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Sepsis is defned as a kind of life-threatening organ dysfunction due to a dysregulated host immune response to infection and is
a leading cause of mortality in the intensive care unit. Sepsis-induced myocardial dysfunction, also called septic cardiomyopathy,
is a common and serious complication in patients with sepsis, which may indicate a bad prognosis. Although eforts have been
made to uncover the pathophysiology of septic cardiomyopathy, a number of uncertainties remain. Tis article sought to review
available literature to summarize the existing knowledge on current diagnostic tools and biomarkers, pathogenesis, and
treatments for septic cardiomyopathy.

1. Introduction

Sepsis is defned as a type of life-threatening organ dysfunction
due to a dysregulated host immune response to infection and is
a leading cause of death worldwide with a highmortality rate of
nearly 30% [1, 2]. Multiple organ dysfunctions can result from
systemic infammation. Since the heart is quite vulnerable,
myocardial dysfunction caused by sepsis, which is known as
septic cardiomyopathy, is frequently reported. Septic cardio-
myopathy was frstly observed in 1967 and initially defned in
the 1980s [3–5]. Septic cardiomyopathy is characterized by
acute ventricular dysfunction with impaired contractility,
which can be reversed and restored within 7–10days [6].

Several mechanisms involved in septic cardiomyopathy
have been proposed, including infammatory factors such as
damage-associated molecular patterns (DAMPs), pathogen-
associated molecular patterns (PAMPs), nitric oxide (NO),
calcium handling, mitochondrial dysfunction, and com-
plements. Emerging mediators, such as exosomes and
noncoding RNAs (ncRNAs), including microRNAs (miR-
NAs) and long noncoding RNAs (lncRNAs), were recently
demonstrated to contribute to the development of septic
cardiomyopathy [7, 8]. Tere is no specifc treatment for

septic cardiomyopathy yet, mainly of which is symptomatic,
supportive, and applied to treat the underlying sepsis.
Understanding how septic cardiomyopathy occurs may help
to provide benefts for patients with septic cardiomyopathy.

In this article, we mainly review and summarize the
current literature concerning septic cardiomyopathy, with
a focus on diagnostic tools, potential biomarkers, pathogenic
mechanisms, and treatments for septic cardiomyopathy.

2. Epidemiology

Te prevalence of septic cardiomyopathy varies greatly
because of the diverse defnitions used in articles (Table 1). A
younger age, a positive etiological culture result, a history of
diabetes, and a history of heart failure are reported to be risk
factors for septic cardiomyopathy, and the occurrence of
septic cardiomyopathy indicates a higher short-term mor-
tality [11, 13].

3. Mechanism

At present, the pathophysiology of septic cardiomyopathy is
not completely clear and is still under exploration. Studies
focusing on septic cardiomyopathy have investigated several
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mechanisms, including infammation, calcium handling,
mitochondrial dysfunction, complements, exosomes, and
ncRNAs as shown in Figure 1.

3.1. Infammation

3.1.1. PAMPs and DAMPs. Since sepsis is caused by a dys-
regulated immune response to infection, the infammatory
response should be involved in septic cardiomyopathy,
driven by PAMPs and DAMPs [1]. Lipopolysaccharide
(LPS), as the best-known type of PAMP molecule, has been
a key component in the pathogenesis of septic cardiomy-
opathy. LPS can bind to pattern-recognition receptors and
activate the transcription of infammatory mediators, thus
inducing myocyte apoptosis [20]. Te mechanisms of car-
diac depression by LPS also involve mitochondrial dys-
function, ion channel dysfunction, and calcium homeostasis
alteration [21]. DAMPs, such as high-mobility group box 1
protein (HMGB1) and heat shock proteins (HSPs), are also
essential regulators in septic cardiomyopathy. Previous
studies have cited that HMGB1 secreted by viable car-
diomyocytes may mediate the LPS-induced myocardial
contractile dysfunction [22], and HMGB1 could lead to
cardiac dysfunction by enhancing sarcoplasmic reticulum
calcium leakage [23]. Te HSP70 family was reported to play
protective roles in septic cardiomyopathy by the mainte-
nance of endothelial permeability and suppression of
autophagy activation [24, 25].

3.1.2. Cytokines. Cytokines are key mediators in in-
fammatory conditions like sepsis. Numerous studies have
demonstrated that interleukin (IL)-6 has good performance
in sepsis diagnosis and prognosis [26], but its role in the
development of sepsis remains controversial. Some re-
searchers have reported that IL-6 mediated cardiac in-
fammation and dysfunction in a burn plus sepsis model
[27], and the inhibition or blockage of IL-6 was supposed to
be a treatment for sepsis [28], while others suggested that IL-
6 activates neutrophils to enhance the killing of bacteria to
improve the survival rates of sepsis patients [29], and the loss
of IL-6 signaling led to impaired monocyte/macrophage
killing of pathogens, which could be reversed by IL-6
supplementation [30]. Like IL-6, IL-1β also has diverse
roles in sepsis. It was reported that IL-1β protects against
sepsis by activating the proliferation and diferentiation of
bone marrow cells into dendritic cells [31]. Meanwhile, in
sepsis-induced cardiomyopathy, IL-1β contributed to
myocardial dysfunction by inducing cardiac atrophy,
impairing contraction and relaxation of cardiomyocytes,
and boosting infammatory cytokine expression levels [32].
Tumor necrosis factor (TNF)-α, as a major regulator of the
infammatory response, has been proposed to be a key
contributing factor in septic cardiomyopathy. It was re-
ported that the early depression of contractility was largely
due to LPS-induced TNF-α synthesis [33], and TNF-α was
suggested to be the core target of anti-infammation in septic
cardiomyopathy [34].

As well-known anti-infammatory cytokines, IL-10 and
transforming growth factor beta (TGF-β) act to modulate the
infammatory response during sepsis. IL-10, commonly
produced by monocytes/macrophages and TH2 cells, was
demonstrated to be increased and related to the outcome of
sepsis [35, 36]; moreover, IL-10 exhibited both pro- and anti-
infammatory efects on innate and adaptive immunity in the
septic environment [37]. TGF-β1 was revealed to block early
cardiac depression induced by TNF-α, IL-1β, and septic se-
rum in sepsis [38]. Growth diferentiation factor 3, a member
of the TGF-β family, was also implicated to reduce sepsis-
induced cardiac dysfunction and mortality rates by altering
macrophages to an anti-infammatory phenotype [39].

3.2.NitricOxide (NO)andNOSynthase (NOS). NO, which is
produced from arginine by NOS, is a signaling molecule and
acts as a regulator for cardiac functions in both normal and
diseased hearts [40]. Studies have shown that both NO and
NOS are involved in the pathogenesis of sepsis in several
aspects, such as the maintenance of microcirculation ho-
meostasis [41] and the regulation of vascular function [42].
In terms of myocardial dysfunction induced by sepsis, the
roles of NO and NOS remain incompletely defned. Tere
are some suggestions that the NO production is responsible
for myocardial contractility maintenance in sepsis [43]. It
was reported that myocardial NO levels increase after LPS
treatment, and selective inhibition of NOS provides benefts
for LPS-induced myocardial dysfunction; however, the de-
creased contractility was not necessarily related to the high
content of myocardial NO [44]. Among the three isoforms of
NOS, NOS2 and NOS3 are more relevant to sepsis. NOS2
was demonstrated to be required for endotoxin-induced
cardiac impairment, but the defciency of NOS2 failed to
improve the mortality rate [45]. Overexpression of
cardiomyocyte-specifc NOS3 protected patients from
myocardial depression in sepsis [46], while endothelial

PAMPs

DAMPs

Septic
Cardiomyopathy

Calcium

Ca2+

miRNAs

LncRNAs

Mitochondrial Dysfunction

Exosomes

Complements

NO and NOS

Cytokines
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TNF-α

TGF-β

Figure 1: Pathophysiology of septic cardiomyopathy. Tis illus-
tration shows the potential mechanisms contributed to septic
cardiomyopathy. Te pathways involved are the activation of in-
fammatory response including PAMPs, DAMPs, cytokines, NO,
NOS, and complements; disorders of exosomes, miRNAs and
lncRNAs; mitochondrial dysfunction; and the imbalance of cal-
cium handling. PAMPs, pathogen-associated molecular patterns;
DAMPs, damage-associated molecular patterns; NO, nitric oxide;
NOS, nitric oxide synthase; LncRNA, long noncoding RNA.
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NOS3 might impair cardiac contractility in developing
sepsis [47]. Taken together, it seems that NOS plays more
important roles in the development of septic cardiomyop-
athy than NO.

3.3. Calcium Handling. It is common knowledge that the
variation in intracellular calcium concentrations is a crucial
regulator in cardiac myocyte function [48]. Calcium ho-
meostasis has been reported as one of the underlying
mechanisms of septic cardiomyopathy. It was reported that
sepsis-induced myocardial dysfunction results from the
impairment of sarcoplasmic calcium release, which is caused
by blockade of the ryanodine channel [49], and prevention
of sarcoplasmic reticulum calcium leakage by dantrolene
could help to improve myocardial contractile dysfunction
[50]. Moreover, in mice that survived the LPS challenge, the
recovery of cardiac function correlate with the upregulation
of calcium handling [51].

3.4. Mitochondrial Dysfunction. Mitochondria, which are
abundant in cardiomyocytes, work as “power-factories” to
supply energy to maintain the function of the heart. As such,
mitochondrial dysfunction may lead to abnormal car-
diomyocytes. It was found that there is an association be-
tween mitochondrial dysfunction, multiorgan failure, and
poor outcome in septic patients [52], and improvements in
mitochondrial function could contribute to biological
function recovery [53].

Tere are several underlying mechanisms of mito-
chondrial dysfunction known to exist in septic cardiomy-
opathy [54]. Mitochondrial ultra-structural changes were
observed in sepsis, including mitochondrial swelling, dis-
ruption of inner and outer membranes, formation of in-
ternal vesicles, and distortion of cristae [55–57]. Although
morphological damage could be found in most models of
sepsis, it was reported that myocardial or mitochondrial
dysfunction might not relate to the observed morphological
changes [55, 58].

Reactive oxygen species (ROS) are primarily generated
by mitochondria and can be balanced under physiological
conditions. In sepsis, however, the formation and clearance
of ROS are imbalanced, with an accumulation of ROS and
oxidative stress [54, 59]. Oxidative stress has been well
recognized as a main regulator of mitochondrial dys-
function by impairing mitochondrial DNA, damaging
myocardial structures, and causing cardiac dysfunction
[54, 57, 60]. To explain the increased amount of ROS and
oxidative stress in sepsis, NADPH oxidase 2 (NOX2) seems
to be of interest. In cardiomyocytes isolated from LPS-
induced sepsis models, increased oxidative stress, abnor-
mal calcium transients, and decreased contractility were
observed, and administration of NOX2 inhibitors di-
minished the abnormalities [61]. Mitochondria can also
generate NO through the activation of mitochondrial NOS
(mtNOS). Although several studies have reported that the
overexpression of NO andmtNOS could lead to myocardial
depression, the role of NO in septic cardiomyopathy re-
mains controversial [40, 52].

During sepsis, changes in the inner mitochondrial
membrane permeability will force the mitochondrial per-
meability transition pore (mPTP) to open, which can lead to
mitochondrial dysfunction by triggering mitochondrial
depolarization, respiratory inhibition, depression of oxida-
tive phosphorylation, calcium release, and matrix swelling
[62]. Previous studies have reported that the inhibition of
mPTP by the administration of cyclosporine reduced
multiorgan dysfunction and mortality rates in sepsis, thus
providing a new therapy for septic cardiomyopathy [62, 63].

To maintain the essential function of mitochondria,
a series of processes, including biogenesis, fssion, fusion,
and mitophagy are undoubtfully important. Te fssion and
fusion processes work to maintain the number, size, shape,
and biological characteristics of mitochondria. Mitochon-
drial structures together with fusion/fssion processes were
observed in LPS-treated animals at 24 h [55]. Fusion-to-
fssion imbalance was proved to be related to the progression
of sepsis. In sepsis models of endotoxemia and cecal ligation
and puncture (CLP), mitochondrial fusion and fssion were
found to be abnormal, and application of the fssion in-
hibitor could lessen mitochondrial dysfunction [64].

3.5. Complements. Te complement system is activated in
sepsis, and the complement component 5 (C5a) has been
reported to be strongly related with multiorgan failure
during sepsis [65, 66]. Te role of C5a in septic cardio-
myopathy can be explained by two diferent mechanisms.
First, C5a can change the concentration of calcium and ROS
in cardiomyocytes, leading to cardiac dysfunction [67, 68].
Second, C5a can trigger the activation of MAPKs and Akt in
cardiac myocytes and blockage of this activation response by
a p38 inhibitor may attenuate the progression of cardiac
dysfunction [69].

3.6. Exosomes. Exosomes are key regulators in various
immunoregulatory functions of both donor and recipient
cells due to their ability to deliver biological information to
other cells, and they have drawn great attention recently [8].
It is reported that platelet-derived exosomes can induce
vascular and myocardial dysfunction in septic patients
[70, 71]. Furthermore, exosomes containing functional miR-
223 were reported to play cardioprotective role in poly-
microbial sepsis [72]. In view of the efects of exosomes, it
may provide promising therapy for septic cardiomyopathy.

3.7. miRNAs and LncRNAs. Evidence has revealed that
miRNAs and lncRNAs participate in the onset and devel-
opment of septic cardiomyopathy. Several miRNAs, such as
miR-125b, miR-150-5p, the miR-29 family, and the miR-30
family, were reported to be implicated in septic cardiomy-
opathy [73–75]. Te lncRNA MIATwas reported to promote
infammatory response and oxidative stress in LPS-induced
myocardial dysfunction [76]. Overexpression of the lncRNA
SOX2OT could regulate mitochondrial function in mice with
septic cardiomyopathy [77]. Te lncRNA ZFAS1 promoted
septic cardiomyopathy by mediating cardiomyocytes
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apoptosis [78].Tese ncRNAsmay provide novel insights into
the diagnosis and treatment of sepsis-induced cardiac
dysfunction.

4. Diagnosis

Septic cardiomyopathy is a severe complication of cardiac
dysfunction due to systemic infection. To date, there are no
international diagnostic criteria for septic cardiomyopathy.
Here, we will discuss the use of measures depending on
echocardiography (Table 2), serum biomarkers, and he-
modynamic monitoring devices in the diagnosis of septic
cardiomyopathy.

4.1. Echocardiography

4.1.1. Left Ventricular (LV) Dysfunction. Echocardiographic
variables are used to provide information on abnormalities
in cardiac function. Among the many parameters, the LV
ejection fraction (EF) (LVEF) is a fundamental parameter
used to assess LV function [79]. Depressed LVEF and
ventricular dilatation were introduced, and LV dilatation
with a rise in end-diastolic diameter was also reported in
patients with sepsis [3, 10, 80]. However, the concept of LV
dilatation was questioned, and LV dilatation was failed to be
detected in patients with septic shock [81]. Although an
LVEF <40%–50% is commonly used as a diagnostic criterion
for septic cardiomyopathy in many clinical studies
[18, 82, 83], this parameter may not be the best indicator of
LV systolic function because it changes in relation to loading
conditions [84].

Mitral annular plane systolic excursion (MAPSE) has
been suggested as a simple and sensitive parameter for the
assessment of the global longitudinal function of the LV [85].
It is reported that a MAPSE of <11.65mmmay indicate septic
cardiomyopathy with a sensitivity of 85.2% and a specifcity of
70.7% [19], and a decreased MAPSE was a fne predictor of
mortality in patients with septic cardiomyopathy [86]. Cur-
rently, global longitudinal strain (GLS) seems to be more
reliable for the assessment of LV systolic function than LVEF,
and a worse GLS value may predict a higher mortality rate in
patients with sepsis [87, 88]. However, due to the requirement
for high frame rate and image quality, the feasibility of GLS
during septic shock was relatively low (42% for GLS vs 97%
for LVEF) [89, 90]. It was recommended that LVEF could not
be replaced by GLS, and these two parameters are comple-
mentary and should be used together [79].

LV diastolic dysfunction also happens in patients with
sepsis. Early mitral annular velocity (e′) and transmitral
early flling velocity/early mitral annular velocity (E/e′) are
the most signifcant variables used to predict LV diastolic
dysfunction; both e′ and E/e′ are independent and sound
predictors of early mortality in patients with sepsis
[12, 91, 92]. Another clinical study found that LV diastolic
dysfunction correlated with the levels of N-terminal pro-
B-type natriuretic peptide (NT pro-BNP) in critically ill
patients with normal EF values [93]. It is unknown, however,
whether diastolic dysfunction could be used to defne septic
myocardiopathy.

4.1.2. Right Ventricular (RV) Dysfunction. Patients with
sepsis also sufer from RV dysfunction characterized by
decreased EFs and ventricular dilation [16, 94]. Tricuspid
annular systolic excursion (TAPSE) is a measure of RV
longitudinal function, and TAPSE <17mm is generally an
indicator of RV systolic dysfunction [95]. Several clinical
studies have reported that RV dysfunction is linked to the
severity of illness and a high mortality rate in sepsis [10, 96].
However, a meta-analysis failed to fnd the relationship
between RV dysfunction and survival rate [97]. More re-
search needs to be conducted to discern the true value of RV
dysfunction in septic myocardiopathy.

Echocardiography may underestimate cardiac impair-
ment because it fails to take the reduction of afterload into
consideration. For this reason, the parameter “afterload-
related cardiac performance” (ACP) was developed and
described as the ratio between measured cardiac output
(CO) and predicted normal CO at a given systemic vascular
resistance; it quantifes the degree of cardiac impairment,
and low ACP values indicate a poor prognosis in sepsis
[98, 99]. However, as systemic vascular resistance was cal-
culated from three parameters, namely, CO, mean arterial
pressure, and central venous pressure, any deviations are
expected to infuence the accuracy.

4.2. Serum Biomarkers

4.2.1. BNP and NT-proBNP. BNP and NT-proBNP are
peptides released by cardiomyocytes in response to wall
stretch and LV flling pressure [100, 101]. Studies have
shown that plasma BNP and NT-proBNP concentrations are
signifcantly elevated in patients with sepsis and might in-
dicate myocardial dysfunction [102, 103]. However, it is
unknown whether they can serve as reasonable discrimi-
nators of poor prognosis and flling pressure; it seems that
the rise in BNP and NT-proBNP mainly occurred due to
illness severity rather than septic cardiomyopathy [104, 105].

4.2.2. Cardiac Troponin T (cTnT) and Troponin I (cTnI).
Cardiac troponin is a regulatory protein released following
irreversible damage of myocardial cells, which can be de-
tected in various conditions, such as acute coronary syn-
drome, heart failure, sepsis, myocarditis, pulmonary
embolism, renal dysfunction, and acute neurological events
[106]. During sepsis, elevated levels of circulating troponin
were a sign of a heightened risk of death [107]. Te
mechanisms of the increased troponin TNI and TnT are
multifactorial, such as the increased permeability of myo-
cytes in response to infammation, increased wall stress due
to pressure or volume overload, cardiac toxicity by excessive
catecholamines, and renal failure [20, 108, 109]. Although
BNP and troponin levels were proven to be meaningful
values in septic cardiomyopathy, none of them are con-
sidered specifc for its diagnosis.

Researchers are making arduous eforts to seek new clues
concerning septic cardiomyopathy. Proinfammatory cyto-
kines, including IL-6, IL-1β, and TNF-α, are enriched in the
serum of patients with septic cardiomyopathy, and the
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combined detection of these three factors provides both
diagnostic and prognostic values for septic cardiomyopathy
[110]. Besides, circulating histones were found to be a new
mediator in cardiomyocyte injury in patients with sepsis
[111]. Heart-type fatty acid-binding protein, a well-known
cytoplasmic protein and cardiac biomarker, has been re-
ported to be helpful in the recognition of myocardial damage
and the prediction of 28-day mortality [112, 113]. Fur-
thermore, gene-expression profling revealed that CCL2,
STAT3, MYC, SERPINE1, miR-29, and miR-30 families are
closely related with septic cardiomyopathy [114]. Tis as-
sociation needs to be proven by more clinical research,
which may unveil potential biomarkers and clues for di-
agnosing septic cardiomyopathy.

4.3.HemodynamicMonitoringDevices. Temeasurement of
CO and other hemodynamic parameters is particularly
important in septic cardiomyopathy. Pulmonary artery
catheter (PAC) was previously used for hemodynamic
monitoring of critically ill patients. However, the use of PAC
has decreased since this device provides no benefts in pa-
tients’ mortality [115]. Transpulmonary thermodilution
method has been suggested to be an alternative to the PAC to
measure CO and parameters of cardiac performance such as
the cardiac function index (CFI) and global ejection fraction
(GEF). It was reported that a low CFI and GEF obtained by
transpulmonary thermodilution identifed cardiac dys-
function in patients with sepsis [116]. Other devices such as
pulse contour analysis were reliable for a continuous CO
measurement in sepsis [117]. Furthermore, their use in
diagnosis of septic cardiomyopathy needs to be verifed.

5. Treatments

Tere are no standard practices for the treatment of septic
cardiomyopathy yet. Patients with septic cardiomyopathy
may beneft from well-established therapeutic approaches
for sepsis and septic shock, which include the management
of infection and the optimization of hemodynamics by fuid
resuscitation and vasoactive medications [82, 118, 119].
Treatment strategies for septic cardiomyopathy are sum-
marized in Table 3.

5.1. Drug Terapy. It is recommended that treatment of
septic cardiomyopathy should be based on evidence of
defcient organ perfusion, aiming at raising CO to an ade-
quate level [120]. Fluid resuscitation is a fundamental
strategy, and an initial administration of 20ml/kg of bal-
anced crystalloid is recommended to improve septic
hypoperfusion, oxygen delivery, and organ function by el-
evating CO [119, 121]. However, excessive fuid volumes
after initial resuscitation may result in an increase in cardiac
flling pressure and tissue edema, indicating higher mortality
rates [122, 123]; therefore, the hemodynamics status should
be continuously monitored to assess the fuid re-
sponsiveness, thus guiding fuid therapy [124]. Approaches
to determine fuid responsiveness include pulse pressure
variation and systolic pressure variation assessed by arterial
waveform, stroke volume variation by pulse contour

analysis, LV end-diastolic area by echocardiography, global
end-diastolic volume by a transpulmonary thermodilution,
and central venous pressure by central venous catheter [125].

Norepinephrine is the frst-line vasopressor to reverse
hypotension in patients with sepsis due to its vasocon-
strictive efects [119]. With a stronger α-adrenergic efect
compared with β-1, norepinephrine increases afterload
more thanmyocardial function, whichmay decrease CO and
“unmask” cardiac dysfunction. It was reported that phen-
ylephrine could inhibit cardiomyocyte apoptosis, thus
suppressing cardiac dysfunction in septic mice, suggesting
that phenylephrine may be benefcial in septic cardiomy-
opathy [126]. However, the risk of isolated
α-vasoconstriction without β-1 may result in increased
afterload, decreased CO, and worsen hemodynamics [6, 20].

Dobutamine is demonstrated to be the preferred choice
of inotropic drugs for patients with persistent insufcient
CO, despite adequate LV flling pressure or fuid loading
[119]. However, the impact of dobutamine on septic car-
diomyopathy is ambiguous. It was reported that the ad-
ministration of dobutamine may increase cardiac index,
heart rate, and LVEF in septic shock patients [127]. While
recent research showed that dobutamine treatment could
improve survival in septic rats with myocardial dysfunction,
without recovering myocardial function and improving
hemodynamics at the later stage of sepsis [128].

Investigations into other inotropic agents have also been
conducted. Levosimendan, as an inotropic calcium sensitizer,
has been reported to increase CO and systemic hemodynamics
with a minimal increase in oxygen consumption in sepsis and
septic myocardial depression [129–131]. However, the use of
levosimendan did not lead to better performance in terms of
facilitating less severe organ dysfunction or lower mortality
rates among patients with cardiac dysfunction [132–134].

Tachycardia may result in increased oxygen consumption
and reduce diastolic flling, making the use of β-blockers
a potential therapy for septic cardiomyopathy [120, 135, 136].
A randomized controlled trial has revealed that the appli-
cation of esmolol to lower heart rate improved outcome
without impairing myocardial contractility and worsening
hemodynamics in patients with septic cardiomyopathy [137].
However, a recent study involving 126 septic patients with
tachycardia treated with continuous norepinephrine has
revealed that the use of landiolol for managing tachycardia
failed to reduce organ failure [138]. It should also be aware
that the hemodynamics of patients with sepsis are unstable,
and the use of β-blockers may aggravate hemodynamic in-
stability due to its negative inotropic efect on myocardium.

Te vitamin C protocol has been recently explored in
sepsis, and its efect is ambiguous. Several clinical trials re-
ported that the use of the vitamin C protocol did not signif-
icantly improve the outcome of patients with sepsis [139].
Other evidence supports that the efectiveness of the vitamin C
protocol depends on the sepsis subphenotype, with the
hyperinfammatory phenotype correlating with a better clinical
result [140]. As for patients with septic cardiomyopathy, there
is a clinical study demonstrating that the early application of
the vitamin C protocol may provide benefts in terms of
improving organ function and reducing mortality [141].
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5.2. Mechanical Support. Mechanical therapy was also trialed
in septic cardiomyopathy. As an efective tool in common
stress-induced cardiomyopathy, intra-aortic balloon pumping
(IABP) was reported to be benefcial in an animal model of
septic shock with low cardiac index values [142]. Moreover,
clinical studies including two contrasting cases of septic car-
diomyopathy demonstrated that IABPwas only efective in one
case [143]. Separate retrospective clinical studies revealed that
extracorporeal membrane oxygenation (ECMO) was a feasible
treatment for patients with septic cardiomyopathy [144, 145].
Early initiation of ECMO for refractory shock due to septic
cardiomyopathy not responding to medical management has
been shown to have a mortality beneft with survival as high as
50%–70% [144, 146]. Polymyxin-B hemoperfusion to remove
endotoxin has also been reported to be an option for septic
cardiomyopathy [143]. An observational study has revealed
that although the endotoxin activity was not related with septic
cardiomyopathy, endotoxin removal by Polymyxin-B hemo-
perfusion was associated with recovery from septic cardio-
myopathy [147]. Since IABP, ECMO, and Polymyxin-B
hemoperfusion are all invasive strategies that can cause severe
complications, more research is needed to better evaluate their
value in septic cardiomyopathy.

6. Future Directions

Although the indications for treatment of septic cardiomy-
opathy are clinically based on maintaining sufcient organ
perfusion, more thoughtful and careful investigations into
therapeutic strategies of septic cardiomyopathy are warranted.
It should be noted that cardiac performance dynamically
changes due to hemodynamic alterations. Eforts have been
made to characterize cardiovascular phenotypes in patients
with sepsis, and fve diferent profles were identifed using
clinical and echocardiographic data, indicating theoretical ways
to optimize cardiac function [148]. Terefore, understanding
the heterogeneity of the cardiac response to sepsis may provide
a more individual approach to care.

7. Conclusions

Although septic cardiomyopathy has been well recognized
by its high incidence and mortality rates, difculties in di-
agnosis and treatment remain unsolved. Echocardiography
is currently the basic diagnostic method for myocardial
depression in sepsis. Elevations in biomarkers such as BNP
and TNI found in patients with septic cardiomyopathy also
show potential value in diagnosis. Exploration of the
pathogenic mechanisms could additionally provide novel
insights into the treatment of septic cardiomyopathy.
However, due to the lack of a standard defnition of septic
cardiomyopathy, the fndings reported in diferent studies
may be diverse and able to be challenged. More clinical
studies are still needed to better understand septic
cardiomyopathy.
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