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Many recipes contain ingredients with various anticancer efects, which can help users to prevent cancer, as well as provide
treatment for cancer patients, efectively slowing the disease. Existing recipe knowledge graph recommendation systems obtain
entity feature representations by mining latent connections between recipes and between users and recipes to enhance the
performance of the recommendation system. However, it ignores the infuence of time on user taste preferences, fails to capture
the dependency between them from the user’s dietary records, and is unable to more accurately predict the user’s future recipes.
We use the KGAT to obtain the embedding representation of entities, considering the infuence of time on users, and recipe
recommendation can be viewed as a long-term sequence prediction, introducing LSTM networks to dynamically adjust users’
personal taste preferences. Based on the user’s dietary records, we infer the user’s preference for the future diet. Combined with the
cancer knowledge graph, we provide the user with diet recommendations that are benefcial to disease prevention and re-
habilitation. To verify the efectiveness and rationality of PPKG, we compared it with three other recommendation algorithms on
the self-created datasets, and the extensive experimental results demonstrate that our algorithm performance performs other
algorithms, which confrmed the efectiveness of PPKG in dealing with sequence recommendation.

1. Introduction

Worldwide, cancer is a major public health problem [1]. Te
fght against cancer is one of the greatest challenges facing
humanity. It is estimated that 30–40% of tumors can be
through the right lifestyle and diet prevention [2]. Dietary
factors are thought to account for approximately 30% of
cancers in Western countries [3]. Te contribution of diet to
the risk of cancer is thought to be low in developing
countries, perhaps around 20% [4]. It has been estimated
that 30–40% of all cancers can be prevented by lifestyle and
dietary measures alone [5]. Promoting physical activity and
healthy diet is important in helping to manage non-
communicable diseases (including cardiovascular disease,
cancer, chronic respiratory disease, diabetes, or mental ill-
ness), burden, and reducing mortality are critical [6].
Knowledge graph techniques are applied to cancer by in-
tegrating structured and unstructured cancer resources to

build a knowledge graph. Query and reasoning capabilities
of knowledge graphs support precision medicine and per-
sonalized treatment design. Bohlscheid-Tomas et al. [7]
developed the food frequency questionnaire of the German
part of the EPIC project, which provided an important basis
for obtaining population diet structure data based on
questionnaires, enabling nutritional epidemiology to more
accurately study the relationship between diet and cancer
risk and promote the development of cancer epidemiology.
Key et al. [8] conducted a systematic review summarizing the
relationship between diet, nutrition, and cancer prevention.
Te review systematically evaluated the impact of diet on
cancer prevention and provided scientifc evidence for diet
and nutrition policies. Daowd et al. [9] discovered implicit
semantic associations from the large-scale biomedical lit-
erature using deep learning techniques and constructed
a causal knowledge graph for chronic diseases and cancer.
Tis provides support for in-depth understanding of disease
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pathogenesis, drug mechanisms of action, and so on, which
is of great signifcance for future knowledge graph con-
struction and personalized medicine. Zhu et al. [10] built an
ovarian cancer knowledge graph by integrating data from
multiple sources and successfully applied the knowledge
graph to complete disease cause analysis and prediction
tasks, providing reference for future applications of KG in
cancer research and clinical practice. Diet and medicated
diet are ideal and efective medical care measures. Diet can
be used for the prevention and treatment of cancer; ap-
propriate diet is helpful to prevent and cure the occurrence
of cancer and promote the improvement of cancer and play
a certain protective role in health. Compared with bitter
drugs, a delicious medicinal diet is easier for patients to
accept and adhere to long-term consumption, especially
suitable for the regulation and treatment of chronic diseases
such as tumor.

Knowledge graph has achieved good results in the
recommendation system, such as in the felds of movies and
music. Knowledge graph can be added as auxiliary in-
formation to the recommendation system to enhance the
representation of items and users, thus improving the ac-
curacy of recommendation. And the recommendation of
recipes has also attracted more and more attention; existing
recipe recommendation systems are generally based on
content or collaborative fltering algorithms to recommend
recipes to users. Freyne and Berkovsky [11] used the content
strategy to simply decompose and construct to associate
recipes and ingredients to achieve high coverage and rea-
sonable accuracy of recommendation. Yuan and Luo [12]
used the k-means clustering algorithm to divide the food set
into multiple nonoverlapping subsets and then used the
user-based collaborative fltering algorithm to recommend
food that the user may like, with an accuracy of more than
70%. Tese recommendation systems ignore the connection
between recipes and between recipes and users, and the
recommendation results often fail to achieve the desired
result. Diferent from the method of recommending recipes
using content-based or collaborative fltering methods, the
relationship information between users, recipes, and food is
rarely explored. In recent years, it has become a mainstream
research direction to integrate knowledge graph as auxiliary
information into the recommendation system to improve
the recommendation performance of the system. Care-
Graph [13] has used knowledge graph to alleviate the cold
start problem, improving the prediction accuracy under
cold start, and the accuracy is 5% higher than the baseline
model. Min et al. [14] proposed a unifed food recom-
mendation framework and determined the main problems
afecting food recommendation, including integrating
various background and domain knowledge graph, con-
structing personal models, analyzing unique food features,
and expounding the research challenges and future di-
rections in the recipe feld.

Huang et al. [15] established a knowledge graph
through a web crawler and constructed a diet knowledge
graph integrating multidomain information by using the
rich semantics of the knowledge graph. Huang et al. [16]
integrated data from diferent sources and formats,

organized extracted knowledge into appropriate repre-
sentations, and proposed a healthy diet knowledge graph
construction model. A better method for knowledge
management in intelligent healthy diet can be provided by
the research model using machine learning and natural
language processing methods. Te user’s personal prefer-
ence is considered in the recommendation system, and the
user’s personal information is used as auxiliary information
to make recommendations. RippleNet [17] considered its
historical interests as a seed set in KG and then iteratively
extended a user’s interests along KG links to discover its
hierarchical latent interests regarding candidates. Rastogi
and Zaki [18] proposed the personal health knowledge
graph to assist the recipe recommendation system and
improve recommendation accuracy. Researchers enhance
the embedding representation of the knowledge graph to
improve the recommendation performance. Yuan et al.
[19] adopted a translation-based model as the knowledge
graph embedding method to learn the embedding repre-
sentation of entities and then introduced these embeddings
into the recommendation module to enrich the expression
of items. Ma et al. [20] established a recommendation
system based on knowledge graph attention to help learn
fne-grained user and recipe embedding by modeling di-
verse user preferences from user behavior.

Some studies have made recommendations by analyzing
potential associations between recipes. Gao et al. [21] pro-
posed a new food recommendation model based on graph
convolutional network (FGCN), which deeply explores the
relationship between ingredients, ingredient recipes, and
user recipes. FGCN adopts the information propagation
mechanism and employs multiple embedding propagation
layers to model the high-order connectivity of diferent food
relations and enhance the representation. Tian Y. et al. [22]
utilized relational information for recipe recommendation
and proposed HGAT, a new hierarchical graph attention
network for recipe recommendation.Temodel can through
several neural network modules capture user historical
behavior, recipe content, and relational information, in-
cluding type-specifc transitions, node-level attention, and
relational-level attention. Lei et al. [23] adopted the method
combining multimodal and hierarchical ideas and con-
structed a knowledge graph considering multiple factors as
the center. It not only considered the potential demands of
users but also excavated the deep relationships between users
and recipes, and between users and recipes. Te authors
proposed a novel multimodal recipe recommendation ap-
proach based on multiaspect node representation and
demand-based multirelational graph structure extraction of
the knowledge graph.

Another approach is to enhance the performance of
recommendation systems through interpretability. Semantic
modeling [24] proposed the Food Explanation Ontology
(FEO) for modeling the explanations of food-related rec-
ommendations for users, which can provide multiple ex-
planations to accurately represent the explanations of food
recommendations while preserving important semantic
details. Y. Chen et al. [25] proposed a new food recom-
mendation problem model, which modeled recipe
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recommendation as a constrained question answering on
a large-scale food knowledge graph and uniformly handled
user dietary preferences and personalized needs of health
guidelines as additional constraints of the QA system.

Li et al. [26] constructed recipe nutrition and user
preference into two knowledge graphs, integrated recipe
nutrition into the task of recipe representation and rec-
ommendation, used knowledge transfer scheme to realize
the transfer of useful semantic information across prefer-
ences and health, and fused the important information of the
two knowledge graphs, thus achieving the goal of recom-
mending both “delicious” and “healthy” food for users.

All the methods proposed above ignored the infuence of
time on users’ taste preferences, and users’ daily recipe
information cannot be extracted from users’ historical diet
records, which may lead to the same recipe being recom-
mended to users several times in a continuous period of
time. Our proposed PPKG model not only provides the user
with healthy recipes but also considers the user’s eating
habits. It meets the personalized demands of users and
recommends satisfactory recipes for users.

Te main contributions of this paper are as follows:

(1) Te recipe recommendation is integrated with the
time factor to fully consider the user’s taste
preference.

(2) We introduced LSTM [27] into the knowledge graph
to dynamically predict the user’s preference and
represent the recommendation in the way of se-
quence prediction to obtain the recipe recommen-
dation that meets the user’s demands.

(3) In order to efectively verify the importance of
recommendation in the time factor, we conduct
extensive experiments on our self-created datasets to
demonstrate the efectiveness of our proposed
PPKG model.

In the following, Section 2 describes the problem for-
malization, Section 3 describes the proposed framework, and
Section 4 presents the experimental setup and analyzes the
results. Finally, there are conclusions in Section 5.

2. Problem Formalization

Te recommendation system requires two types of in-
formation, the attribute information of the items and the
historical dietary records of the users. We use the public
knowledge graph to represent the relationship between
various entities. We defne entities in sets as e ∈ I; the
embedding representation of an entity defned ve ∈ Rd,
where ve is the embedding of entity e and d is the dimension
of the embedding. Te knowledge graph is defned as
G � (h, r, t)|h ∈ ε, r ∈ R, t ∈ ε{ }. Te triplet denotes that
there is a relationship r between the head entity h and the
tail entity t (e.g., bitter gourd, efcacy, and anticancer), and
it denotes that bitter gourd has the efcacy of anticancer,
and explores potential relationships between entities in the
knowledge graph by learning embedding of entities and
relationships. We adopt heterogeneous graphs to represent

diverse nodes and relations. To obtain the embedding for
the current node, we aggregate features from its neighbors
of diferent relation types. Tis heterogeneous architecture
allows efective feature propagation. We construct
a knowledge graph with fve diferent types of nodes and
four diferent types of relationships between them. Ten,
the items of the knowledge graph are mapped to the
recommendation system, and the recommendation result
in the recommendation system is the recipe entity in the
knowledge graph. We use formula (1) to illustrate the task
of the recommendation system:

Ui.item � F(G, Ui), (1)

where the input of function F is knowledge graph G, which
contains various ingredients, recipes, and diseases, and Ui

denotes the personal dietary records of the user i. Te fnal
output is the recipe recommended to the user.

3. Methodology

3.1. Personal Preference Knowledge Graph (PPKG). Our
proposed PPKG model adopts two modules for the rec-
ommendation. Te frst module is the embedding repre-
sentation modeling of users and items, as shown in
Figure 1(a), and the second module is the recommendation
of user taste preferences, that is, the model prediction
module, as shown in Figure 1(b).

In the frst module, we use the KGAT [28] architecture
to learn the embedding representation of the items and we
enhance the representation of the items to achieve more
precise recommendations by representing the features of
each node in the knowledge graph with message-passing
and update functions. In the recommendation module, it
is also necessary to consider the infuence of time on users’
taste preferences. After obtaining entity embeddings in the
knowledge graph, we incorporate an LSTM network. Tis
captures users’ dietary habits from their historical dietary
records. Ten, we predict recipes which users may like
based on their habit model. Ultimately, the recommended
recipes will better match users’ taste preferences.

3.2. User and Item Embedding Modeling Module. In this
section, we embed the users and entities in the knowledge
graph, as shown in Figure 2. We consider that each recipe in
the recipe knowledge graph has a variety of diferent
therapeutic efects, and each efect can treat diferent
symptoms. Te recipe can be aggregated into therapeutic
efect features, symptom features, and ingredients from
diferent surrounding nodes. Te feature representation of
the current recipe is obtained. We adopt the TransR [29]
algorithm to embed the structured information of entities
and their rich relationships in the knowledge graph. We
update the current node feature by combining the in-
formation of the surrounding nodes, as shown in the fol-
lowing equation:

h
(l)
i � ρ e

(l+1)
j : j ∈ N(i)  , (2)
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where N(i) denotes the set of neighbor nodes connected to
the node i, ρ denotes the aggregation function on sur-
rounding nodes, and h

(l)
i denotes the hidden feature rep-

resentation at the l-th layer of the node i.
Ten, we fuse the hidden features of l-th layer and the

feature representation of (l+ 1)-th layer of the node i, as
shown in the following formula:

e
(l)
i � ϕ h

(l)
i , e

(l+1)
i , (3)

where e
(l)
i denotes the feature representation at the l-th layer

of the node i, e
(l+1)
i denotes the feature representation at

(l+ 1)-th layer of the node i, and ϕ denotes the aggregation
mode of the node i. Here, we can choose three types of
aggregators:

GCN aggregator is as follows [30]:

ϕGCN � LeakyReLU W hi
(l)

+ ei
(l+1)

  , (4)
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Figure 1: Illustration of the proposed PPKG.
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where LeakyReLU [31] is used as the activation function, W

is the weight matrix, hi
(l) is the hidden feature of the node l-

th layer, and ei
(l+1) is the feature representation of the node

(l+ 1)-th layer.
GraphSage aggregator is as follows [32]:

ϕGraphSage � LeakyReLU W hi
(l)

ei
(l+1)

�����  , (5)

where ‖ denotes the concatenation operation.
Bi-interaction aggregator is as follows [28]:

ϕBi−interaction � LeakyReLU W1 hi
(l)

+ ei
(l+1)

   + LeakyReLU W2 hi
(l) ⊙ ei

(l+1)
  , (6)

where W1 and W2 denote the weight parameter matrix and
⊙ denotes the multiplication of the corresponding position
elements of the matrix. We aggregate the features of the
surrounding nodes into the hidden layer and then update the
embedding with the features of the previous layer of node i,
and fnally obtain the fnal representation of the features of
the current layer of node i. In this way, recipe nodes are able
to get information transmitted from symptoms and efcacy
and get richer feature representations. In the triplet of the
knowledge graph, the relationship between each entity are
defned as following formula:

φ(h, r, t) � ‖h + r − t‖
2
2,

φ h, r, t
′

  � h + r − t
′

�����

�����
2

2
,

(7)

where (h, r, t) denotes the true triplet, (h, r, t′) denotes the
triplet sampled from the negative sample, and φ(h, r, t)

denotes the credibility score of the triplet, which is between
0 and 1, and close to 1 indicates high credibility between the
triplet.

Trough the interactive relationship between users and
items, the relationship between ui and itemi is formulated as
follows:

η �
δ ui, i( , i ∈ i

+
j ,

δ ui, i( , i ∈ i
−
j ,

⎧⎨

⎩ (8)

where ui denotes the user i, i+j denotes the recipe sets that the
user likes, i−j denotes the recipe sets that the user does not
like, δ denotes the function of the inner product of user and
item representations, and η denotes the score between the
user and the entity, which is between 0 and 1, and close to 1
indicates that ui likes itemi more.

3.3. Model Prediction Module. In Section 3.2, we model the
interaction between users and items and the relationship
between items and entities in the knowledge graph. After
obtaining the embedding representations for each item, we
incorporate temporal factors in the user’s history. We
represent each recipe in the user’s diet history with its entity
embedding from the knowledge graph. Te temporal ele-
ment enables modeling the evolution of user preferences. As
shown in Figure 3, the historical dietary records are taken as
input, and LSTM is used to extract the long-term de-
pendencies between dietary records, and the output is ob-
tained through LSTM, which is formulated as follows:

] � LSTM ui, G( , (9)

where ] denotes the output of the LSTM, ui denotes the
historical dietary records of the user i, and G denotes the
embedded representation of each entity in the recipe
knowledge graph.

As shown in Figure 4, we concatenate the output vectors
of the LSTM through the connection operation, took them as
the input of the fully connected layer, and then extract all the
features through the fully connected layer, which is for-
mulated as follows:

χ � concate(]),

πi � f ωi · χ + bi( ,
(10)

where χ denotes the input of the i-th hidden layer, f denotes
the RELU [33] activation function, ωi denotes the weight
parameter of the i-th hidden layer, bi denotes the bias pa-
rameter of the i-th hidden layer, and πi is the output of the i-
th hidden layer. Finally, features extracted from the full-
connection layer are classifed by softmax logistic regression
to obtain the user’s future dietary prediction result, as shown
in the following equation:

y � ρ πn( , (11)

where ρ denotes softmax logistic regression function, πn

denotes the output of the last layer of the full-connection
layer, and y denotes the recipe classifcation probability by
softmax.

3.4. Optimization. We adopt BPR [34] to optimize the
model, making the scores between positive and negative
samples could be as large as possible so that user ui and user’s
preference e+

i were higher than e−
i . We train the embedding

representation of users and items as follows:

L1 � 
ui ,e+

i
,e−

i

−ln σ δ e+
i , ui(  − δ e−

i , ui( (  + λ‖θ‖
2
2, (12)

where ui represents the user ui, e+
i represents the user’s

favorite recipes, and e−
i represents the user’s disliked recipes.

σ(·) is the softplus function, and the L2 regularization pa-
rameter makes the model prefer smaller weights, which
reduces the complexity of the model and prevents
overftting.

We optimize the triplet representation in the knowledge
graph as follows:
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L2 � 

h,r,t,t′( )∈G

−ln σ(f(h, r, t) − f(h, r, t′)) + λ‖θ‖
2
2, (13)

where (h, r, t, t′) ∈ G denotes training sets, G denotes recipe
knowledge graph, h denotes head entity, t denotes positive
sample tail entity, t′ denotes negative sample tail entity, and
r denotes the relationship between the head entity h and the
tail entity t.

We adopt cross entropy as a loss function to optimize the
model, which is formulated as follows:

L3 � − 
i

y′ log yi( , (14)

where y′ denotes the true labels in the training set and yi

denotes the corresponding component in the output vector
of the model normalized by softmax. When the classifcation
is more accurate, the component corresponding to yi will be
closer to 1, and thus the L3 loss will be smaller.

4. Experiments

We conducted extensive experiments on the datasets to
answer the following research questions:

RQ1: How does PPKG perform compared to other food
recommendation methods?

RQ2:Howdo diferent components (namely,model depth
and aggregator selection) afect the efectiveness of PPKG?

RQ3: What are the key hyperparameters of PPKG?
How does it afect the performance of PPKG?

In the following, we will describe the datasets and exper-
imental settings and then answer the above research questions.

4.1. Dataset. We crawled recipe websites (https://www.ca39.
com/2010/0410/29850.html) and extracted information
from textbooks [35–37] to build knowledge graph datasets of

dietary records of ui

ht

Ct X

σ Tanh

Ct+1

X

Xσ σ

σ

+

Figure 3: Illustration of LSTM layer.
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Figure 4: Illustration of fully connected layers.
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recipes.We used libraries such as BeautifulSoup in Python to
parse web content and extracted recipe names, ingredients,
and efects. We used a rule-based method to identify dis-
eases, symptoms, ingredients, and efects in recipes as well as
their relationships. We defned rules based on common
vocabulary and grammar patterns, such as “benefcial for
disease xx,” “alleviate symptom xx,” and “contain ingredient
xx.”

We performed data cleaning and preprocessing on the
collected cancer knowledge. We conducted name normal-
ization for some entities, such as replacing synonyms or
related terms with a uniform standard name, such as
replacing “Gastric Carcinoma,” “Gastric Cancer,” “Stomach
Cancer,” and “Gastric Carcinoma.” Te identifed entities
and relationships were manually reviewed and corrected by
a professional physician to ensure the quality and accuracy
of the dataset. And we construct the knowledge graph by
transforming illness, recipes, symptoms, ingredients, and
efcacy into fve types of nodes, respectively. After that, we
build four types of edges between these nodes to connect
them. We connect each node with the corresponding edge,
and the weight of each component is used as the edge weight.
We take the triplet with relations between entity nodes as
positive samples and then randomly select an entity to re-
place the tail entity to form the triple as negative samples.

To evaluate the efectiveness of PPKG on recipe rec-
ommendations, we used two widely used recommendation
evaluation measures: Recall and NDCG.

4.1.1. Baseline Algorithms. To verify the validity of our
model, we adopted the following baseline for verifcation:

BPRMF [34]. A personalized ranking method is based
on factorization. It is one of the most advanced
methods of recommending implicit feedback data for
nonsequential items.
CKE [38]. A typical regularization-based approach
leverages TransR-derived semantic embedding to en-
hance matrix factorization.
CFKG [39]. Te model applies TransE on a unifed
graph including users, items, entities, and relationships
and transforms the recommendation task into the
credibility prediction of triplet (u, interact, i), where u
denotes user, i denotes item, and interact denotes user
interaction with the item.

4.1.2. Parameter Settings. We implemented our model on
TensorFlow. We set the embedding dimension of the
knowledge graph of the model as 32, the number of hidden
neurons of LSTM as 32, and the learning rate as 0.0001. We
search the number of LSTM layers in [1–5], the input length
of the user’s LSTM dietary records is tuned among [5–9],
and the embedding regularization parameters of users and
items are fne-tuned in [1e−6; 1e−5; 1e−4; 1e−3; 1e−2; 1e−1].
Trough extensive experiments, we fnd that the model

achieves the best performance when the number of LSTM
layers equals 2, the length of dietary records equals 9, and the
regularization parameter is set as 1e−3.

4.2. Model Comparison (RQ1). To investigate the efective-
ness of our proposed approach (PPKG), we studied the
performance of PPKG compared to the baseline above.
Table 1 shows the performance comparisons. By analyzing
the results, we draw the following conclusions.

(1) Te traditional collaborative fltering recommenda-
tion method (BPRMF) does not perform well be-
cause it does not consider the hidden relationship
information or the relationship between each recipe.

(2) Our proposed PPKG achieves the best performance
in both evaluation metrics. Tis result verifes the
merits of our proposed model.

(3) PPKG is better than other models (CKE and CFKG)
in two evaluation indexes, which demonstrate that
information propagation mechanism and multilayer
architecture of GAT are more efective. Te graph
attention and multistep propagation in GAT better
capture feature representations, enhancing the rec-
ommendation algorithm.

(4) PPKG achieves the best performance in the baseline,
which demonstrates that LSTM can efectively en-
hance recipe recommendations. By incorporating
LSTM into the recommendation algorithm, we can
improve recipe recommendation performance.

To evaluate the ranking performance of FGCN, we
present the performance of Top-N food recommendations in
Figure 5, where the ranking positions vary from 5 to 20.
Obviously, PPKG consistently outperforms other bench-
marks on recall and NDCG metrics. It verifed the efec-
tiveness of PPKG on serialization recommended time.

4.3. Study of PPKG (RQ2)

4.3.1. Efect of Model Depth. We investigated whether the
model could be improved from multiple layers of LSTMs by
varying the number of layers of LSTMs in the PPKG. We
vary the number of layers in [1–5]. Table 2 shows the
performance of PPKG at diferent layers, where PPKG-1
denotes that there is one layer of the LSTM network in the
model. From Table 2, we can observe that

(1) Adding LSTM layers can efectively improve the
performance of PPKG, and PPKG-2 and PPKG-3 are
always better than PPKG-1 in two evaluation met-
rics, which indicates that adding LSTM layers can
efectively extract temporal information from users’
dietary records.

(2) When layers of PPKG-3 are further stacked, we fnd
that performance degrades quickly, such as PPKG-4
and PPKG-5.Te experiment results show that when
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the model layer is overmuch, it may introduce noise
into modeling, which can easily lead to excessive
proposed merger-degraded performance.

To investigate self-representation and neighbor repre-
sentation, we conduct experiments on three aggregation
methods of PPKG (cf. Section 3.2) to study the performance
efect of diferent aggregators on PPKG: PPKGBi, PPKGGCN,
and PPKGGraphsage. Table 3 summarizes the performance of
the three variations of PPKG. From Table 3, we obtain that
PPKGGraphsage is signifcantly better than PPKGBi and
PPKGGCN on both metrics. We analyze that the information
transfer framework can aggregate the information of higher-
order neighbors and can efectively learn the embedding
representation of the node by aggregating the information of
the node’s neighbors. It has a better efect in performing
information aggregation and propagation feature
interaction.

4.3.2. Efect of Aggregators in Ingredient Graph. To in-
vestigate the efectiveness of aggregators in knowledge
graphs, we conducted experiments on two variants of PPKG.
Table 4 summarizes the efects of diferent aggregators in the
knowledge graph, PPKGsum and PPKGuni, on the perfor-
mance of PPKG.

From Table 4, we observe that PPKGsum always out-
performs PPKGuni. Tis is because the sum operation in
PPKGsum connects the individual features. Te connections
enhance the efectiveness of the PPKGsum model.

4.4. Parameter Sensitivity (RQ3). In this section, we in-
vestigate the efect of hyperparameters on the performance
of the proposed PPKG. We vary the regularization term λ in
(1e−6; 1e−5; 1e−4; 1e−3; 1e−2; 1e−1). Figure 6 shows the model’s
performance when regularization parameters are adjusted.
We observe that

(1) PPKG performed better than CFKG on both mea-
sures; PPKG is more efective on recipe
recommendations.

(2) Te performance of PPKG and CFKG decreases
rapidly when λ is larger than 1e-3. Te results show
that proper setting regularization parameter λ is
critical for enhancing model performance. Tis is
because improper set λ weights lead to insufcient

regularization or deviation of the objective function.
When the weight is too small, it fails to provide
adequate regularization, resulting in overftting,
whereas excessively large weights skew the objective
function heavily towards the regularization term,
failing to properly capture user-recipe relevance and
deteriorating the model’s predictive performance.

As shown in Figure 7, model performance frst increases
then decreases as embedding dimension d grows. When
dimension is small (d� 16), increasing dimension can en-
hance the representation capability and encode more feature
information, thus improving performance. However, when
d continues growing (d� 64), the increased model com-
plexity may lead to overftting and therefore performance
drops. Appropriately increasing d can improve the model’s
expressiveness and generalization, but excessively large
d causes overftting.

4.5. Case Study. In this section, we evaluate in detail the
model’s recommendations for patients with diferent can-
cers, as shown in Figure 8.

Recommendations for Lung Cancer Patients. For lung cancer
patients with pain, the model recommends bitter gourd with
fve favors. Te PPKG model utilizes the features of the
user’s lung cancer, matches food ingredients with blood
circulation promotion and pain relief efects, and fnally
generates recipes for lung cancer patients with pain.
Trough the connections between bitter gourd and efcacy
nodes, the model obtains the feature of blood circulation
promotion. Bitter gourd is connected with ingredients’
nodes to get its feature. Te model calculates the similarity
between lung cancer patients and bitter gourd and fnally
recommends bitter gourd with fve favors to lung cancer
patients. Bitter gourd can promote blood circulation and
relieve pain, so bitter gourd with fve favors can provide
nutrition and alleviate symptoms for these lung cancer
patients.

Recommendations for Patients with Gastric Carcinoma. For
stomach cancer patients with pain, the model recommends
chicken soup with garlic. For stomach cancer patients with
pain, the PPKG model identifes recipes containing in-
gredients with anticancer and blood pressure lowering ef-
fects based on the user’s condition. Garlic has anticancer and
blood pressure lowering efects. Te model fnds related
recipes through this ingredient. Terefore, chicken soup
with garlic is suitable to relieve discomfort for stomach
cancer patients with pain.

Trough these specifc case studies, the applicability of
the model recommendation results to diferent cancer pa-
tients can be more intuitively checked and the actual efect of
the model can be evaluated.

Table 1: Performance of compared methods.

Methods Recall@10 NDCG@10
BPRMF 0.04758 0.06210
CKE 0.05176 0.06491
CFKG 0.05416 0.07076
PPKG 0.07213∗ 0.08902∗

8 European Journal of Cancer Care



0.02

0.04

0.06

0.08

0.10

0.12

Re
ca

ll@
10

10 15 205
N

PPKG
CFKG

CKE
BPRMF

PPKG
CFKG

CKE
BPRMF

0.04

0.06

0.08

0.10

0.12

0.14

N
D

CG
@

10
10 15 205

N

Figure 5: Performance of top-N food recommendation.

Table 2: Efect of LSTM layer numbers.

Recall@10 NDCG@10
PPKG-1 0.06290 0.07485
PPKG-2 0.07213∗ 0.08902∗

PPKG-3 0.06808 0.07945
PPKG-4 0.05783 0.07277
PPKG-5 0.05227 0.06314

Table 3: Efect of aggregators for ego representations and neighbor representations.

Aggregator Recall@10 NDCG@10
PPKGBi 0.04758 0.06062
PPKGGCN 0.06100 0.07630
PPKGGraphSage 0.07213∗ 0.08902∗

Table 4: Efect of aggregators in the ingredient graph.

Aggregator Recall@10 NDCG@10
PPKGuni 0.06123 0.08166
PPKGsum 0.07213∗ 0.08902∗
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Figure 6: Performance of PPKG regarding Recall@10 and NDCG@10 as adjusting the strength of regularization.
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5. Conclusion

In our works, we use the GATframework to obtain the entity
embedding representation of users, symptoms, recipes, in-
gredients, and efcacy in the knowledge graph and then take
the historical dietary records of users as the input of LSTM to
mine the potential connections in the user’s dietary records.
Recipe recommendation is regarded as a multiclassifcation
problem. Te output of LSTM is passed through the fully
connected layer and then output through the softmax
function, the full-connection layer is used to extract the
features from the output of LSTM, and fnally the prediction
probability of each recipe is obtained by the softmax
function. Extensive experiments demonstrate that PPKG
outperforms many baseline methods.

Due to the limited knowledge sources, the cancer knowledge
graphmay still be incomplete and inaccurate.Wewill discuss the
importance of continuously updating the knowledge graph in
the future to dynamically refne it and ensure up-to-date and
reliable knowledge. Considering the impacts of diferent cancer
stages on diet recommendation, we will specify the highly
customized nature of cancer diet in the future and discuss the
efects of disease stage factors on the model. In our future work,
we plan to leverage users’ personal information in two aspects:
frst, incorporate user data to enhance user-recipe embedding
representations. Second, improve recipe recommendation by
aggregatingmore information and increasing diversity.Te goal
is to provide users with more comprehensive and healthier
recipe recommendations tailored to their needs.
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QuinlandQ/Knowledge-Graph-Recommendation accessed
on 30 May 2023.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

Jianchen Tang contributed to development or design of
methodology, creation of models, programming and soft-
ware development, implementation of the computer code
and supporting algorithms, and testing of existing code
components. Bing Huang contributed to scrub data and
maintain research data for initial use and later reuse.
Mingshan Xie contributed to ideas and formulation or
evolution of overarching research goals and aims.

Acknowledgments

Tis work was supported in part by the National Natural
Science Foundation of China (grant no. 62266010), in part
by the cultivation project of Guizhou University (grant no.
[2019]57), in part by the research project of Guizhou
University for talent introduction (grant no. [2019]31), in
part by the higher education research project of Guizhou
University (grant no. GDGJYJ2020014), and in part by the
frst-class curriculum cultivation project of Guizhou Uni-
versity (grant no. XJG2021023).

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,” CA:
A Cancer Journal for Clinicians, vol. 69, no. 1, pp. 7–34, 2019.

[2] W. C. Willett, “Diet and cancer,”Te Oncologist, vol. 5, no. 5,
pp. 393–404, 2000.

[3] R. Doll and R. Peto, “Te causes of cancer: quantitative es-
timates of avoidable risks of cancer in the United States to-
day,” Journal of the National Cancer InstituteJournal of the
National Cancer Institute, vol. 66, no. 6, pp. 1192–1308, 1981.

Astringent
hemostasis 

Lung
CancerBitter

gourd 

Garlicu1

u2

Bitter
gourd

with five
flavors

Chicken
soup with

garlic

Detoxify
and

reduce
swelling

Anti-
cancer

Hypote
-nsive

Gastric
Carcino

ma

Figure 8: Personalized recipe recommendations for patients with cancer.

European Journal of Cancer Care 11

https://github.com/QuinlandQ/Knowledge-Graph-Recommendation
https://github.com/QuinlandQ/Knowledge-Graph-Recommendation


[4] P. Greenwald, C. K. Cliford, and J. A. Milner, “Diet and
cancer prevention,” European Journal of Cancer, vol. 37, no. 8,
pp. 948–965, 2001.

[5] M. S. Donaldson, “Nutrition and cancer: a review of the
evidence for an anti-cancer diet,” Nutrition Journal, vol. 3,
no. 1, pp. 1–21, 2004.

[6] G. McKeon, E. Papadopoulos, J. Firth et al., “Social media
interventions targeting exercise and diet behaviours in people
with noncommunicable diseases (NCDs): a systematic re-
view,” Internet interventions, vol. 27, Article ID 100497, 2022.

[7] S. Bohlscheid-Tomas, I. Hoting, H. Boeing, and
J. Wahrendorf, “Reproducibility and relative validity of food
group intake in a food frequency questionnaire developed for
the German part of the EPIC project. European Prospective
Investigation into Cancer and Nutrition,” International
Journal of Epidemiology, vol. 26, no. 90001, pp. S59–S70, 1997.

[8] T. J. Key, A. Schatzkin, W. C. Willett, N. E. Allen,
E. A. Spencer, and R. C. Travis, “Diet, nutrition and the
prevention of cancer,” Public Health Nutrition, vol. 7, no. 1a,
pp. 187–200, 2004.

[9] A. Daowd, M. Barrett, S. Abidi, and S. S. R. Abidi, “A
framework to build a causal knowledge graph for chronic
diseases and cancers by discovering semantic associations
from biomedical literature,” in Proceedings of the 2021 IEEE
9th International Conference on Healthcare Informatics
(ICHI), pp. 13–22, IEEE, Victoria, Canada, August 2021.

[10] C. Zhu, Z. Yang, X. Xia, N. Li, F. Zhong, and L. Liu, “Mul-
timodal reasoning based on knowledge graph embedding for
specifc diseases,” Bioinformatics, vol. 38, no. 8, pp. 2235–
2245, 2022.

[11] J. Freyne and S. Berkovsky, “Recommending Food: Reasoning
on Recipes and ingredients,” International Conference on User
Modeling, Adaptation, and Personalization, Springer, Berlin,
Heidelbergpp. 381–386, 2010.

[12] Z. Yuan and F. Luo, “Personalized diet recommendation
based on K-means and collaborative fltering algorithm,”
Journal of Physics: Conference Series, vol. 1213, no. 3, Article
ID 032013, 2019.

[13] S. Tangruamsub, K. Kappaganthu, J. O’Donovan, and
A. Madan, “CareGraph: a graph-based recommender system
for diabetes self-care,” 2021, https://openreview.net/forum?
id=rX3rZYP8zZF.

[14] W. Min, S. Jiang, and R. Jain, “Food recommendation:
framework, existing solutions, and challenges,” IEEE Trans-
actions on Multimedia, vol. 22, no. 10, pp. 2659–2671, 2020.

[15] B. Huang, X. Shi, R. Wang, C. Wang, and Y. Han, “A novel
recipes recommendation system based on knowledge-graph,”
in Proccedings of the 2022 7th international conference on
intelligent computing and signal processing (ICSP), pp. 1408–
1412, IEEE, Xi’an, China, April 2022.

[16] L. Huang, C. Yu, Y. Chi, X. Qi, and H. Xu, “Towards Smart
Healthcare Management Based on Knowledge Graph tech-
nology,” in Proceedings of the 2019 8th International Con-
ference on Software and Computer Applications, pp. 330–337,
Penang, Malaysia, February 2019.

[17] H. Wang, F. Zhang, J. Wang et al., “Ripplenet: propagating
user preferences on the knowledge graph for recommender
systems,” in Proceedings of the 27th ACM International
Conference on Information and Knowledge Management,
pp. 417–426, Torino, Italy, October 2018.

[18] N. Rastogi and M. J. Zaki, “Personal health knowledge graphs
for patients,” 2020, https://arxiv.org/abs/2004.00071.

[19] Y. Yuan, Y. Tang, L. Du, and X. Li, “Entity2item: leveraging
knowledge graph embedding for item recommendation,” in
Proceedings of the 2021 international joint conference on
neural networks (IJCNN), pp. 1–7, IEEE, Shenzhen, China,
July 2021.

[20] X. Ma, Z. Gao, Q. Hu, and M. Abdelhady, “Contrastive
knowledge graph attention network for request-based recipe
recommendation,” in Proceedings of the ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3278–3282, IEEE, Singapore, May
2022.

[21] X. Gao, F. Feng, H. Huang, X. L. Mao, T. Lan, and Z. Chi,
“Food recommendation with graph convolutional network,”
Information Sciences, vol. 584, pp. 170–183, 2022.

[22] Y. Tian, C. Zhang, R. Metoyer, and N. V. Chawla, “Recipe
recommendation with hierarchical graph attention network,”
Frontiers in big Data, vol. 4, Article ID 778417, 2021.

[23] Z. Lei, A. Ul Haq, A. Zeb, M. Suzauddola, and D. Zhang, “Is
the suggested food your desired?: multi-modal recipe rec-
ommendation with demand-based knowledge graph,” Expert
Systems with Applications, vol. 186, Article ID 115708, 2021.

[24] I. Padhiar, O. Seneviratne, S. Chari, D. Gruen, and
D. L. McGuinness, “Semantic modeling for food recom-
mendation explanations,” in Proccedings of the 2021 IEEE 37th
international conference on data engineering workshops
(ICDEW), pp. 13–19, IEEE, Chania, Greece, April 2021.

[25] Y. Chen, A. Subburathinam, C. H. Chen, and M. J. Zaki,
“Personalized food recommendation as constrained question
answering over a large-scale food knowledge graph,” in
Proceedings of the 14th ACM International Conference onWeb
Search and Data Mining, pp. 544–552, Jerusalem, Israel,
August 2021.

[26] D. Li, M. J. Zaki, and C. Chen, “Health-guided recipe rec-
ommendation over knowledge graphs,” Journal of Web Se-
mantics, vol. 75, Article ID 100743, 2023.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] X. Wang, X. He, Y. Cao, M. Liu, and T. S. Chua, “Kgat:
knowledge graph attention network for recommendation,” in
Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 950–958,
Anchorage, AK, USA, July 2019.

[29] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion,”
Proceedings of the AAAI Conference on Artifcial Intelligence,
vol. 29, no. 1, 2015.

[30] T. N. Kipf and M. Welling, “Semi-supervised classifcation
with graph convolutional networks,” 2016, https://arxiv.org/
abs/1609.02907.

[31] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifer non-
linearities improve neural network acoustic models,” Proc.
icml, vol. 30, no. 1, p. 3, 2013.

[32] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” Advances in Neural In-
formation Processing Systems, vol. 30, 2017.

[33] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifer
neural networks,” in Proceedings of the fourteenth in-
ternational conference on artifcial intelligence and statistics,
pp. 315–323, Singapore, August 2011.

[34] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Tieme, “BPR: bayesian personalized ranking from implicit
feedback,” 2012, https://arxiv.org/abs/1205.2618.

12 European Journal of Cancer Care

https://openreview.net/forum?id=rX3rZYP8zZF
https://openreview.net/forum?id=rX3rZYP8zZF
https://arxiv.org/abs/2004.00071
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1205.2618


[35] M. Chang, KangAiYaoShan, Hunan Science and Technology
Press, Beijing, China, 1996.

[36] L. Xu and J. Lu, 100 Kinds of Anti-cancer Medicinal Diet,
People’s Medical Publishing House, Beijing, China, 2014.

[37] M. Chang, Practical Anti-cancer Medicinal Diet, China
Medical Science and Technology Press, Beijing, China, 2014.

[38] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Y. Ma, “Col-
laborative Knowledge Base Embedding for Recommender
systems,” in Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, pp. 353–362, San Francisco, CA, USA, August 2016.

[39] Y. Zhang, Q. Ai, X. Chen, and P. Wang, “Learning over
knowledge-base embeddings for recommendation,” 2018,
https://arxiv.org/abs/1803.06540.

European Journal of Cancer Care 13

https://arxiv.org/abs/1803.06540



