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Background. Circadian rhythm disruption involves tumorigenesis and tumor progression. However, the infuences of circadian
rhythm on the tumor microenvironment (TME) and the prognosis of hepatocellular carcinoma (HCC) are unknown. Methods.
Bulk RNA-seq and single-cell RNA-seq from TCGA, ICGC, and GEOwere used to comprehensively identify prognostic circadian
control cells and circadian rhythm associated genes (CRRGs) using R and Python packages. Besides, the circadian rhythm-related
prognostic signature was identifed and validated. Te biological function, immune infltration, and therapeutic response as-
sociated with circadian rhythm-related (CR) risk were detected. Results. A total of 252 diferentially expressed CRRGs in HCC
were identifed, and HCC with a high CR score revealed poor survival. We annotated 11 major cell types in TME; immune cells
(B cells, myeloid, CD4+ cells, CD8+ cells, NK cells, Tregs) with high CR score, and hepatocyte, bio-potent cells, fbroblasts, and
endothelial cells with low CR score were identifed. Moreover, fve CRRGs (RPL29, PFKFB3, RPS7, SLC6A6, and RPLP2) were
selected and validated as the prognostic signature in HCC. Te risk score was calculated based on the prognostic signature, and
patients then were divided into high-risk and low-risk groups according to themedian value of the risk score. High risk is linked to
several metabolism-related pathways and canonical cancer-related pathways and is negatively associated with immunotherapeutic
responses and positively associated with some chemotherapeutic drugs. Conclusion. Our fnding provides the novel circadian
rhythm-related prognostic signature and represents a novel viable “time-dependent” therapeutic option for HCC treatment.

1. Introduction

Hepatocellular carcinoma (HCC) stands as one of the most
prevalent malignant liver cancers, accounting for 75%–85%
of cases and ranking as the fourth leading cause of cancer-
related deaths globally [1]. Hepatitis B virus (HBV) or
hepatitis C virus (HCV) infection, afatoxin-contaminated
food, high alcohol consumption, smoking, obesity, non-
alcoholic fatty live disease (NAFLD), and type 2 diabetes are
the main risk factors that contribute to HCC development
[2, 3]. Over the past decade, advancements in HCC

management have signifcantly improved the overall sur-
vival and quality of life for patients [4]. Commonly, patients
with early-stage HCC are often considered for surgical re-
section or transplantation. Tose in the intermediate stage
typically undergo the standard of care, involving trans-
arterial chemoembolization. For patients in the advanced
stage, systemic therapies with frst-line and second-line
drugs, such as atezolizumab (anti-PD-L1 antibody), bev-
acizumab (anti-VEGF antibody), sorafenib, and lenvatinib
(tyrosine kinase inhibitors, TKIs), are accepted treatment
options [5]. However, there are limited clinical benefts
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because of the frequent development of resistance [6]. Te
tumor microenvironment (TME) of HCC is a complex and
structured mixture characterized by abnormal angiogenesis,
chronic infammation, and dysregulated extracellular matrix
(ECM) remodeling, which contribute to the hypoxia, im-
munosuppressive, and acidic microenvironment [7, 8]. Te
complex TME mediates the aggressive tumorigenesis, me-
tastasis, therapeutic resistance, immune evasion, and re-
currence of HCC [8–10]. Terefore, exploring the molecular
mechanisms in the regulation of TME of HCC and then
identifying novel therapeutic strategies that improve survival
are the next major challenges in HCC.

Te circadian clock is a complex cellular mechanism that
sustains self-perpetuating oscillations with a 24-hour peri-
odicity to control several cyclic physiological processes, and
disrupting circadian rhythm results in numerous physio-
logical disorders and diseases, including cancer [11, 12].
Emerging evidence has demonstrated that circadian clock-
control metabolism is a hallmark of cancer, and circadian
rhythm can be found as the novel therapeutic target [13–16].
Circadian rhythm plays a pivotal role in tumorigenesis and
tumor progression by orchestrating various biological
processes within cancer cells. Tese processes include cell
proliferation, apoptosis, DNA repair, and metabolism. In
addition, circadian rhythm infuences the TME by shaping
the cellular properties and interactions among various
components, such as tumor-associated macrophages
(TAMs), myeloid-derived suppressor cells (MDSCs), neu-
trophils, dendritic cells, T cells, natural killer (NK) cells,
cancer-associated fbroblasts (CAFs), and endothelial cells
[17, 18]. Given the tissue-specifc properties of circadian
clocks, the liver serves as a physiological hub for circadian
regulation [19, 20]. Te dysfunction of the hepatic circadian
clock is implicated in the regulation of various liver func-
tions, encompassing synthetic and metabolic processes re-
lated to glucose, lipids, bile acids, amino acids, and more
[21]. Te circadian clock genes contribute to tumor growth
and aggressive [20, 22, 23]. Alterations of the circadian clock
genes are associated with the prognosis of HCC patients
[24]. Te abovementioned evidence has demonstrated that
circadian rhythm plays an important role in
hepatocarcinogenesis.

In the present study, we integrated the single-cell RNA-
seq (scRNA-seq) data and bulk RNA-seq data to compre-
hensively identify the prominent cell types and elucidate the
cell-to-cell communication in TME that was infuenced by
circadian rhythm. Moreover, selecting the prognostic cir-
cadian rhythm-related genes (CRRGs) based on scRNA-seq
data and bulk RNA-seq data analyses to construct a risk
model for survival prediction and the biological functions,
immune infltration characteristics, and therapeutic re-
sponses associated with CR-risk score were investigated. Our
fnding elucidated the TME characteristics by circadian
rhythm infuences and provided novel potential therapeutic
options for HCC treatment.

2. Materials and Methods

2.1. Data Acquisition and Processing. Te mRNA expression
data and corresponding clinical profles of 369 HCCs in the
TCGA-LIHC cohort, 232 HCCs in the LIRI-JP cohort, and
221 HCCs in the GSE14520 cohort were downloaded from
Te Cancer Genome Atlas (TCGA, https://www.cancer.gov/
ccg/research/genome-sequencing/tcga), International Can-
cer Genome Consortium (ICGC, https://dcc.icgc.org/), and
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/). As well as the single-cell RNA-seq (scRNA-
seq) data of the GSE156625 cohort was obtained from the
GEO database. A total of 85 circadian rhythm-related genes
(CRRGs) were downloaded from the PathCards in Gene-
Cards (https://pathcards.genecards.org/) (Table S1).

2.2. Screening the Diferentially Expressed Circadian Rhythm-
Related Genes (CRRGs). “Limma” package in R [25] was
performed to screen the diferentially expressed genes
(DEGs) between HCCs and nontumors with the thresholds
of |log2 (fold change, FC)|> 0.585 and P value of <0.05. Te
CRRGs further were identifed by overlapping the DEGs and
85 CRRGs.

2.3. Calculating the CR Score. CR score for each sample in
the TCGA-LIHC cohort was calculated using single-sample
gene set enrichment analysis (ssGSEA) through the “GSVA”
package in R [26]. Te “survminer” package in R [27] was
performed to select the optimal cutof value according to the
CR score of each sample, the survival time, and the survival
status. Te patients were divided into high- and low-CR
score groups according to the optimal cutof value. Te
overall survival analysis was performed between high- and
low-CR score groups.

2.4. Construction of a Weighted Gene Coexpression Network
Analysis (WGCNA). Te “WGCNA” package in R was used
to construct a coexpression network and identify the CR
score-related modules and genes [28]. Te samples in the
TCGA-LIHC cohort were normalized, and the outlier
samples were removed. Te soft threshold power (β) was
selected to ensure the network was scale-free, and the genes
in the frst quartile of variance were calculated by a power
function. Te adjacency matrix was then transformed into
a topological overlap matrix (TOM), and the corresponding
dissimilarity (1-TOM) also was calculated. Te dynamic
tree-cut method was used to identify the module by hier-
archically clustering genes. A deepSplit value of 2 and
a minimum size cutof of 30 were selected as the distance
measure for constructing the dendrogram. Te signifcant
modules were screened based on the correlation between CR
score and modules by Pearson’s correlation test. Te gene
expression profles with module eigengenes (Mes) were
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defned as a module membership (MM), and the correlation
between outer features and gene expression profles was
defned as the gene signifcance (GS). Te hub genes were
identifed that are located in the modules with the highest
MM and highest GS values.

2.5. Single-Cell RNA-Seq Data Analysis. Te normalized
scRNA-seq data of the GSE156625 cohort was obtained from
the GEO database, which comprised a total of 57, 25414
HCCs and 1 normal sample [29]. “Scanpy,” a scalable
Python-based package [30], was used for downstream
analysis. Unifed manifold approximation and projection
(UMAP) was used for dimensionality reduction and cell
clustering visualization [31].Te “AUCell” package in R [32]
was performed to calculate CR scores for each cell type, and
the cells were divided into high-CR score and low-CR score
cell populations based on the median value of AUCell value.
Te diferential gene expression between high-CR and low-
CR score groups was identifed using “scanpy.tl.rank_ge-
nes_groups” [30].Te “GSEApy” package was performed for
biological function analysis [33].

2.6. Construction and Validation of a Circadian Rhythm-
Related Signature for Predicting Prognosis. Te intersected
CRRGs between the DEGs from scRNA-seq data analysis
and the hub genes from WGCNA were screened and vi-
sualized by a diagram analysis. A univariate Cox analysis was
used to select the prognostic CRRGs in HCC.Ten, the least
absolute shrinkage and selection operator (LASSO) re-
gression was performed using the “glmnet” package [34] to
shrink the list of genes and to obtain the risk coefcients
strongly linked to prognosis, and a risk model was further
constructed. Te risk score was calculated as follows: risk
score = sum (each gene expression x the corresponding
coefcient). HCC patients in TCGA-LIHC, LIRI-JP, and
GSE14520 cohorts were divided into high-risk and low-risk
groups with the median value of risk score. Te overall
survival curves were drawn using the Kaplan–Meier method
by the “survminer” R package [35], and the performance of
the risk model was evaluated by the area under the curve
(AUC) values of the receiver operating characteristic (ROC)
curves which were generated using “survivalROC” package
in R [35]. In addition, GO and KEGG pathway enrichment
analyses between high-risk and low-risk groups were per-
formed using the “GSEApy” package in R [30].

2.7. Patients and Specimens. A total of 10 HCC patients and
7 healthy people at the Guangdong Second Provincial
General Hospital were enrolled in this study between July
2023 and November 2023. All the patients had been di-
agnosed with primary HCC, and none had received any
preoperative treatment. Te patients underwent surgical
resection, and serum samples were collected on the day of
surgery. Te protocol for collecting clinical samples was
approved by the Ethics Committee of the Guangdong
Second Provincial General Hospital (2023-KY-KZ-034-02),
and the patients provided informed consent before samples

were collected. Te fresh specimens were obtained and
immediately frozen in liquid nitrogen and then saved at
−80°C for subsequent experiments.

2.8. RNAIsolation andReal-TimePCRAssay. Total RNA was
extracted with TRIzol reagent (Takara, Dalian, China).
Reverse transcription was performed with Prime-Script RT
reagent Kit (DBI® Bioscience, Shanghai, China) according to
the manufacturer’s instructions. For real-time PCR analysis,
the resultant cDNA products were amplifed using SYBR
Green qPCR Master Mix (DBI, Shanghai, China) in tripli-
cates. Primer sequences of the genes analyzed were GAPDH:
5′-TGTTCGTCATGGGTGTGAAC-3′ and 5′-ATGGCA
TGGACTGTGGTCAT-3′; RPL29 : 5′-ACACCACACACA
ACCAGTCC-3′ and 5′-GCATTGTTGGCCTGCATCTT-3′;
PFKFB3: 5′-GATGCCCTTCAGGAAAGCCT-3′ and 5′-
GAACACTTTTGTGGGGACGC-3′; RPS7: 5′-CCAAGC
GAAATTGTGGGCAA-3′ and 5′-CCTTGCCCGTGAGCT
TCTTA-3′; SLC6A6: 5′-CCCAGGCTCTCTGAAATGGG-
3′ and 5′-AGGAGCATGGCGAATGGAAA-3′; and RPLP2:
5′-CGACCGGCTCAACAAGGTTA-3′ and 5′-GGCTTT
ATTTGCAGGGGAGC-3′. GAPDH was used for normal-
ization of the expression levels of each gene. Te relative
expression was quantifed by using the 2−ΔΔCt method.

2.9. Construction of a Predictive Nomogram. Te risk score
and clinical characteristics (such as age, sex, and clinical
grade) were subjected to multivariate Cox regression to
obtain the independent risk factor, and the relevant forest
plot was drawn using the “ezcox” package in R [36]. A
predictive nomogram was constructed using the “regplot”
package in R [37] based on the independent risk factors.
ROC curves were used to evaluate the performance of the
predictive model. A calibration plot was drawn to calculate
the efciency of the predictive model using the “rms”
package [38]. A decision curve was drawn to assess the
ability of the predictive model by the “dcurves” package [39].

2.10.Estimationof the ImmuneCell Infltration in theHigh-CR
Risk and Low-CR Risk Groups. A total of 28 immune cell-
relevant gene sets were constructed according to the pre-
vious study [40]. ssGSEA was performed using the “GSVA”
package in R [26] to calculate the immune infltration score
for each sample in the TCGA-LIHC cohort, and the dif-
ferences between the high-risk and low-risk groups were
tested using the Kruskal–Wallis test. Moreover, the difer-
ential expression of immune checkpoint-related genes be-
tween high-risk and low-risk groups was evaluated using the
Kruskal–Wallis test.

2.11. Evaluation of the Response to Immunotherapy and
Chemotherapy in HCC. Tumor immune dysfunction and
exclusion (TIDE) was used to predict immune checkpoint
blockade (ICB) response [41]. Immunophenoscore (IPS)
also can be used to predict the response to immunotherapies
including CTLA-4 and PD-1 blockers [40]. Here, the
“tidepy” function in the Python package was performed to
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evaluate the TIDE score of each sample in the TCGA-LIHC
cohort [41], and the “IOBR” R package was performed to
evaluate the immunophenoscore (IPS) of each sample in the
TCGA-LIHC cohort [42]. Te signifcant diferences in
TIDE score and IPS between high-risk and low-risk groups
were detected using the Kruskal–Wallis test. Moreover, the
half-maximal inhibitory concentration (IC50) for patients
with HCC based on the Genomics of Drug Sensitivity in
Cancer (GDSC2) database (https://www.cancerrxgene.org)
was calculated by the “oncoPredict” package in R, which was
performed to predict drug response [43]. Te diferences in
log2 (IC50) between high-risk and low-risk groups were
tested using the Kruskal–Wallis test.

2.12. Statistical Analysis. Statistical analyses were performed
for all experiments with the GraphPad Prism software
(Version 8.0, San Diego, CA). Results are presented as
mean± SD from at least 3 independent experiments. Te
statistical diferences were calculated by using the Student’s
t-test. ∗P< 0.05 versus the control group, ∗∗P< 0.01 versus
the control group, and ∗∗∗P< 0.001 versus the
control group.

3. Results

3.1. High-CR Score Correlated with Poor Survival of HCC
Patients. Te detailed fowchart of this study is shown in
Figure S1. Among the TCGA-LIHC cohort, a total of 8831
DEGs (7793 upregulated and 1038 downregulated) were
screened between HCCs and normal samples with the
thresholds of |log2 FC|> 0.585 and P value of <0.05
(Figures 1(a) and 1(b), and Table S2). Ten, a total of 40
diferentially expressed CRRGs were obtained (Figures 1(c)
and 1(d) and Table S3). Circadian rhythm plays an im-
portant role in the regulation of complex physiological
activities in HCC [44]. Terefore, the CR score for each
sample in the TCGA-LIHC cohort was calculated using
ssGSEA, and patients were distributed into high- and low-
CR score groups based on the optimal cutof value. Te
patients were divided into high- and low-CR score groups
according to the optimal cutof value, and the results sug-
gested that patients in the high-CR score showed poorer
survival time than those in the low-CR score group
(Figure 1(e)). Tese fndings suggested that dysregulation of
circadian rhythm was associated with the diferential
prognosis in HCC.

3.2. Identifcation of the Key Modules and Hub Genes Related
to Circadian Rhythm. WGCNA was constructed to identify
the key modules and genes that were related to the circadian
rhythm in HCC [45]. After normalization and removing the
outlier samples (Figure 2(a)), the coexpression network was
constructed with the β-value as 14, and the scale-free R2 was
equal to 0.8, and a total of eleven diferent coexpression
modules with diferent colors fnally were identifed
(Figures 2(b) and 2(c)). Te module-CR score analysis in-
dicated that brown and green modules revealed the highest
correlations with the CR score (Figure 2(d)). A total of 252

hub genes related to circadian rhythm were identifed
according to the threshold of MM >0.6 and GS >0.3
(Figures 2(e)–2(g) and Table S4).

Identifcation of the CR-score-related cell
subpopulations.

Te normalized scRNA-seq data (GSE156625) were
performed using UMAP dimensionality reduction to
identify 28 Louvain clusters using the “Scanpy” package
(Figure 3(a)). Ten, 28 Louvain clusters were annotated into
11major cell types based on the data source article, including
hepatocytes, fbroblasts, bipotent cells, endothelial cells,
B cells, myeloid, CD4+ cells, CD8+ cells, natural killer (NK)
cells, Tregs, and mast cells (Figure 3(a)). Te GO annotation
enrichment analysis based on the DEGs of each population
indicated that distinct cell clusters were involved in diferent
biological processes (Figure 3(b)). For example, B cells were
associated with the regulation of humoral immune response,
complement activation, and immune efector process. CD4+
T cells, CD8+ T cells, and NK cells were involved in post-
translational protein modifcation. CD4+ T cells and Tregs
were involved in receptor-mediated endocytosis. CD8+
T cells, NK cells, and Tregs were involved in platelet de-
granulation. NK cells and Tregs were involved in regulated
exocytosis. Ten, to explore the CRRG expression charac-
teristics in HCC, the CR score of each cell was calculated
using the AUCell R package (Figure 3(c)). All cells were
distributed into the high-CR score and low-CR score groups
based on the median value of AUCell value; hepatocyte, bi-
potent cells, fbroblasts, and endothelial cells were distrib-
uted into the low-CR score group; and most immune cells
were distributed into the high-CR score group (Figure 3(c)).
A total of 2792 DEGs (2649 upregulated and 143 down-
regulated) were identifed between the high-CR score and
low-CR score groups (Table S5). GO and KEGG pathway
enrichment analyses based on the DEGs between the high-
CR score and low-CR score groups are exhibited in
Figures 3(d) and 3(e), and upregulated DEGs are involved in
cytoplasmic translation and cotranslational protein targeting
the membrane. Te downregulated DEGs were associated
with prostanoid and prostaglandin metabolic processes.
Tese fndings suggested that immune cells in the TME were
more likely to be infuenced by the circadian rhythm.

3.3. Construction and Validation of a Circadian Rhythm-
Related Signature. To explore the prognostic values of
CRRGs in HCCs, a total of 44 CRRGs were obtained by
overlapping CRRGs fromWGCNA and scRNA-seq analyses
(Figure 4(a) and Table S6). Univariate Cox analysis indicated
that 21 CRRGs were associated with prognosis (Figure 4(b)).
Ten, fve CRRGs (RPL29, PFKFB3, RPS7, SLC6A6, and
RPLP2) were selected as the prognostic signature using the
LASSO regression analysis (Figures 4(c)–4(e)). Ten, the
CR-related risk scores were calculated based on the prog-
nostic gene expression and corresponding coefcients, and
HCC patients were classed into high-risk and low-risk
groups according to the median value of risk scores both
in training cohort (TCGA-LIHC, Figures 4(f)–4(h)) and
external validation cohorts (LIRI-JP cohort and GSE14520,
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Figures 4(k)–4(m) and 4(p)–4(r)). Te Kaplan–Meier sur-
vival curves indicated that the high-risk group showed worse
survival than the low-risk group (Figures 4(i), 4(n), and
4(s)). AUC values of the ROC curves for the 1-, 3-, and 5-
year survival analyses indicated the accuracy of themodel for
the survival prediction (Figures 4(j), 4(o), and 4(t)).

3.4. qPCR Validation of the Expression of Circadian Rhythm-
Related Signature. To validate the expression of the circa-
dian rhythm-related signature (RPL29, PFKFB3, RPS7,
SLC6A6, and RPLP2) in HCC, qPCR was conducted to
examine the mRNA expression of RPL29, PFKFB3, RPS7,
SLC6A6, and RPLP2. As shown in Figures 5(a)–5(e), we
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found that the PFKFB3, RPS7, RPL29, RPLP2, and SLC6A6
were upregulated in HCC samples compared with controls.
Tese results indicated that RPL29, PFKFB3, RPS7, SLC6A6,
and RPLP2 might act as risk factors in HCC.

3.5. Development of a Predictive Nomogram. We in-
corporated the clinical characteristics into the univariate and
multivariate Cox models to identify the independent risk
factors in HCC, and the results suggested that risk score was

selected as the independent risk factor of HCC (Figures 6(a)
and 6(b)). Terefore, a nomogram was constructed by
combining risk score and clinical characteristics
(Figure 6(c)). Te calibration curves indicated the efciency
of the nomogram for survival prediction (Figure 6(d)).
Time-dependent ROC curves indicated the accuracy of the
nomogram for survival prediction (Figure 6(e)). Te DCA
curves revealed the discriminative ability of the nomogram
for survival prediction (Figure 6(f)).

(d)

(f) (g) (h)

(e)

(b) (c)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Cluster Dendrogram

H
ei

gh
t

Module colors

Module−trait relationships

−1

−0.5

0

0.5

1

CR score

pink

purple

blue

brown

red

yellow

magenta

turquoise

black

green

grey

−0.0696
(0.1859)
0.1261

(0.0162)

0.2171
(0.0000)

0.3779
(0.0000)

−0.0871
(0.0975)

−0.0405
(0.4419)
0.0847

(0.1072)
0.1512

(0.0039)

−0.1582
(0.0025)
−0.3324
(0.0000)
0.0369

(0.4833)

20

0.0

0.2

0.4

0.6

0.8

Scale independence

Sc
al

e F
re

e T
op

ol
og

y 
M

od
el

 F
it,

sig
ne

d 
R^

2

1

2

3 4 5 6 7 8 910 12 14 16 18 20

20

0

1000

2000

3000

4000

Mean connectivity

5 10 15

M
ea

n 
C

on
ne

ct
iv

ity

1

2

3
4 5 6 7 8 910 12 14 16 18 20

5 10 15
Sof Treshold

(power)
Sof Treshold

(power)

0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

Module membership vs Gene Signifcance
 cor=0.51, p=7e−33

Module Membership in brown

G
en

e S
ig

ni
fc

an
ce

 o
f S

co
re

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.15

0.20

0.25

0.30

0.35

0.40

Module membership vs Gene Signifcance
 cor=0.51, p=1.7e−13

Module Membership in green

G
en

e S
ig

ni
fc

an
ce

 o
f S

co
re

black blue brown green grey magenta pink purple red turquoise yellow

Gene signifcance across modules

G
en

e S
ig

ni
fc

an
ce

0.00

0.05

0.10

0.15

0.20

0.25

0.30

50

(a)

100

150

200

250

Sample clustering to detect outliers
H

ei
gh

t

Figure 2: Identifcation of the key modules and hub genes related to circadian rhythm. (a) Sample clustering to identify the outliers.
(b)Te scale-free index for soft-thresholding powers. (c) A dendrogrambased on hierarchical clusteringwith optimal soft thresholds. (d)Heatmap
of the correlation between modules and features (CR score). (e) Te histogram of the gene signifcance (GS) across modules. (f, g) Scatter
plot of the correlation between module membership (MM) and gene signifcance (GS) of score in brown and green modules, respectively.

6 European Journal of Cancer Care



3.6. Biological Function Analyses. We also investigated the
biological function between high-risk and low-risk groups
using GSEA. Te GO analysis indicated that CR risk was
involved in the cellular protein metabolic process, focal
adhesion, steroid hydroxylase activity, and cell-substrate
junction (Figures 7(a)–7(c)). Te KEGG pathway enrich-
ment analysis indicated that CR risk was linked to several
metabolism-related pathways, such as fatty acid, tryptophan,
tyrosine, glycine, serine, threonine, retinol, and bile acid
metabolisms, and other enrichment pathways including
RNA transport, DNA repair, andWnt-beta catenin signaling
pathway (Figure 7(d)). Furthermore, the hallmark pathway
enrichment analysis revealed that CR risk was connected to
several tumorigenesis pathways, such as the Wnt-beta cat-
enin signaling pathway, p53 pathway, IL-2/STAT5 signaling
pathway, mTORC1 signaling pathway, and PI3K/AKT/
mTOR signaling pathway (Figure 7(e)).

4. DescriptionofCR-RiskScoreRelevantTumor
Immune Infiltration Landscape

We also described the immune cell landscape between high-
risk and low-risk groups using ssGSEA. As shown in
Figures 8(a) and 8(b), we found that most adaptive immune
cells, such as the activated dendritic cells, CD56dimNK cells,
immature dendritic cells, MDSC, macrophage, mast cell, NK
T cells, and plasmacytoid dendritic cells, were signifcantly
enriched in the high-risk group than in the low-risk group.

Moreover, the innate immune cells also revealed a similar
outcome, and the activated B cells, activated CD4+ T cells,
central memory CD4+ Tcells, central memory CD8+ Tcells,
efector memory CD4+ T cells, immature B cells, memory
B cells, regulatory T cells, T follicular helper cells, Type17 T
helper cells, and Type2 T helper cells also increased in the
high-risk group than in the low-risk group (Figures 8(c) and
8(d)). Tese results were consistent with the scRNA-seq data
analysis, in which CR played an important role in the
regulation of the tumor environment.

4.1. Prediction of the Response to Immunotherapy and Che-
motherapy in High-Risk and Low-Risk Groups. Next, we
explored the immune checkpoint-related genes (ICRGs)
expression between high-risk and low-risk groups, results
showed that the upregulated ICRGs (BTLA, BTN2A1,
CD160, CD209, CD226, CD27, CD276, CD28, CD40LG,
CD47, CD70, CD80, CD86, CD96, CTLA4, HAVCR2, HLA-
DRB1, ICOS, IDO1, LAG3, LGALS9, PDCD1, PDCD1LG2,
TIGIT, TNFRSF14, TNFRSF18, TNFRSF4, TNFRSF9,
TNFSF18, TNFSF4, and TNFSF9) were found in high-risk
group compared with low-risk groups (Figures 9(a) and
9(b)). Ten, we investigated the TIDE value and IPS, and the
results indicated that higher TIDE value and lower IPS were
observed in the high-risk group than in the low-risk group
(Figures 9(c) and 9(d)). Tese results implied that high-risk
scores were associated with a negative response to immu-
notherapy. We also investigated the distinction of

(a) (b)

(c) (d) (e)

Figure 3: Dimensionality reduction, cell annotation, and identifcation of the CR score-related cell subpopulations. (a) Left: the UMAP of
the 28 cell clusters. Right: the UMAP of 11 cell types was annotated by diferent markers. (b) Te bubble plot shows the GO-BP analysis of
DEGs for each cell type. (c) Left: the UMAP of the CR score for each cell type. Right: the UMAP of the cell types distributed into the high-CR
score and low-CR score groups. (d, e) Te bubble plot shows the GO (BP, CC, and MF) and KEGG enrichment analyses based on
upregulated and downregulated DEGs between high-CR score and low-CR score groups, respectively.
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chemotherapy sensitivity between the high-risk group and
the low-risk group, as shown in Figures 9(e) and 9(f ), lower
IC50 values of MK-1775 (adavosertib), paclitaxel, pevone-
distat, ULK1_4989, vinblastine, and vinorelbine in the high-
risk group than the low-risk group.Te results indicated that
more chemotherapy sensitivity was found in high-risk scores
compared with the low-risk score group.

5. Discussion

Te circadian clock, an endogenous timekeeper system,
consists of both master and peripheral clock genes,

orchestrating various biological processes. Disruption of the
circadian rhythm detrimentally impacts physiology and
poses global health threats, contributing to proliferative,
metabolic, and immune diseases [46, 47]. Circadian rhythm-
regulated metabolism is a novel hallmark cancer and in-
volves hepatocarcinogenesis, progression, metastasis,
treatment outcomes, recurrences, and survival [48–51].
Increasing research suggests that circadian rhythm dis-
ruption is associated with the risk and prognosis of co-
lorectal cancer [52]. Moreover, circadian rhythm disruption
accelerates cancer growth, worse survival, and chemo-
resistance in pancreatic cancer [53]. Most studies conducted
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Figure 4: Construction and validation of a circadian rhythm-related signature. (a) Venn plot of the diferentially expressed CRRGs by
overlapping DEGs from scRNA-seq and bulk RNA-seq data. (b) Te forest plot shows the prognostic CRRGs by univariate Cox analysis.
(c) Te trajectory of each independent variable with lambda. (d) Plots of the coefcient distributions for the logarithmic (lambda) series for
parameter selection (lambda). (e) Te selected prognostic genes and corresponding coefcients. (f, k, and p) Te survival status of patients
and risk score of the TCGA-LIHC cohort, LIRI-JP cohort, and GSE14520 cohort. (g, l, and q) Te survival status of the patients with high-
risk and low-risk score groups in the TCGA-LIHC cohort, LIRI-JP cohort, and GSE14520 cohort. (h, m, and r) Te heatmap of the fve
CRRGs between high-risk and low-risk score groups in the TCGA-LIHC cohort, LIRI-JP cohort, and GSE14520 cohort. (i, n, and s)
Kaplan–Meier plot for HCCs in the high-CR score and low-CR score groups of the TCGA-LIHC cohort, LIRI-JP cohort, and GSE14520
cohort. (j, o, and t) ROC curves for 1-, 3-, and 5-year survival prediction in the TCGA-LIHC cohort, LIRI-JP cohort, and GSE14520 cohort.
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Figure 5: qPCR validation of the expression of circadian rhythm-related signature. (a–e) Scatter plots show the diferential expression of
PFKFB3, RPS7, RPL29, RPLP2, and SLC6A6. ∗P< 0.05 versus the control group, ∗∗P< 0.01 versus the control group, and ∗∗∗P< 0.001
versus the control group.
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Figure 6: Development of a predictive nomogram. (a, b) Univariate and multivariate Cox analyses were performed to identify independent
risk factors. (c) A nomogram for survival prediction based on risk factors and clinical characteristics. (d–f) Te calibration curve, DCA
curve, and the time-dependent ROC curve were used to evaluate the efciency, predictive ability, and performance of the predictive model.
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on the infuences of circadian rhythm so far have focused on
hub circadian clock genes that observed expression changes
in the experimental detection results. However, a large
number of the CRRGs that contribute to tumorigenesis and
development are still unknown. Tus, in the present study,
we comprehensively and intensively investigated the hub
CRRGs and their regulatory mechanisms in HCC.

First, we identifed the diferentially expressed CRRGs in
HCC and demonstrated that the diferential expression of
CRRGs is involved in survival. Terefore, we further screened
the 252 hub genes that are associated with circadian rhythm.
Meanwhile, we also investigated the landscape of the TME
based on scRNA-seq data. We found that 11 major cell types,
including hepatocytes, fbroblasts, bipotent cells, endothelial
cells, B cells, myeloid, CD4+ cells, CD8+ cells, NK cells, and
Tregs, were identifed, and those genes were enriched in
diferent biological processes. With the CR score calculation,
all cells were clustered into high-CR score and low-CR score
groups according to the median value of the CR score, and
hepatocyte, bi-potent cells, fbroblasts, and endothelial cells
were distributed into the low-CR score group, andmost of the
immune cells (B cells, myeloid, CD4+ cells, CD8+ cells, NK
cells, and Tregs) were distributed into the high-CR score
group. Tese data indicated that immune cells were strongly
infuenced by the circadian rhythm. Cancer-immunity cycle is
a circulation system in TME that is composed of several major
steps such as cancer cell antigen release and presentation,
priming and activation of efector immunity cells, tracking
and infltration of immunity to tumors, and elimination of
cancer cells [54]. It has been found that both the innate and
adaptive arms of immunity in the TME possess circadian
rhythmicity and have been linked to antitumor response
[55–62]. Our results supported the abovementioned research
fndings that immune cells in the TME are regulated by
circadian rhythmicity.

Te abovementioned fnding reminded us that circa-
dian rhythm is involved in tumor growth, the outcome of
treatment, and survival. Tus, we further investigated the
prognostic values of CRRGs in HCC. By integrating
scRNA-seq data and bulk RNA-seq data analyses, fve
CRRGs (RPL29, PFKFB3, RPS7, SLC6A6, and RPLP2) were
selected and validated as the prognostic signature in HCC.
Moreover, the experimental results also demonstrated the
signifcant diferential expression of fve prognostic
CRRGs. HCC patients were divided into high-risk and low-
risk groups based on themedian value of risk score.We also
found a high-CR risk score linked to several metabolism-
related pathways and canonical cancer-related pathways,
such as the Wnt-beta catenin signaling pathway, p53
pathway, and PI3K/AKT/mTOR signaling pathway. Be-
sides, a high-CR risk score not only promoted the increased
proportions of innate and adaptive immune cells but also
negatively associated with immunotherapeutic responses
and positively associated with some chemotherapeutic
drugs, including MK-1775 (adavosertib), paclitaxel,
pevonedistat, ULK1_4989, vinblastine, and vinorelbine.
Previous studies have demonstrated that circadian clock-
control metabolism is a hallmark of cancer [12], and un-
derstanding the regulatory mechanisms of circadian
rhythm links to the tumor immune microenvironment and
metabolism could provide therapeutic benefts against
tumors [63].

6. Conclusion

In conclusion, we integrated scRNA-seq data and bulk RNA-
seq data to comprehensively explore the immune charac-
teristics in TME and identify the prognostic CRRGs used for
survival prediction. Our data provided novel “time-
dependent” therapeutic options for HCC treatment.
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Figure 9: Prediction of the response to immunotherapy and chemotherapy in high-risk and low-risk groups. (a, b) Heatmap and histogram
of the diferentially expressed immune checkpoint-related genes between high-risk and low-risk groups. (c, d) Histogram of the diferentially
expressed TIDE value and IPS between high-risk and low-risk groups. (e, f ) Te diferential IC50 values of chemotherapeutic drugs between
high-risk and low-risk groups.
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