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Overcrowding of emergency department (ED) has put a strain on national healthcare systems and adversely afected the clinical
outcomes of critically ill patients. Early identifcation of critically ill patients prior to ED visits can help induce optimal patient fow and
allocate medical resources efectively. Tis study aims to develop ML-based models for predicting critical illness in the community,
paramedic, and hospital stages using Korean National Emergency Department Information System (NEDIS) data. Random forest and
light gradient boosting machine (LightGBM) were applied to develop predictive models. Te predictive model performance based on
AUROC in community stage, paramedic stage, and hospital stage was estimated to be 0.870 (95% CI: 0.869–0.871), 0.897 (95% CI:
0.896–0.898), and 0.950 (95% CI: 0.949–0.950) in random forest and 0.877 (95% CI: 0.876–0.878), 0.899 (95% CI: 0.898–0.900), and
0.950 (95% CI: 0.950–0.951) in LightGBM, respectively. Te ML models showed high performance in predicting critical illness using
variables available at each stage, which can be helpful in guiding patients to appropriate hospitals according to their severity of illness.
Furthermore, a simulation model can be developed for proper allocation of limited medical resources.

1. Introduction

Overcrowding of emergency department (ED) continues to
be a problem faced by hospitals around the world [1–5].Tis
issue has strained national healthcare systems and healthcare
workers in EDs. Furthermore, ED overcrowding adversely
afects the clinical outcomes of critically ill patients [4, 5]. In
circumstances where the ED is overcrowded, critically and
noncritically ill patients compete for limited medical re-
sources, and as a result, some critically ill patients may not
receive proper medical services.

In South Korea, a three-level system of emergency
medical institutes is available. Tey are classifed into re-
gional emergency medical centers (EMCs), local EMCs, and

local emergency medical institutions. Regional EMCs and
local EMCs provide 24-hour emergency care for critically ill
patients, while local emergency medical institutions pri-
marily care for noncritically ill patients. Reportedly, more
than 75% of the annual ED visits in South Korea are made by
vehicle rather than ambulance or walk-in, and regardless of
their severity of illness, patients tend to choose a higher-level
hospital such as EMCs or a nearby hospital [6, 7]. Such
tendencies or uninformed choices can exacerbate the im-
balance between the limited supply and overwhelming de-
mand for medical resources.

Terefore, the early identifcation of critically ill patients
prior to ED visits can help with the efective allocation of ED
resources and prevent negative efects on patient outcomes
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[2–4]. If critical illness can be predicted at the community or
paramedic stage, these data can help guide patients or
paramedic ambulances to visit the appropriate level of
emergency medical institutes according to the severity of
their illness [8, 9]. Moreover, predicting and monitoring
critical illness at the community or paramedic stage are
crucial in establishing resource management policies, es-
pecially in situations where medical resource requirements
are constantly increasing. Terefore, this study aimed to
develop machine learning-based models to predict critical
illness at the community, paramedic, and hospital stages
using variables available at each stage.

2. Materials and Methods

2.1. Study Population and Data Sources. Tis study was
conducted based on administrative data from Korean Na-
tional Emergency Department Information System (NEDIS)
(N20190320311). Te NEDIS is a nationwide registry
launched by the Ministry of Health and Welfare of Korea in
2003. A total of 414 EDs throughout Korea participated in
the NEDIS, consisting of 36 regional EMCs, 118 local EMCs,
and 260 local emergency medical institutions in 2019. De-
mographics and clinical information of patients visiting EDs
is transmitted to NEDIS in a real-time basis. As patient
information was anonymized and deidentifed, the re-
quirement for consent was waived. Tis study was approved
by the Korea University AnamHospital Institutional Review
Board committee (No. 2019AN0263). From NEDIS data,
adult patients (age ≥15 years) who visited EMCs from
January 1, 2016 to December 31, 2017 were chosen as the
study population since critically ill patients were focused on.
Tose who were dead on arrival (DOA), those who had
Korea Triage and Acuity Scale (KTAS) at level 8 or 9 (others
or unknown), and those who had missing values or invalid
values (e.g., inconsistencies in vital signs based on the
NEDIS guideline) were excluded.

2.2.VariablesandEndpoint. Te study utilized data from the
public database in South Korea, and the variables included in
the analysis were investigated as basic items within the
NEDIS data. Tese variables included patient age, gender,
triage measured by the KTAS, mode of arrival, ED visit date,
ED visit time, chief complaint, symptom onset to ED arrival,
systolic and diastolic blood pressure, pulse rate, respiratory
rate, body temperature, mental status (AVPU), and number
of diagnostic codes. Te selection of variables was based on
their availability at each stage and their relevance in pre-
dicting critical illness. Age, a consistent risk factor for critical
illness, is associated with an increased need for ICU ad-
mission and higher mortality rates [10]. Vital signs, such as
respiratory rate, systolic blood pressure, and heart rate, are
predictive of critical illness and are used in clinical pre-
diction models and triage tools such as the Emergency
Severity Index (ESI) [11–14]. Mental status is a simple as-
sessment tool with prognostic value in predicting critical
illness [15]. Chief complaints, such as chest pain, dyspnea,
mental change, and hematemesis, are associated with poor

clinical outcomes [15, 16]. While the date and time of ED
visits may not directly impact the severity of illness, they
provide valuable contextual information that helps in un-
derstanding ED visit patterns and enhancing the perfor-
mance of predictive models [17–19].

Te emergency medical process was classifed into three
stages: (1) community, (2) paramedic, and (3) hospital.
Variables were assigned according to their availability at
each stage. Te community stage consisted of variables such
as age, gender, ED visit date, ED visit time, symptom onset
time, chief complaint, and mental status. In the paramedic
stage, vital signs were additionally included because para-
medics could identify and measure them. Te hospital stage
encompassed all variables available in NEDIS data, including
mode of arrival, KTAS level, and number of
diagnostic codes.

In NEDIS data, chief complaints are recorded in Unifed
Medical Language System (UMLS) code using Korean
medical terminology so that chief complaint can be mapped
to the UMLS metathesaurus [20]. Due to a wide variety of
UMLS codes, a panel of emergency medicine specialists was
involved in categorizing chief complaints into 100 groups.
Afterward, for each ED visit record, 100 separate binary
variables with respect to 100 groups were newly defned as
whether the patient had grouped chief complaint. As for
diagnostic codes, we used International Classifcation of
Diseases, Tenth Revision (ICD-10) codes from the NEDIS
database.

Te primary endpoint was “critical illness” that was
defned as cases admitted to intensive care unit (ICU),
transfer-out cases due to lack of ICU, death, or hopeless
discharge at any point during hospitalization.

2.3. Development of Prediction Models for Critical Illness.
Preprocessing of data were performed with R 3.4.1. Tis
study applied random forest and light gradient boosting
machine (LightGBM) among tree-based ensemble algo-
rithms. Ensemble algorithms can improve the stability and
accuracy of predictions by minimizing underftting or
overftting in training data with high bias or variance. En-
semble algorithm-based learning methods include bagging
(i.e., an acronym for bootstrap aggregating) and boosting.
Bagging can reduce variance by training on a subset gen-
erated via random sampling of a dataset (i.e., bootstrap) and
aggregating trained decision trees. Boosting also corre-
sponds to an ensemble technique that can reduce both bias
and variance by training hundreds or even thousands of
weak trees. Random forest is a classic example of an en-
semble model based on bagging. LightGBM is best known
for its high performance based on boosting. Random forest
trains the bootstrapped dataset with a bagging algorithm and
fnally predicts the data through voting.

Te modelling of random forest and LightGBM was
performed with sklearn and lightGBM packages in Python
7.8. Te study population was split into a development
dataset (70%) and a validation dataset (30%) at a 7 : 3 ratio
using stratifed random sampling. As performance mea-
sures, the area under the receiver-operating-characteristics
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curve (AUROC) and the area under the precision and recall
curve (AUPRC) were computed. External validation of the
prediction models was performed using the population that
satisfed the same inclusion and exclusion criteria among ED
visits registered in NEDIS from January 1, 2018 to December
31, 2018.

2.4. Variable Importance. Variable importance was calcu-
lated in random forest to gain insights into the contribution
of each variable to the model for prediction of critical illness.
Te determination of variable importance is accomplished
for each tree by randomly reordering the values of a single
variable in out-of-bag samples and then putting the samples
down each tree. After repeating this process for all variables
(e.g., all bands) of one tree, the whole process is repeated for
all trees in the forest. By measuring how much the model
prediction changed, it is possible to estimate the importance
of that variable.

3. Results

A total of 18,217,034 ED visits were collected in NEDIS
during the study period. Among them, 6,104,816 adult ED
visits in regional and local EMCs were identifed. Tose with
DOA (n� 17,010), Korean Triage and Acuity Scale (KTAS)
level 8 or 9 (n� 3,490) and those with missing or invalid
values (n� 102,591) were excluded. Overall, 5,981,725 ED
visits were included in study population (Figure 1). Critical
illness during hospitalization occurred in approximately
5.77% of ED visits. Patients experiencing critical illness were
older and more likely to be transported by ambulance,
showed lower level of mental status, and presented with
higher KTAS level (Table 1). Among patients with and
without critical illness, median and interquartile range of
vital signs were similar while total time from symptom onset
to ED arrival was shorter in critically ill patients.

As for the prediction of critical illness, the performances
of all models at three stages are shown in Table 2 and
supplementary Figures S1–S3. In community stage, per-
formances of LightGBM (AUROC: 0.877 (95% CI:
0.876–0.878) and AUPRC: 0.360 (95% CI: 0.358–0.363))
were slightly better than those of random forest (AUROC:
0.870 (95% CI: 0.869–0.871) and AUPRC: 0.353 (95% CI:
0.350–0.355)). In paramedic stage, LightGBM (AUROC:
0.899 (95% CI: 0.898–0.900) and AUPRC: 0.420 (95% CI:
0.417–0.424)) performed slightly better than random forest
(AUROC: 0.897 (95% CI: 0.896–0.898) and AUPRC: 0.418
(95% CI: 0.415–0.421)). From the result of LightGBM, the
predictability of critical illness in community stage, para-
medic stage, and hospital stage were estimated to be 0.877,
0.899, and 0.950, respectively, based on AUROC.

To gain insights into the relevance of each variable, the
most important variables of random forest at each stage are
summarized as shown in Figure 2. In community stage,
variables such as age, mental status (AVPU), dyspnea,
mental change, chest pain, hematemesis, symptom onset to
ED arrival time, abdominal pain, gender, and paralysis were
ranked in the top 10 important variables. In paramedic stage,

vital signs were included in the upper ranks and showed
higher importance than variables belonging to chief com-
plaint or symptom onset time. In hospital stage, the number
of diagnostic codes was the most important predictor, fol-
lowed by KTAS level, arrival mode, age, and vital signs such
as systolic BP and heart rate.

Table 3 shows recent machine learning studies to predict
critical illness in the feld of medical triage. All fve studies
utilized similar predictor variables, such as age, sex, chief
complaints, vital signs, and comorbidities, similar to our
study. Te choice of models and their performance varied
across these studies. Kang et al. achieved the best perfor-
mance in terms of AUC, with a feedforward neural network
(FFNN) model, registering an AUC of 0.867 (0.864–0.871).
Other models, including random forest (RF), gradient
boosting machines (GBMs), and deep neural networks
(DNNs) were employed in these studies with varying degrees
of performance. Machine learning-based prediction models
consistently outperformed traditional models (ESI, LR, and
NEWS) across all fve studies.

External validation of the LightGBM model for pre-
diction of critical illness was conducted in the population
that satisfed the same inclusion criteria and registered in
NEDIS in 2018. Te AUROC value of the predictive model
was 0.841(95% CI: 0.840–0.842) in community stage and
0.874(95% CI: 0.873–0.874) in paramedic stage, showing
similar performance in the external validation (Supple-
mentary Table S1). Te probability distribution of critical
illness and cumulative number of patients by probability
were also analyzed and are shown in Figure 3. Te proba-
bility distribution of critical illness at community stage was
skewed to the right and showed a mixed form of step and
linear function, whereas at paramedic stage, the linear
function was more prominent.

4. Discussion

In this study, ML models were developed to predict critical
illness at the community, paramedic, and hospital stages
using a national database. Te models demonstrated high
predictive power across all stages, even in the community
stage where vital signs and triage scoring systems were not
available. Our fndings highlighted the top important var-
iables, such as age, mental status, vital signs, chief com-
plaints, and symptom onset, which are consistent with
clinical rationality. For example, in the community stage,
chief complaints such as dyspnea, mental change, chest pain,
and hematemesis were ranked high in importance and these
symptoms are recognized as severe by existing triage tools
like ESI [12, 14]. In the paramedic stage, vital signs were
included in the top 10 important variables, refecting their
clinical signifcance. In the hospital stage, additional factors
such as the number of diagnostic codes, triage level, and
arrival mode are commonly used in risk stratifcation and
clinical decision-making [11–14]. Age had the highest
variable importance in the community and paramedic stages
and ranked 4th in the hospital stage, which indicates its
signifcance in all stages. Geriatric patients frequently use
critical care, and the increasing use of ICU services by
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Total ED visits from 2016 to 2017
(n= 18,217,034)

ED visits (Age ≥ 15 years old) in Regional/Local
EMCs (n=6,104,816)

Analytic cohort
(n=5,981,725)

Excluded (n=12,112,218)
Local Emergency Medical Intuitions (n=7,763,987)
Trauma patients (n=3,249,052)
Age < 15 years old (n=3,633,131)

(i)
(ii)

(iii)

Excluded (n=123,091)
Dead of Arrival (n=17,010)
KTAS = 8 or 9 (n=3,490)
Missing or invalid values (n=102,591)

(i)
(ii)

(iii)

Figure 1: Flowchart of study population.

Table 1: Demographics and clinical characteristics between patients with critical illness and no critical illness.

Variables Critical illness No critical illness
Age (years), median (IQR) 70 (57–79) 51 (34–66)
Gender
Female 141,957 (41.10) 3,048,163 (54.08)
Male 203,444 (58.90) 2,588,161 (45.92)

Mode of arrival
Public/air-ambulance 129,754 (37.57) 951,941 (16.89)
Private ambulance 100,543 (29.11) 229,180 (4.07)
Police/public ofcer car/other transportation/walking 114,030 (33.01) 4,445,218 (78.87)
Others 1,061 (0.31) 9,741 (0.17)
Unknown 13 (0.00) 244 (0.00)

ED visit date
On weekday 255,705 (74.03) 3,703,819 (65.71)
On weekend 89,696 (25.97) 1,932,505 (34.29)

ED visit time
Night (0–8 hr) 52,871 (15.31) 1,225,776 (21.75)
Day (8−16 hr) 168,215 (48.70) 2,112,811 (37.49)
Evening (16−24 hr) 124,315 (35.99) 2,297,737 (40.77)

Symptom onset to ED arrival time (min), median (IQR) 347 (80−1,746) 494 (120−2,105)
Mental status (AVPU)
Alert 258,331 (74.79) 5,508,812 (97.74)
Verbal response 38,168 (11.05) 80,213 (1.42)
Painful response 38,694 (11.20) 43,376 (0.77)
Unresponsive 10,208 (2.96) 3,923 (0.07)

Vital signs
Body temperature (°C), median (IQR) 36.6 (26.2–37.0) 36.6 (36.4–37.1)
Heart rate (bpm per min), median (IQR) 90 (76–108) 82 (74–95)
Respiratory rate (per min), median (IQR) 20 (18–22) 20 (18–20)
Systolic blood pressure (mmHg), median (IQR) 128 (102–150) 130 (116–147)
Diastolic blood pressure (mmHg), median (IQR) 76 (60–90) 80 (70–90)

KTAS level
Level 1 (resuscitation) 33,301 (9.64) 21,562 (0.38)
Level 2 (emergent) 140,934 (40.80) 385,822 (6.85)
Level 3 (urgent) 150,884 (43.68) 2,543,145 (45.12)
Level 4 (less urgent) 17,009 (4.92) 2,126,146 (37.72)
Level 5 (nonurgent) 3,273 (0.95) 559,649 (9.93)

Number of diagnostic codes, median (IQR) 4 (3–7) 1 (1–2)
Total 345,401 (5.77) 5,636,324 (94.23)
ED: emergency department; IQR: interquartile range; and KTAS: Korean Triage and Acuity Scale.
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Table 2: Performance of machine learning-based prediction models at three stages.

Stage Community Paramedic Hospital
Random forest
AUROC 0.870 (0.869–0.871) 0.897 (0.896–0.898) 0.950 (0.949–0.950)
AUPRC 0.353 (0.350–0.355) 0.418 (0.415–0.421) 0.559 (0.555–0.562)

Light GBM
AUROC 0.877 (0.876–0.878) 0.899 (0.898–0.900) 0.950 (0.95–0.951)
AUPRC 0.360 (0.358–0.363) 0.420 (0.417–0.424) 0.561 (0.558–0.564)

Age
Mental_status

Dyspnea
Mental_change

Chest_pain_&_Discomfort
Hematemesis

Symptom_onset_to_ED_arrival_time
Abdominal_pain

Gender
Paralysis

Skin_rash/Lesion
Cardiac_arrest

General_weakness
Melena_&_Hematochezia

Dysarthria/Dysphasia/Aphasia
Dizziness

Hypotension
Timeslots

Troat_pain
Weekends

Flank_pain
Nausea

Abnormal_urinary_symptom
Myalgia

Pain_in_limb
Seizure

CC_nothing
Diarrhea

20 40 60 80 100
Relative Feature Importance

0

(a)
Figure 2: Continued.
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Age
Mental_status

Systolic_BP
Heart_rate

Respiratory_rate
Diastolic_BP

Symptom_onset_to_ED_arrival_time
Body_temperature

Mental_change
Dyspnea

Chest_pain_&_Discomfort
Gender

Timeslots
Abdominal_pain

Hematemesis
Paralysis

Weekends
Dysarthria/Dysphasia/Aphasia

General_weakness
Melena_&_Hematochezia

Skin_rash/Lesion
Dizziness

Cardiac_arrest
Nausea

Fever
Flank_pain

Headache
Troat_pain

Abnormal_urinary_symptom
Hypotension

Seizure
Diarrhea
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CC_nothing
Pain_in_limb
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Syncope

20 40 60 80 100
Relative Feature Importance

0

(b)

Number_of_diagnosis
KTAS _level

Arrival_mode
Age

Systolic_BP
Heart_rate

Mental_status
Diastolic_BP

Symptom_onset_to_ED_arrival_time
Respiratory_rate

Body_temperature
Dyspnea

Mental_change
Timeslots

Chest_pain_&_Discomfort
Gender

Abdominal_pain
Weekends

Hematemesis
Paralysis

Dizziness
General_weakness

Fever
Melena_&_Hematochezia

Dysarthria/Dysphasia/Aphasia
Headache

Nausea

20 40 60 80 100
Relative Feature Importance

0

(c)

Figure 2: Variable importance for prediction of critically illness at community stage (a), paramedic stage (b), and hospital stage (c).
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geriatric patients in many countries [10] correlates with our
fndings.

Te predictive ML models and variable importance
analysis can assist healthcare providers in several ways. First,
by continually updating and refning triage protocols based
on these insights, healthcare providers can make more ac-
curate and efcient assessments, leading to better patient
outcomes. Second, the predictive models can help guide
patient fow to appropriate facilities based on their assessed
risk of critical illness, relieving overcrowding in ED, and
optimizing resource allocation. Tird, our study facilitates
improved communication among healthcare providers
across various stages, leading to more efective patient
handofs and care coordination.

Te previous study, Christopher et al, predicted critical
illness using out-of-hospital variables (e.g., age, sex, RR, SBP,
HR, pulse oximetry, mental status, and nursing home lo-
cation) and their model demonstrated good discriminative
capacity (AUROC 0.77 (95% CI: 0.76–0.78)) [23]. However,
the model showed signifcant errors in calibration such as
overidentifying critical illness among those judged at high
risk and underidentifying critical illness among those judged
at low risk. Tese errors may occur due to the limitations of
traditional analyses such as logistic regression because they
assume that the efect of one predictor is not infuenced by
the value of another predictor. When this is not true and the
value of one predictor alters efect of another, there is said to
be an “interaction” between the 2 predictors, and those
interactions can afect the study result or model performance
[24, 25]. Our models were able to consider the interaction
between these variables using machine learning techniques
and showed a good performance in all stages and in external
validation. Also, we categorized chief complaints into 100

groups under the supervision of emergency medicine spe-
cialists and applied those variables to ML models (e.g.,
stomach-ache, bellyache, and abdominal pain for Abdom-
inal pain), with the expectation in improving the model
performances.

Table 3 summarizes relevant machine learning studies to
predict critical illness in prehospital settings. In comparison
to our study, our ML-based prediction model demonstrated
superior performance in the paramedic stage, with an AUC
of 0.899 (0.898–0.900), surpassing the best-performing
model in the other studies. Furthermore, our model’s per-
formance in the community stage, with an AUC of 0.877
(0.876–0.878), was either similar to or slightly higher than
the AUCs of other models. Tis suggests that our model
holds the potential to accurately predict critical illness in the
community stage, where vital signs are not available, or to
predict critical illness for ED visits made by nonambulance
patients, who constitute 75% of annual ED visits. Our study,
therefore, highlights the value of our models in efectively
predicting critical illness in both paramedic and community
stages compared to other studies.

Figure 3 displays the probability distribution of critical
illness in community and paramedic stages, as well as the
cumulative number of patients based on their probability of
critical illness. By predicting and monitoring these proba-
bilities and patient numbers in the prehospital stage,
healthcare providers can efectively allocate patients to
suitable hospitals according to illness severity. A simulation
model can be developed and applied to help balance the
demand and supply of medical resources, using a national
monitoring system for health resources and service avail-
ability. For example, in a society with a probability distri-
bution of critical illness as shown in Figure 3(b), if the
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Figure 3: Probability distribution of critical illness in 2018. (a) Community stage, (b) paramedic stage, and (c) cumulative number of
patients by probability of critical illness.
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demand and supply of medical resources are balanced when
the ICU capacity of EMCs accounts for 4% of inpatients, the
cumulative patient proportion at 0.6 can serve as a surrogate
indicator, as the probability value of 0.6 corresponds to
about 4%. If proportions of patients with probability values
of 0.6 and 0.7 increase to 6% and 4%, respectively, hospitals
can anticipate an increased demand for ICU care and
prepare accordingly. With the increase in critically ill pa-
tients from 4% to 6%, hospitals can predict a 2% rise and
proactively prepare necessary medical equipment, person-
nel, and ICU beds. If expanding medical resources are not
feasible, EMCs might explore alternative strategies. One
approach involves accommodating patients with a proba-
bility of critical illness of 0.7 or higher, which represents 4%
of inpatients and is equivalent to current ICU capacity, while
transferring patients with a probability of critical illness
between 0.6 and 0.7 to EMCs in other regions or lower-level
facilities. Another method includes raising the ICU hospi-
talization criteria for visiting patients so that patients with
a probability of critical illness of 0.7 or higher are admitted to
the ICU, while those with a probability of critical illness
below 0.7 are admitted to acute care or general wards. By
employing the simulation model, EMCs can predict the
number of critically ill patients at the prehospital stage and
respond with specifc fgures and goals when an increased
demand for medical resources is expected.

In situations where the number of critically ill patients
suddenly increases due to infectious diseases such as the
COVID-19 pandemic, rapid estimations of anticipated
medical resource demand are essential for enhancing hos-
pital preparedness. Te simulation model can predict such
situations in the prehospital stage, enabling emergency
medical systems and hospitals to swiftly adapt by imple-
menting suitable strategies at each stage [26, 27]. At the
community level, an efective approach involves reducing
medical resource use for noncritically ill patients through
temporary screening clinics or residential treatment centers
[28, 29]. At the paramedic stage, maintaining constant
communication between hospitals and paramedics con-
cerning the probability of critical illness and available re-
sources can induce optimal patient fow [30]. At the hospital
level, surge capacity is crucial for hospital preparedness and
early estimation of increased medical resource demand fa-
cilitates efective capacity expansion. Strategies may include
increasing hospital beds, expanding ward spaces [31, 32],
converting general wards to ICUs [33, 34], reducing bed
occupancy rates by discharging selective admissions and
noncritically ill patients in the ED [31, 35], and establishing
designated hospitals and alternative medical facilities for
efcient resource and personnel utilization [36, 37].

4.1. Limitations. Tis study has several limitations. First,
since we used a national administrative data source, ex-
tensive clinic information such as free-textual nursing notes,
laboratory and ambulatory exams, patient comorbidities,
and relevant patient/family medical history could not be
used for developing the predictivemodel. In the case of using
high-dimensional or time-series electronic health records

(EHRs) data, natural language processing (NLP) methods
can be explored to extract meaningful information and
further improve the predictive accuracy [38]. However,
existing NLP methods are known to have limitations due to
transcriptional inaccuracies (i.e., misinterpreting spoken
words) and speech assignment errors (i.e., diarization) [39].
Chief complaint concepts can be handled with UMLS codes
that contain a variety of information in a “source of
knowledge” format. Tus, machine learning classifcation
utilizing chief complaints based on UMLS codes allows
predictive models to potentially have high
performances [40].

Second, ICU admission was set as one of the defnitions
of critical illness, but hospitals may have diferent in-
dications for ICU admission even if hospitals are of the same
class. However, since many other studies for predicting
critical illness also use ICU admission as a defnition, it can
be said that this is an academically acceptable range.

Lastly, our study population exhibited class imbalance,
with critically ill patients constituting only 5.77%. Class
imbalance can potentially skew the performance of pre-
dictive models, as machine learning algorithms tend to
favour the majority class. To address this issue, we carefully
selected machine learning algorithms such as random forest
and LightGBM, which excel in handling imbalanced datasets
[41, 42] and experimented with ensemble learning tech-
niques, such as bagging and boosting, to enhance our
model’s overall performance [43, 44]. Additionally, it is
crucial to note that the actual distribution of patients in ED is
inherently imbalanced, and our dataset truly refects this
patient distribution. Although techniques such as over-
sampling or undersampling can be employed to mitigate the
efects of imbalanced data [45], these methods have their
limitations and may not always be feasible in real-world
settings.

5. Conclusion

Te ML models showed high performance in predicting
critical illness using variables available in community and
paramedic stages, which can be helpful in inducing patients
to appropriate hospitals according to their severity of illness.
A simulation model can be developed by monitoring
probability of critical illness and the cumulative number of
patients and can help health providers to respond more
efciently in proper allocation of limited medial resources.

Data Availability

Te National Emergency Medical Center (NEMC) in Korea
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