time cost, especially for
difficult-to-solve problem scenarios. This is the primary
incentive for the academic community in this domain to build
new algorithms and leverage current powerful algorithms
such as metaheuristics to solve these challenges.

Many solutions can be developed for a single issue, each
having its own problem description and solution technique,
as well as a separate formulation of the restrictions. As a
result, a model’s performance may differ from that of the
other models. It is feasible that different models have comple-
mentary skills. Various problem concepts can be combined in
this case to create a new paradigm, which combines the draw-
backs of one paradigm with the benefits of the other and
conversely. Combining numerous models can significantly
increase the domain pruning done in each model, culminat-
ing in a more robust model than any of the participating
systems. However, due to the increasing number of variables
and constraints, the run-time may be extended. This is per-
formed by imposing channeling constraints on the parame-
ters of the collaborating simulations.

Initially, the BACP was suggested with the objective of
arranging all courses within a syllabus to their respective
semesters by meeting necessary dependencies links and pre-
serving appropriate term burdens. BACP includes assigning
subjects to teaching hours that fulfill standards while also
managing students’ credit and semester burden [3]. The
BACP planning system is split into academic years that are
then subdivided into further terms. The BACP, as presented
in Ref. [3], is significantly NP-complete. Additionally, BACP
is a fascinating issue since it stands at the crossroads of
several problem categories, including scheduling, bin pack-
ing, and balancing [4]. Because of restrictions of preliminary,
for example, BACP appears to be a scheduling issue. A single
commodity (the learner) is managed by accounting for unit
time (periods), activity (courses), and prerequisites (courses
to be covered before others).

This article focuses on addressing the test cases recog-
nized by the CSPLib [5], as well as a few real-world datasets
taken from the course grid of the School of Computer
Science and School of Law at University of Petroleum and
Energy Studies, Dehradun, India. Firefly algorithm (FA)
developed by Yang [6] is modified to discrete firefly algo-
rithm (DFA) with a local search mechanism (LSM) devel-
oped to find the optimal solution. In this paper, DFA method
is used to build a collection of solutions found via the linear
programing technique and recorded in a binary matrix. We
use DFA to maximize the space of initial solutions after
finding a collection of valid solutions, each of which repre-
sents a firefly. A discretization strategy and LSM are devel-
oped to obtain the best possible solution.

Since BACP is the optimization problem, FA gives con-
sistent results in the optimization problems. An optimized
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problem seeks the ideal method among all available methods.
In other words, the goal of an optimization problem is to
discover a feasible solution that has the lowest (or highest)
value of the desired parameter. The mathematical relation-
ships between the goal, restrictions, and choice variables in
an optimization problem impact how complex it is to solve,
as well as the optimization techniques or methods, which can
be utilized to get the truly optimal solution. According to
Apostolopoulos and Vlachos [7], FA is a moderately efficient
approach that outperforms other conventional means in data
analysis using standard randomized design parameters. The
algorithm operates on the basis of global communication
among fireflies. As a result, it can identify both global and
local optimum solutions at the same time. According to Yang
[8], FA primarily uses genuine random numbers. Different
fireflies operate separately, allowing for parallel implementa-
tion. According to Zhang et al. [9], FA is one of the techniques
that academics have lately employed to tackle optimization
challenges in dynamic environments.

The rest of the article is organized as follows: Section 2
discusses the relevant work, Section 3 provides the problem
statement, Section 4 discusses the details of the approach
employed, Section 5 discusses the outcomes of the recom-
mended strategy, and Section 6 describes the conclusion and
future work.

2. Related Work

Several techniques in the literature address and solve the
BACP problem using deterministic and nondeterministic
algorithms.

Castro and Manzano [10] introduced the BACP while
presenting and constructing a linear programing model
that took into account the following entities and constraints:
(1) courses that are not optional (courses with their credits
according to the academic curriculum), (2) educational per-
iods relate to a defined amount of temporal periods, as per
the syllabus, (3) the highest academic load permitted, (4)
allowable academic load (minimum number of credits and
courses for each academic period), (5) each course’s approval
criteria (students must take and approve some courses before
others). The prerequisites and next courses enable the crea-
tion of ordered pairings of courses, (6) a balanced curriculum
distribution, which means the number of credits of each
semester should be equal. Thus, the BACP planning horizon
divides a career into academic years, each of which is divided
into course-taking periods. Previously, BACP was character-
ized as a variant of the generalized assignment issue, and
programs were allocated to semesters while meeting prere-
quisites [11]. To summarize, BACP meets the prerequisite
requirements; however, it does not have the goal of allocating
relevant courses as near as feasible. It was not clear when to
use what kind of heuristics for getting optimized results.

In terms of performance and solution quality, Hnich et al.
[12] and Castro and Manzano [10] compared many BACP
models depending on restriction and integer coding, Lambert
et al. [13] created hybrid BACP approaches that used evolu-
tionary algorithms and CP.

Di Gaspero and Schaerf [14] created the generalized
BACP (GBACP) model, which extends the BACP models
by including a lecturer preferences criterion. The study’s find-
ings enable them to construct a sophisticated mix of dynamic
tabu search, simulated annealing, and large-neighborhood
search. Furthermore, they provide six additional cases col-
lected from their institutions that are substantially larger
and more difficult than the CSPlib instances.

Chiarandini et al. [3] proposed a hybrid local search-based
integer programing model and heuristic solution approach for
GBACP. They created, implemented, and assessed local search
heuristics. They gathered computational results on all new
cases using the provided methodologies and evaluated the
quality of solutions in relation to integer linear programming
lower limits on a relaxed and deconstructed issue. The results
demonstrate that a chosen heuristic finds excellent answers at
9%—60% distance from the lower bound.

Lee and Ma [15] developed the first generalized quadratic
assignment problems (GQAP) formulation. They used it to
locate numerous pieces of equipment at four manufacturing
sites while reducing overall shipping and installation expenses.
They provided three distinct linearization strategies as well as a
branch and bound algorithm to obtain the best GQAP solu-
tion. This problem emerges in a variety of everyday situations,
including facility placement and logistics network design. They
refer to the problem as the GQAP and demonstrate that this
relaxation significantly increases the problem’s complexity. To
solve the GQAP optimally, they provide three linearization
techniques as well as a branch-and-bound algorithm. Mathe-
matical experiments have been conducted to demonstrate the
efficacy of the suggested approaches.

To solve a Lagrange formulation of GQAP, Hahn et al.
[16] developed a branch and bound methodology based on a
reformulation linearization technique (RLT) and a dual
ascent mechanism. The GQAP specifies a broad class of
quadratic integer programing problems in which M pair-
wise linked objects are distributed to N destinations with
restricted capacity to receive them. This unique method is
based on the dual ascent technique of the RLT.

Pessoa et al. [17] created two hybrid branch and bound
algorithms based on Hahn et al. [16] research. The strategies,
one utilizing the volume approach separately and the other
integrating the volume method with the transformative lower
bounding procedure, generate significantly higher upper and
lower limits for relaxed GQAP. They also use transforma-
tional lower bounding approaches to increase the new proce-
dure’s performance. They offer detailed experimental data
demonstrating that 19 of 21 cases with up to 35 capabilities
may be addressed in a matter of days. There were six of these
instances open.

McKendall Jr. [18] has shown how to formulate the
dynamic space allocation issue as a GQAP. He devised three
separate tabu search techniques that distribute idle resources
to storage facilities over many time periods while lowering
overall preparatory and two-way transportation costs. Simple
tabu search heuristic is the first heuristic. The next heuristic
augments the first using variety and amplification tactics,
while the third strategy is a randomized tabu search heuristic.



The research uses a collection of test issues from the investi-
gation to evaluate the efficiency of the heuristics. The results
show that the tabu search techniques may be used to solve
the dynamic space allocation problem. More crucially, for
one-half of all tests, the suggested tabu search heuristic with
alternative investments revealed fresh best solution in less
computing time.

Hahn et al. [19] created a multiobjective 3D GQAP
framework for inter assignment challenges that distributes
division to various floors of the building while decreasing
cross travel and evacuate costs. They created a one-of-a-
kind edition of the multistory assignment problem, which
merely allocates uneven area divisions to different levels
inside the building, but also considers occupant escape. A
thorough branch-and-bound approach based on an RLT1
dual ascent procedure has been provided in addition to the
complete mathematical understanding of the equation and
its evolutionary history from quadratic assignment con-
cerns (QAP).

Lambert et al. [13] concentrated on the creation of a
hybrid resolution architecture that takes evolutionary algo-
rithms and constraint propagation. They create a concep-
tual framework wherein hybrid resolution is achieved by
calculating a fixpoint of arithmetic operations. They aim to
successfully solve BACP by merging a genetic algorithm
(GA) with CP methods while also providing a generalized
architecture to correctly develop such hybrid resolution
procedures and highlight its features and attributes. The
proposed framework enables the creation and manage-
ment of new and refined problem-solving techniques and
extensions. CP is still not able to discover a viable resolu-
tion in 10 min of CPU time in the suggested approach. GA
can determine the best value; however, it is ten times
slower than the hybrid approach GA + CP.

Chiarandini et al. [3] provide a genetic local search
method to tackle the problem of curriculum balance by
utilizing two objectives. They created a basic genetic local
search algorithm. The technique employs a mutation-like
operator (MSA) to perform simulated annealing. Conse-
quently, depending on the temperature measurements, the
algorithm does both exploitation and exploration. The opera-
tor considers the limitations by performing a relocation that
results in only feasible options. Given the intricacy of the
restrictions, they have chosen to solely utilize a MSA with no
crossover. The primary drawback is that it takes longer to find
the best answer.

Castro et al. [20] propose a customized BACP in which
the educational workloads and variety of courses can be the
same or vary for each period, and certain courses can be
taken at specified times. This is considered as an integer
programing challenge, and the utilization of Tabu search
with short-term memory is suggested as a solution because
no solution can be found for all situations of this changed
issue using an exact technique.

Apart from the approaches that are mentioned earlier,
there are various other approaches like constrained pro-
graming, integer linear programing, integer programing,
and hybrid local search approaches are examples of hybrid
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approaches based on evolutionary algorithms, and constraint
transmission have been used to solve the problem of curric-
ulum balancing.

Hnich et al. [12] investigate a BACP. The task was to
build a course syllabus by allocating hours to classes in such a
way in which the educational load of every session is fair.
They demonstrate how BACP problem may be represented
in several ways and discuss why each model is beneficial.
They then recommend combining the models in order to
capitalize on the complementary characteristics of each
model. Experiment findings demonstrate that integration
greatly improves domain trimming and even reduces run-
time in several cases. The main advantage is that the run time
decreases due to the integration of different models.

For the enhancement of the search results, nowadays
many researchers solve the curriculum-balancing problem
using a metaheuristics algorithm. The major benefit of using
a heuristic method is that they provide quick and viable
solutions to planning and scheduling difficulties.

Rubio et al. [21] proposed best—worst ant system (BWAS)
to solve the BACP. BWAS integrates evolving computation
concepts, enabling for a balanced exploitation and explora-
tion of the search area provided by a pheromone update
technique and pheromone matrix mutation, respectively. Fur-
thermore, a restart mechanism prevents the algorithm from
being stuck and executing superfluous iterations. The experi-
mental results demonstrate that artificial ants are effective at
addressing constraint fulfillment issues. All of the tests dem-
onstrate that the margin of error is significantly lower than the
correct solutions provided. The solution’s quality was accept-
able for standard instances, and the ideal settings of every case
were achieved in most cases. In practice, the outcomes were
also positive. The proposed strategy has not been tested for
the complicated versions of BACP datasets.

Slim et al. [4] seek to design a syllabus that is more applica-
ble to real circumstances not only just by shortening the gap
between essential courses but also by shifting those to the next
accessible term while adhering to the BACP restrictions. To
accomplish this objective, they suggest a crucial-based curricu-
lum balancing (CBCB) model that is enacted as a multiobjective
optimization issue with linear objective functions that also have
a benefit over the suggested relevance-based curriculum balanc-
ing model. One drawback is that the authors did not include the
course difficulty criteria. The primary drawback is that the aca-
demic load limit is stated in an inefficient manner.

Rubio et al. [22] use an optimization algorithm on the
basis of the firefly attraction (FA) meta-heuristic to solve the
BACP. They perform a number of experiments and actual
events to evaluate the efficacy of their solution proposal, with
both the objectives of producing a technology that will make
the procedure of building a pedagogical system at universi-
ties easier. The collected findings demonstrate that their
approach achieves a relatively rapid convergence and reaches
the known optimum in the majority of the tests performed.
They do not apply the LSM, which leads to results stuck in
the local optima.

The abovementioned literature is either incomplete or
cannot be used in the present scenario because of their
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disadvantages like inefficient load constraint, not being tested
for complicated data sets, taking too many iterations to reach
to optimal solution, etc. Many of the approaches do not apply
the LSM that leads to results stuck in the local optima. In this
work, a DFA is used along with the discretization strategy and
LSM. The suggested method can locate solutions in a limited
number of iterations. Table 1 shows the comparison of liter-
ature review.

3. Problem Statement

The balanced academic curriculum challenge entails assign-
ing courses to academic times while adhering to all load
restrictions and prerequisite requirements that include the
courses to be covered before the allocated course in the cur-
rent period/semester. We describe the creation of a resolu-
tion to the BACP using the discrete firefly metaheuristic
algorithm in this work. To obtain the most optimized solu-
tion, the FA has been modified to DFA, which includes the
local search mechanism to make the algorithm not stuck in
local minima.

4. The BACP Formulation

The following entities and restrictions are engaged in the
creation of the BACP concern:

(1) Courses: The curriculum is made up of mandatory or
nonoptional subjects that have credits assigned to it.

(2) Periods: The curriculum grid constructs a course based
on a predefined number of time intervals. Courses to
teach are included in each academic session. A 4-year
curricular mesh, for example, comprises eight aca-
demic periods, with each year consisting of two periods
(semesters).

(3) Maximum load: There is a maximal educational load
for each session or number of credits allowed.

(4) Minimum load: A minimum academic load is per-
mitted for each session.

(5) Prerequisites: The syllabus determines the order
wherein courses must be delivered and approved;
in other words, some courses should be given and
authorized before others. These classes are called pre-
liminaries, and they enable the formation of ordered
pairs of courses and follow a specific order.

(6) Balanced load distribution: The curriculum meshes
must be equal, which implies that the number of cred-
its earned throughout each academic term should be
similar, if not identical.

4.1. BACP Math Model. For issue resolution, the model
employs a 1D decision variable and takes into account the
following parameters:

¢ =total number of courses

p =the number of periods

pi=number of credits of course i, where i=1,..., m

y =minimal periodical academic load

0 =maximum periodical academic load

€ =a minimal amount of courses every semester
a=maximum number of courses allowed in a given
period
The following are the decision variables:
A vector containing the periods allotted to each
course:
pi=gq Vi=1,...,c (1)

For all periods, the maximum academic load is k:

k = max{k,,..., ks }. (2)

The educational workload for a particular period ¢ is
denoted by the following:

kq:;lﬁiﬂn Vi=1,...,6 Vqg=1,....d, (3)

L if p;=gq

where p; = {0 if p; % q

As aresult, the objective function reduces the educational
burden globally:

mink. (4)
The constraints are defined as follows:
For each course, i must be allocated to a period g:
d
Yxig=1,Vi=1,...,c (5)
q=1

A prerequisite exists for course h of period g:

q-1
thS ers. quz»“-?d' (6)
s=1

Equation (2) defines the maximum academic load as the
one that satisfies the following restrictions:

k, <k ¥g=1,...d. (7)

The educational load for period g has to be more than or
equivalent to the minimal required:

ky<y,Vg=1,...d. (8)

The educational load for period g should be lower than
or equivalent to the maximum required:

k<6, ¥g=1,...d. 9)

The number of period g courses must be more than or
equal to the bare minimum:

Ypiza Vqg=1,..d, (10)
i=1
L if p;=gq

where p; = {0 if p; £ q
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The number of period g courses has to be fewer than or
equal to the maximum allowed:

__le,-sfx, Vg=1,..d, (11)

L if p;=gq
0, if p;#q

4.2. Discrete Firefly-Based Optimization. Optimization pro-
blems are focused on identifying variable values that will
result in the objective function’s optimum functional value.
This sort of problem occurs outside of our typical activities.
Based on the choice variables, a solution may be classified
into three types: continuous variables, noncontinuous vari-
ables, and mixed variables. A mixed problem occurs when
some of the objective functions can be allocated with contin-
uous data and the remainder with noncontinuous values.
There are several approaches to solving an optimization
issue. Metaheuristic algorithms are one type of solution
approach. These algorithms are a nondeterministic solution
method that uses an informed guess and a “trial and error”
approach based on a provided randomness term to explore
the solution space. Nature has served as an inspiration for the
development of numerous metaheuristic algorithms. It has
solved difficulties without being instructed but rather by
experience. Natural selection and survival of the fittest
were primary motivators for early metaheuristic algorithms.
Different animals communicate with one another in a variety
of ways. Swarm-based algorithms are a form of metaheuristic
optimization method inspired by animal’s social behav-
ior [11].

Xin-She Yang created the FA in 2008 [23], which is one
of the most current swarm intelligence approaches. FA is a
stochastic, nature-inspired meta-heuristic method for tack-
ling the most difficult optimization problems. There are over
2,000 firefly species, the majority of which generate brief,
repetitive flashes. Typically, each species has a distinct flash-
ing pattern. Bioluminescence causes the flashing light. It is
thought that such flashes serve two primary functions:
attracting mating partners (communication) and attracting
prospective prey. Furthermore, flashing may function as a
protective warning system. To summarize, fireflies use stored
energy to flash as a light to marry, hunt, or avoid predators.
Fireflies provide appeal by emitting light.

It is usually recognized that the light intensity at a set
distance from the source of light follows the inverse square
law [24], which asserts that the intensity of light decreases
with rising distance between an observer and the source of
light. Additionally, light is absorbed by the air, which
diminishes with increasing distance. As a result, fireflies
can only be seen for a limited distance. The FA assumes
that the flashing light may be represented so that it is related
to the objective function of the optimization problem. Three
idealized rules underpin the FA [25]:

where p; = {

(1) Even though all fireflies are unisex, the amount of
light they generate determines their attraction regard-
less of male or female.

(2) Fireflies’ attraction is proportionate to their bright-
ness. Therefore, for any two lighting fireflies, the one
with the fewest flashes will fly toward the one with
the most flashes. Attractiveness is related to bright-
ness; therefore, they both fade as their distance
increases, and for any two flashing fireflies, the less
brighter one will go closer to the brighter one. If no
firefly is brighter than another, it will fly at random.

(3) A fitness function determines the firefly’s brightness.

The FA is a simple and efficient algorithm. It can also be
implemented in parallel. However, studies demonstrate that
for multimodal issues, it is sluggish to convergence and
quickly becomes locked in the local optimum. Furthermore,
the changes are completely based on current performance,
with no recollection of prior best solutions and performances
preserved. This may result in the loss of superior options.
Furthermore, because the parameters are constant, the search
behavior is consistent between iterations for any circum-
stance. As a result, one of the research concerns has been to
improve the typical FA’s performance. Furthermore, the typi-
cal firefly approach is created for continuous optimization
issues; hence, it must be modified and altered to be used for
noncontinuous situations. The majority of metaheuristic opti-
mization approaches rely on the development of a random
starting population of viable candidate solutions. All popula-
tion candidates are placed in the solution search area with the
purpose of directing the search to the optimal site. The FA
adheres to the same premise. The following are the key steps
of FA. The first stage is to initialize a swarm of fireflies, each of
which is specified by the intensity of its flashing light. The
brightness and attractiveness of each firefly are calculated at
each subsequent iterative phase. After comparing the bright-
ness of each firefly to the brightness of all other fireflies, the
locations of the fireflies are updated depending on knowledge
about fireflies and their neighbors.

In the proposed approach, the basic FA proposed by Xin-
She is modified to DFA with inbuilt LSM to reach the opti-
mal solution in less time and to avoid the algorithm to stuck
in the local minima. The details for the discretization strategy
and LSM are explained in Section 4.3.

4.3. BACP with Discrete Firefly. When using the FA technique
to optimize issues, it is believed that the brightness is propor-
tionate to the value of the objective function. The brightness
of GAs may be described in the same manner that the objec-
tive function can. Therefore, because the attraction of a firefly
is related to the amount of light it produces, the attraction
may be defined as follows [26]:

Bii = Po X €777, (12)

where f, represents the attractiveness at a distance of r=0.
Using the Cartesian distance technique, we compute the dis-
tance r; between two fireflies using Equation (13), which
indicates the coefficient of light absorption related with the
magnitude and nature of the actual problem.
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1. Define the objective function
2. Initialize n fireflies, X; = (X1, Xizs «vvvvvenn , Xiq)
3. while(t < Iterations)

18. end while

4. Identify each fireflies absolute brightness according to equation

5 for i=1:n for n fireflies

6 for j=1:n for n fireflies

7. if (Ii<I;)

8 Determine the distance among fireflies i and j using equation 13

9 Determine the attractiveness of firefly j attracting i using equation 12

10. Relocate firefly i to j using equation 14

11. end if

12. end j

13. Using a discretization method, scatter placement after movement. // Modified FA (Discretization using
sigmoid function)

14. end i

15. if (t > 2)

16. Using the local search technique, optimize the local optimum solution. // Local Search Mechanism
17. end if

19. Obtain the optimum placement of courses in different semesters

ArcoriTHM 1: Modified discrete firefly algorithm with local search mechanism.

The distance is calculated as follows [27]:

|
M=

ij = (xik - xjk)2. (13)
k

1

A firefly i is attracted to a brighter firefly j, and its behav-
ior is governed by Wu et al. [28]:

x;(t+1) = x;(t) + Bji X (x;(t) = x;(t)) + ax (rand — 0.5 X A),
(14)

where x; and x; are the current locations of the fireflies,
the next component is their attractiveness, and the third
term adds a randomized factor in which there is a ran-
domized variable and rand is a continuously dispersed
randomized number among 0 and 1.

The main idea for solving the proposed BACP in this
study is based on portraying the issue in a binary setup
since there is proof that trying to raise the solution in this
manner is useful without a doubt that FA adapts properly
to a binary depiction. Algorithm 1 depicts the suggested
DFA solution, where the objective function describes the
problem’s objective. Furthermore, it is required to initialize
the firefly variables: y, fy, the population size n, and the
maximum number of generations Iterations.

To resolve the BACP, a binary matrix structure of size
(mxn) is provided, consisting of columns with courses and
rows with periods, each with a square with a value of 0 or 1.
This illustration demonstrates whether a course i is allocated
to a period j (value 1) or not (value 0). When the fireflies move
in accordance with Equation (14), the binary values will be
converted into real numbers, resulting in new locations. As a

result, in order to continue the search for a solution to this
discrete problem, these real numbers must be transformed
into binary integers. Sigmoid function is used to restrict the
location following the firefly’s movement in 0-1 [29]:

1
14 e

(15)

S (x) in Equation (15) denotes the probability of x
value being 1.

The FA’s discretization method is as follows:

Replace the largest value in each row with 1 and the
remainder with 0. Calculate the load for each period, and if
the load does not exist in the upper and lower thresholds,
then replace the second largest value with 1 in each row and
repeat the procedure until the correct period is determined.
Repeat the preceding steps until all of the courses have been
assigned to the proper periods.

The local search method is presented to enhance the
quality of the optimum solution in order to accelerate the
solution search process. The following local search method is
implemented [30].

We begin with the first course in the first position and
analyze the swap of courses in the mth and (m + 1)th places.
If the swap enhances the optimal solution, it will be executed;
otherwise, no action is required to proceed to the next phase of
the algorithm. This is done in each iteration after two iterations.

S(xi) =

5. Results

The proposed algorithm is written in Java and runs on the
BlueJ programing environment. Furthermore, the proposed
approach was tested on a machine running Windows 7
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16.8 -
16.6 -
16.4

—— Without local search mechanism
—— With local search mechanism
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Ficure 1: Number of iterations to reach optimal solution in BACP 8.

BACP 8

B Intensity 17
H Intensity 18

FIGURE 2: BACP 8 result distribution without local search mechanism.

TasLE 2: Variables utilized in the study.

Parameter Value
Number of iterations 50
Number of fireflies 30
Alpha 0.5
Beta 1
Gamma 1

operating system with 64 bits. Our test PC features a 2.4 GHz
Intel I3 CPU and 4 GB of RAM.

Each of the CSPLib events and the genuine occurrences
were subjected to 50 tests. Real test data were taken from the
course Grid of the School of Computer Science and School of
Law at the University of Petroleum and Energy Studies in
Dehradun, India, to validate the system’s findings and perfor-
mance when producing solutions. Table 2 shows the param-
eter values used to validate the new technique. These test
samples are used to evaluate the algorithm’s behavior and

BACP 8

B Intensity 17
H Intensity 18

FIGURE 3: BACP 8 result distribution with local search mechanism.

to compare it with the different proposed works that tackled
the same problem. There are three test samples for the BACP
issue, each of which is studied and solved individually.

5.1. Standard Test Cases. BACP 8: The BACP 8 is the smallest
instance of the issue, with 46 courses spread throughout 8
academic periods. The results show that the optimal solution
starts with 18 credits, and after performing six iterations, the
optimal solution changes to 17 till the end of the execution
when the LSM is not applied. After applying the LSM, the
optimal solution of 17 is obtained by performing four itera-
tions. Figure 1 depicts the number of iterations required in
BACP 8 to find the best solution. Figures 2 and 3 show the
distribution of results with and without LSM, respectively.
Without LSM, 56% of iterations give the optimal solution,
whereas with LSM, 61% of iterations give the optimal
solution.

BACP 10: The maximum academic load in this instance
is smaller than in BACP 8 since it consists of 42 courses
distributed across 10 academic sessions. The system had a
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BACP 10

144 - -
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—— With local search mechanism
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FIGURE 4: Number of iterations to reach optimal solution in BACP 10.

BACP 10

BACP 10

B Intensity 14
H Intensity 15

FiIGURE 5: BACP 10 result distribution without local search
mechanism.

harder time obtaining the known optimum in this test case.
The results show that the optimal solution starts with
15 credits, and after performing 41 iterations, the optimal
solution changes to 14 until the end of the execution when
there is no LSM. After applying the LSM, the optimal solu-
tion of 14 comes by performing 36 iterations. Figure 4
depicts the number of iterations required in BACP 10 to
find the best solution. Figures 5 and 6 show the distribution
of results without and with the LSM, respectively. Without
LSM, 13% of iterations give the optimal solution, whereas
with LSM, 16% of iterations give the optimal solution.
BACP 12: The 12-period instance is the most complicated,
with 66 courses to assign; therefore, the computing work
necessary to discover appropriate answers is larger than in
the other examples. The results show that the optimal solution
starts with 20 credits, and after performing 12 iterations, the
optimal solution changes to 18 until the end of the execution
when there is no LSM. After applying the LSM, the optimal
solution of 18 comes by performing 9 iterations. Figure 7
depicts the required number of iterations in BACP 12 to

B Intensity 14
W Intensity 15

FIGURE 6: BACP 10 result distribution with local search mechanism.

find the best solution. Figures 8 and 9 show the distribution
of results without LSM and with LSM, respectively. Without
LSM, 25% of iterations give the optimal solution, whereas
with LSM, 29% of iterations give the optimal solution.

5.2. Real Test Cases. REAL 8: The REAL 8 instance consists of
the 79 courses that should be distributed across the eight
semesters/periods. It consists of the courses from the Bache-
lor of Technology in Computer Science with specialization in
cloud computing and virtualization technology program that
is taught at the University of Petroleum and Energy Studies.
The results show that the optimal solution starts with 26
credits, and after performing eight iterations, the optimal
solution changes to 23 till the end of the execution when there
is no LSM. After applying the LSM, the optimal solution of 23
comes by performing 5 iterations. Figure 10 depicts the num-
ber of iterations required in REAL 8 to find the ideal solution.
Figures 11 and 12 show the distribution of results without
LSM and with LSM, respectively. Without LSM, 61% of itera-
tions give the optimal solution, whereas with LSM, 67% of
iterations give the optimal solution.
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BACP 12

205 - -
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—— Without local search mechanism
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FiGURE 7: Number of iterations to reach optimal solution in BACP 12.

BACP 12 BACP 12

B Intensity 18 B Intensity 18
M Intensity 19 M Intensity 19
M Intensity 20 1 Intensity 20

Ficure 8: BACP 12 result distribution without local search FIGURE 9: BACP 12 result distribution with local search mechanism.

mechanism.

REAL 8

26.5 - -

26.0 -
255 -
25.0 - -
245 - -
24.0 - -
235 -
23.0 - -

225 -
22.0 - -

21.5

1357 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
—— Without local search mechanism

—— With local search mechanism

Figure 10: Number of iterations to reach optimal solution in REAL 8.



12

REAL 8

Education Research International

REAL 8

B Intensity 23
W Intensity 24

FiGure 11: REAL 8 result distribution without local search
mechanism.

27.5 -
27.0
26.5 -
26.0 -
255 -
25.0 -
24.5 -
24.0 -

B Intensity 23
W Intensity 24

FIGURE 12: REAL 8 result distribution with local search mechanism.

REAL 10

23.5 -
23.0 -
22.5

—— Without local search mechanism
—— With local search mechanism

1357 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

FIGURE 13: Number of iterations to reach optimal solution in REAL 10.

REAL 10: The REAL 10 instance consists of the 79 courses
that should be distributed across the 10 semesters/periods. It
consists of the courses from the BBA Bachelor of Laws (LLB)
program that is taught at the University of Petroleum and
Energy Studies. The results show that the optimal solution
starts with 27 credits, and after performing 11 iterations, the
optimal solution changes to 24 until the end of the execution
when there is no LSM. After applying the LSM, the optimal
solution of 24 comes by performing nine iterations. The num-
ber of iterations necessary in REAL 10 to get the optimal solu-
tion is depicted in Figure 13. Figures 14 and 15 show the
distribution of results without LSM and with LSM, respectively.
Without LSM, 51% of iterations give the optimal solution,
whereas with LSM, 57% of iterations give the optimal solution.

REAL 12: The REAL 12 instance consists of 115 courses
that should be distributed across the 12 semesters/periods. It
consists of the courses from the Bachelor of Technology in
Computer Science integrated with LLB program that is taught
at the University of Petroleum and Energy Studies. The results
show that the optimal solution starts with 30 credits, and after

performing 14 iterations, the optimal solution changes to 26
until the end of the execution when there is no LSM. After
applying the LSM, the optimal solution of 26 comes by per-
forming 13 iterations. Figure 16 depicts the number of itera-
tions required in REAL 12 to find the best solution. Figures 17
and 18 show the distribution of results without LSM and with
LSM, respectively. Without LSM, 62% of iterations give the
optimal solution, whereas with local search mechanism, 71%
of iterations give the optimal solution.

Figure 19 depicts the comparison of all test instances
with LSM and without LSM.

Table 3 shows the comparison of the optimal solution in
discrete firefly algorithm with local search algorithm and
discrete firefly algorithm without local search algorithm.

Table 3 shows that combining the local search strategy
with the discrete firefly method minimizes the number of
iterations required to obtain the best solution. Local optimiz-
ing is used to find the optimal solution for a small region of
the search space, while global optimization is used for pro-
blems that have no local optima. A local optimization
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REAL 10 REAL 10

B Intensity 24 B Intensity 24
B Intensity 25 B Intensity 25
FiIGURE 14: REAL 10 result distribution without local search FiGure 15: REAL 10 result distribution with local search
mechanism. mechanism.
REAL 12
31 -

AN

25 -

24
1 35 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
—— Without local search mechanism

—— With local search mechanism

FIGURE 16: Number of iterations to reach optimal solution in REAL 12.

REAL 12 REAL 12

W Intensity 26 B Intensity 26
B Intensity 27 B Intensity 27

FiGure 17: REAL 12 result distribution without local search FiGuRe 18: REAL 12 result distribution with local search
mechanism. mechanism.
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30 s
25
20
15 -
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BACP 8

BACP 10 BACP 12

B Without local search mechanism
M With local search mechanism

REAL 8 REAL 10 REAL 12

FiGure 19: Comparison of all test instances with LSM and without LSM.

TasLe 3: Comparison of number of iterations required with local
search mechanism and without local search mechanism.

TaBLE 4: Time execution with LSM and without LSM.

Dataset Time of execution (ms)
Dataset Number of iterations With local search Without local search
With local search Without local search mechanism mechanism

mechanism mechanism BACP 8 3,610 4,220
BACP 8 4 6 BACP 10 10,010 13,450
BACP 10 36 41 BACP 12 5,360 7,110
BACP 12 9 12 REAL 8 3,890 4,660
REAL 8 5 8 REAL 10 5,910 6,250
REAL 10 9 11 REAL 12 7,260 7,940
REAL 12 13 14

TasLE 5: Optimum values obtained after multiple iterations.

Solution BACP 8 BACP 10 BACP 12 REAL 8 REAL 10 REAL 12
Best 17 14 18 23 24 26
Medium 17.4 14.6 18.6 24 25 27
Worst 18 15 20 26 27 30
Standard deviation 0.50 0.50 1.02 1.52 1.52 2.08
Optimum 17 14 18 23 24 26

algorithm, also known as a local search algorithm, is one that
seeks out local optima. It is best suited for exploring a certain
portion of the search space and coming near to (or finding
exactly) the function’s extrema in that region. Local search
algorithms usually work on a single candidate solution, iter-
atively making modest modifications to the candidate solu-
tion and assessing the change to determine whether it results
in an improvement and is adopted as the new candidate
solution.

Table 4 shows the time execution with LSM and with-
out LSM.

Table 5 shows the optimized load, medium load, and
worst load. It also shows the standard deviation of all the
values.

6. Conclusion

The BACP sought to organize all modules within a program
at their relevant times while meeting the curriculum’s stan-
dards, the necessary dependence linkages, and the mainte-
nance of term workloads that are balanced. The BACP
planned horizon is split into academic years, which are
subdivided further into semesters. Every semester is a train-
ing process in which coursework can be assigned. The chal-
lenge is to locate a course assignment to a time that meets
specific load limitations and requirements. In this paper, a
DFA is used to find the optimal solution. The experimental
assessment demonstrates the efficacy of artificial fireflies in
solving such difficulties. All of the experiments conducted
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on standard and real data set demonstrates that the DFA with
inbuilt LSM helped to reach optimized solutions in maximum
iterations. In addition, iterations number used to reach the
optimum result are less as compared to the algorithm without
LSM. The proposed algorithm DFA is thus computationally
less expensive and faster. It will be fascinating to explore how
this method performs when confronted with more complex
real-world cases of the problem in the future, as well as to
assess different variations of the approach. In the future, the
complexity of the courses can also be considered for the
proper allocation to the specific periods.
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The open source data used to support the findings of this
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