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Amultitankmodel experiment is employed to simulate the river-groundwater interaction under rainfall events.These experiments
involve coarse and fine materials and rainfall events of 45 and 65mm/hr. We developed a modified tank model for estimation of
the groundwater table and river levels in these experiments. Parameter training of our tank model includes two algorithms: (i) the
nonincremental learning algorithm-based model can predict the pore water pressure (PWP) in a slope and river under a 65mm/hr
rainfall event (coarsematerial) withNash–Sutcliffe efficiency (NSE) = 0.427 and−0.909 and (ii) the incremental learning algorithm-
based model can predict the PWP in a slope and river with NSE = 0.994 and 0.995. Then, the river-groundwater interaction was
reproduced by a numerical case. The results of the deterministic method of the numerical case and optimized method of the
modified tank model matched well.

1. Introduction

River-groundwater interaction of river-slope systems under
rainfall events is common in riverbank and basin areas.
The general process is described in Figure 1. Estimation of
groundwater is usually complicated as a result of ground-
water-river interactions, which could relate to the permeabil-
ity, hydraulic gradients, and hydrogeological properties in the
slope-river system [1–5]. The hydrological processes of the
river-slope system are strongly linked to stream flow genera-
tion, contamination transport, and slope stability [2–10]. The
deterministic method commonly uses the Darcy-Richards
equation or the Boussinesq equation as hydrological models
to simulate the groundwater flow in a slope [9], and the
models can be further extended to dual-permeability models
for preferential flow simulations [10, 11]. These hydrological
models may be integrated with solute transport models to

analyse contamination risks [12] or with soil mechanicsmod-
els for slope stability analysis [10, 11]. However, solving the
deterministic models numerically is usually computationally
expensive, and the implementation requires detailed inves-
tigation of the geometries and hydraulic properties of the
slope material [11]. Compared to the deterministic method,
a model based on an optimized method such as the tank
model [6] usually does not need material information about
permeability and infiltration. It uses historical monitoring
data for estimating or training parameters of the assumed
model structure [7, 8]. In other words, the method only
needs the historical data to carry out parameter estimation
for the relation between the input and output of the model.
Then the parameters estimated can help decide objectives
like groundwater by inputting infiltration. Therefore, these
optimizedmethods can be applied to a wide range of different
landslide settings, and we estimate that, for more than 90% of

Hindawi
Geofluids
Volume 2017, Article ID 5192473, 11 pages
https://doi.org/10.1155/2017/5192473

https://doi.org/10.1155/2017/5192473


2 Geofluids

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: River-groundwater interaction under rainfall event: (a) initial state; (b) groundwater level raised by rainfall infiltration and river
supply; (c) more rainfall and river supply and overland flow produced; (d) high groundwater table produced by continuous rainfall; (e)
groundwater conversely supplies the river level; (f) increased groundwater accelerates the water flow supply to river; (g) overland flow and
rainfall infiltration decrease; (h) recovery to the initial state.

all landslides, no explicit parameters for soil suction and so
on are available. In our study, a series of physical multitank
model experiments are carried out by simulating ground-
water table changes in consideration of groundwater-river
interactions under rainfall events. A modified conceptual
tank model is used to predict the groundwater changes in
these experiments. Parameter training in a modified tank
model is involved with two algorithms (nonincremental
and incremental learning algorithm). Then a numerical case
based on the deterministic method is compared to our mod-
ified tank model. The remainder of the paper is organized
as follows: Section 2 describes the original tank model and
our modified tank model. Section 3 introduces the materials,
device, and experimental procedure. Section 4 highlights the
results of models of experiments and analysis of the original
and modified conceptual tank model. The performance of
the modified tankmodel with the nonincremental and incre-
mental learning algorithms is introduced and discussed in
Section 5. Section 6 discusses the replicated application of the
modified tank models by a numerical riverbank simulation.
The conclusions are detailed in Section 7.

2. Original and Modified Tank Models

A tank model is a nonlinear theorized calculation to describe
the behaviours of water hydraulic properties [6]. Until now,
simple or multitank models have been used for estimation
of groundwater in a homogenous slope involving many
experimental or real cases [13–18]. The basic mechanism of
the multitank model is as shown in Figure 2(a).

Equation (1) indicates the change of groundwater table
related to infiltration and drainage in a unit of time in every
tank element. Equation (2) shows the infiltration affected by

the perched water table. Equation (3) shows the drainage rate
affected by the current groundwater table.

𝑊1 (𝑡 + 1) − 𝑊1 (𝑡) = 𝐼1 (𝑡) ,

𝑊2 (𝑡 + 1) − 𝑊2 (𝑡) = 𝐼2 (𝑡) − 𝑄2 (𝑡) ,

𝑊3 (𝑡 + 1) − 𝑊3 (𝑡) = 𝐼3 (𝑡) ,

𝑊4 (𝑡 + 1) − 𝑊4 (𝑡) = 𝐼4 (𝑡) − 𝑄4 (𝑡) + 𝑄2 (𝑡) ,

(1)

𝐼2 (𝑡) = 𝑏1𝑊1 (𝑡) ,

𝐼4 (𝑡) = 𝑏2𝑊3 (𝑡) ,
(2)

𝑄2 (𝑡) = 𝑎2𝑊2 (𝑡) ,

𝑄4 (𝑡) = 𝑎4𝑊4 (𝑡) ,
(3)

where 𝑡 and 𝑡 + 1 are the time steps, 𝐼𝑗 is the infiltration,
𝑊𝑗 is the water table, 𝑄𝑗 is defined as drainage, 𝑎𝑗 is a
coefficient indicating the relation between drainage and the
groundwater table, 𝑗 is 1, 2, 3, and 4, and 𝑏1 and 𝑏2 are the
coefficients indicating the relation between surface infiltra-
tion and a perched water table.

Compared to the original tank model, our modified
tank model simplifies the structure of the tank model (Fig-
ure 2(b)). It considers the maximum infiltration ability and
time lag of groundwater induced by the path, material, and
moisture content in the previous condition.

𝑊1 (𝑡 + 1) − 𝑊1 (𝑡) = 𝑎1𝐼1 (𝑡 + Δ) − 𝑄1-2 (𝑡) ,

𝑊2 (𝑡 + 1) − 𝑊2 (𝑡) = 𝑎2𝐼2 (𝑡 + Δ) + 𝑄1-2 (𝑡 + Δ 1)

− 𝑄2 (𝑡) ,

(4)
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Figure 2: Comparison of original and modified multistorage tank models: (a) original multistorage tank model; (b) modified multistorage
tank model; (c) optimizing the infiltration time lag; (d) optimizing the lateral water flow time lag.

𝑄1-2 (𝑡) = 𝑏1-2 (𝑊1 (𝑡) − 𝑊2 (𝑡)) ,

𝑄1-2 (𝑡 + Δ 1) = 𝑏2-1 (𝑊1 (𝑡) − 𝑊2 (𝑡)) ,

𝑄2 (𝑡) = 𝑏2𝑊2 (𝑡) .

(5)

Equation (4) indicates the change of the groundwater table in
a unit of time in every tank element.These equations consider
the time lags resulting from the permeability, infiltration
path, andwater flow path. Equation (5) shows that themiddle
water flow supply (𝑄1-2(𝑡) and 𝑄1-2(𝑡 + Δ 1)) depends on the
deviation of the water head pressure of two object points,
whichmeans that the water flow supply has no fixed direction
and in the meantime still has a time lag (the dotted arrow
represents a reversible process). The drainage rate (𝑄2(𝑡))
is affected by the current groundwater table. Specifically, in
Figure 2(c), the original tankmodel calculates the infiltration
time lag by increasing the number of tanks in a vertical
direction, which introduces more parameters in the model.
Meanwhile, the modified tank model innovatively calculates
the infiltration time lag before rainfall enters the tank. “Δ”
is the time lag between the infiltration and the water table
induced by it. The time lag can be obtained by analysing the
correlation between the water table and infiltration in unit
time [19, 20]. In Figure 2(d), the original does not consider the

short time lag of lateral water flow. The modified tank model
considers the lateral water flow time lag of “Δ 1.” This time
lag can be overcome by the different parameter estimations
of 𝑏1-2 and 𝑏2-1. Furthermore, in the modified tankmodel, the
direction of lateral water flow depends on the balance of both
water tables in the tanks.

3. Experiments and Predictive Model

River-slope systemmodelling includes a surface tank (surface
runoff) and double tanks (slope and river), as shown in
Figure 3. Rainfall is simulated by nozzles. Two pore water
pressure (PWP) sensors are installed at the bottomof the dou-
ble tanks for pore water pressure monitoring (model number
CYY2, Xi’an Weizheng Technology Corp., Xi’an, China)
(diameter: 3 cm; height: 1.6 cm; measuring range: ±10 kPa;
deviation: ±0.2%). The drainage of this system is realized
by a drain hole. Two types of material from Fengdu Ming
Mountain, near Yangtze River Bank, Chongqing, China,
are used (shown in Figures 4(a) and 4(b)). The particle-
size distribution curves are shown in Figure 4(c). For each
group of tank model experiments, we arranged two rainfall
events (45 and 65mm/hr intensity, 36min duration) and
the observation time was 1 hr. Every test in each group was
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Figure 3: River-slope system modelling: (a) schematic diagram and (b) real scene.
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Figure 4: Schematic diagram of modified tank model system: (a) fine material; (b) coarse material; (c) particle-size distribution curves.
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Figure 5: Predictions of original and modified tank models (fine material): (a) PWP in slope and (b) PWP in river.

conducted under similar initial conditions, such as geometry,
material, and initial moisture content, which was tested
by a moisture transducer in the bottom (model number
DS200, Beijing Dingtek Technology Corp., Beijing, China)
(frequency domain sensors: measuring range: 0–100%; res-
olution: 0.1%; deviation: ±2%; with a soil contact area of less
than 20mm2; deviation: ±3%).

Equation (6) indicates the ground water table and river
level in the river-slope system in Figure 5.

𝑊1 (𝑡 + 1) − 𝑊1 (𝑡) = (𝑟 (𝑡 + Δ 1) − 𝑄1 (𝑡 + Δ 1))

− 𝑄1-2 (𝑡) ,

𝑊2 (𝑡 + 1) − 𝑊2 (𝑡) = 𝑟 (𝑡) + 𝑄1-2 (𝑡 + Δ 2) − 𝑄3 (𝑡) ,

(6)

where𝑊1(𝑡 + 1) and𝑊1(𝑡) are the water table in the slope at
times 𝑡+1 and 𝑡;𝑊2(𝑡+1) and𝑊2(𝑡) are the water level of the
river at times 𝑡+1 and 𝑡; 𝑟(𝑡+Δ 1) and𝑄1(𝑡+Δ 1) are the rainfall
and surface runoff at time 𝑡 + Δ 1; Δ 1 is the infiltration time
lag produced by the path, material permeability, and previous
moisture content. 𝑄1-2(𝑡) is the water flow between the slope
and river at time 𝑡;𝑄1-2(𝑡+Δ 2) is thewater flow between slope
and river at time 𝑡 + Δ 2; 𝑄3(𝑡) is the drainage at time 𝑡.

The surface runoff, drainage, and water flow exchanges,
which mainly depend on the pressure water head, are
expressed by

𝑄3 (𝑡) = 𝑏2𝑃2 (𝑡) ,

𝑄1-2 (𝑡) = 𝑎1-2 (𝑃1 (𝑡) − 𝑃2 (𝑡)) ,

𝑄1-2 (𝑡 + Δ 2) = 𝑎2-1 (𝑃1 (𝑡) − 𝑃2 (𝑡)) .

(7)

The water table cannot usually be measured directly by sen-
sors and is often proportional to pore water pressure. Thus,
the final equation (8) is used to calculate the PWP changes in
both slope and river.

𝑃1 (𝑡 + 1) − 𝑃1 (𝑡) = 𝑎1 (𝑟 (𝑡 + Δ 1) − 𝑄1 (𝑡 + Δ 1))

− 𝑎1-2 (𝑃1 (𝑡) − 𝑃2 (𝑡)) ,

𝑃2 (𝑡 + 1) − 𝑃2 (𝑡) = 𝑎2 (𝑟 (𝑡) + 𝑄1 (𝑡 + Δ 1))

+ 𝑎2-1 (𝑃1 (𝑡) − 𝑃2 (𝑡))

− 𝑏2𝑃2 (𝑡) ,

(8)

where 𝑃1(𝑡 + 1) and 𝑃1(𝑡) are the PWP in the slope at times
𝑡 + 1 and 𝑡; 𝑃2(𝑡 + 1) and 𝑃2(𝑡) are the PWP of the river
bottom at times 𝑡 + 1 and 𝑡; 𝑎1, 𝑎2, 𝑎1-2, 𝑎2-1, and 𝑏2 are the
relation coefficients. In the high water content layer, the time
lag of water flow is relatively low; thus, we use the different
coefficients 𝑎1-2 and 𝑎2-1 to refine it.

It should be pointed out that themajor part of PWP could
be static pressure induced by the water table height. Minor
components are seepage force and the difference in pressures
in the available pore space during drier and wetter periods.
Since the tank model is a “grey box model,” we do not know
the exact proportions of static pressure, seepage pressure, and
pressure dynamics in pore space, but all three are included in
our equivalent pore water pressure.

4. A Comparison of the Original and
Modified Tank Models

In this section, the performance of the original and modified
tank models in physical experiments is shown and we



6 Geofluids

Parameters of model

Training

Model

Feeding

Forecasting

R1(t) − R1(t + T) P1(t) − P1(t + T)

P2(t + T) − P2(t + T)

R2(t + T) − R2(t + T)

(a)

Parameters of model

Training

Model

Feeding

Forecasting

R1(t) − R1(t + T) P1(t) − P1(t + T)

t + Δt

P1(t + T) − P1(t + T + Δt)

R1(t + T) − R1(t + T + Δt)

(b)

Figure 6: Comparison of calculations of parameters as constants and as variables: (a) nonincremental learning algorithm for parameters as
constants and (b) incremental learning algorithm for parameters as variables.

introduce the standard Nash–Sutcliffe efficiency (NSE) [21],
which is the most widely used criterion for calibration and
evaluation of hydrological models with observed data. NSE is
dimensionless and is scaled onto the interval [negative infin-
ity to 1.0]. NSE is taken to be the “mean of the observations”
[22] and if NSE is smaller than 0, the model is no better
than using the observed mean as a predictor. Monitoring
data (rainfall and PWP) from physical experiments of an
event with a rainfall intensity of 45mm/hr are employed to
estimate the parameters of the original and modified models.
The monitoring data (PWP) from the event with a rainfall
intensity of 65mm/hr are used to validate the predictions of
the original and modified models. Figure 6 shows the results
of the original and modified tank models (fine material).

In Figure 5(a), the left tank means the slope part of the
river-slope system.Theoriginal tankmodel does not consider
the groundwater-river exchanges. It only considers the water
flows from the slope to the river. Thus, in the left tank, the
water table is underestimated. In contrast, the modified tank
model considers the supply from the river in the beginning.
Therefore, the reduction of the PWP is slow, which matches
the real situation well. The NSE of the original tank model
is 0.438, while the NSE of the modified tank model is 0.973.
In Figure 5(b), the right tank represents the river part of the
river-slope system. It is found that both the original andmod-
ified tank models can describe the process well. This may be
because thewater level is not so sensitive to amount of rainfall
added to the river compared to porositymaterial-soilmass. In
other words, adding the same amount of rainfall can lead to
a groundwater table in the soil that is higher than the river
level, which also produces more prediction errors because of
the porosity. Thus, the error of river level estimation is not
obvious for either model.The NSE of the original tank model
is 0.972 while that of the modified tank model is 0.955.

5. Nonincremental Constants and
Incremental Learning Algorithm Variables
in the Modified Tank Model

In this section, the performance of nonincremental constants
and incremental learning algorithm variables in a modified
tank model are shown and the NSE is still used to evaluate
the use of two types of parameters that affect the modified
tankmodel. An incremental learning algorithm is introduced
which considers the parameters of the modified tank model
as variables instead of constants [23].The same terminology is
used in computer science for machine learning, where model
parameters are tuned using an abundance of observations. In
otherwords, we used the previous observed values to train the
parameters of the model to predict the object in the next time
domain and then repeated the process in the following time
domain, which is similar to the dynamically updatedmethod.
A comparison of calculations of parameters as constants and
as variables is shown in Figure 6. We use the coarse material
experiments to show the process.

For the nonincremental learning algorithm,𝑅1 and𝑃1 are
all the monitoring data from rainfall event 1, which consist
of rainfall and PWP under different time domains (𝑡 ⋅ ⋅ ⋅ 𝑇).
All the data are used to train the parameters of the model
(constant parameters). Then these parameters are fed into
the model. When the new rainfall event 𝑅2 is input into the
model, it can make predictions of 𝑃2 under different time
domains. For the incremental learning algorithm, parts of
𝑅1 and 𝑃1, such as data under 𝑡 to 𝑡 + 𝑇, are used to train
the parameters of the model. After tuning the parameters,
the model can predict the next 𝑃1 under 𝑡 + 𝑇 + Δ𝑡 in the
same rainfall event by reading the rainfall 𝑅1 under the time
domain 𝑡+𝑇+Δ𝑡.Then, the newmonitoring data under time
domain 𝑡 +Δ𝑡 +𝑇+Δ𝑡 are used to train the parameters again
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Figure 7: A comparison of nonincremental and incremental learning algorithms: (a) PWP in slope and (b) PWP in river.
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Figure 8: Changes of parameters in incremental learning algorithm: (a) parameters in the left tank and (b) parameters in the right tank.

(variable parameters) and thenmake the new prediction.The
cyclic action means that incremental learning takes place.

Figure 7 shows the performances of the models based on
the parameter types resulting from the two learning algo-
rithms (nonincremental constants and incremental learning
algorithm).

The distribution of pores in coarse material is more
uncertain than that in fine materials. Thus, the error of the
modified tank model using constant parameters is obvious.
The NSEs of the modified tank model with constant para-
meters are 0.427 and −0.909. As shown in Figure 7, using

the incremental learning algorithm, the modified tankmodel
with variable parameters has higher NSEs of 0.994 and
0.995 in the slope and river, respectively. The model based
on the incremental learning algorithm can more accurately
predict the PWP trend but requires continuous parameter
estimation. By contrast, the model based on the nonincre-
mental learning algorithm only needs to carry out parameter
estimation once based on historical data but sometimes has
low accuracy.

Figure 8 indicates the changes of parameters when using
the incremental learning algorithm.
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Figure 10: Permeability coefficient (fine material): (a) matric suction versus conductivity and (b) matric suction versus water content.

It is found that the parameters basically reflect the change
of the PWP trend.

(1) 𝑎1 (PWP sensitivity to rainfall): an increasemeans the
PWP accelerates upward; a decrease means the PWP
rate decreases.

(2) 𝑏1-2: an increasemeans a highwater flowoutput, while
a decrease means a low water flow output.

(3) 𝑎2 (PWP sensitivity to rainfall): an increase means
that the PWP accelerates upward; a decrease means
that the PWP rate decreases.

(4) 𝑏2-1: an increasemeans a high water flow input while a
decrease means a low water flow input. 𝑏2: an increase
means a high drainage rate while a decrease means a
low drainage rate.

6. Replication of Numerical Model

Numerical slopes using the transient groundwater mode of
SEEP/W [24] are employed to reproduce the applications of
our modified tank model. The estimation of matric suction
and conductivity uses Fredlund and Xing’s method [25], as
shown in Figures 10(a) and 13(a). The link between matric
suction and water content uses themodel in Kunze et al. [26],
as shown in Figures 10(b) and 13(b). In Figure 9, the slope
is 2m deep and 3.8m long with an angle of 18 degrees and
homogeneousmaterials (mainmass).The emptymaterial and

the surface layer have high permeability (1 − 𝑒4m/s). The
residual (99%) and initial water content (99.99%) in them
are very close when simulating the river basin and surface
runoff path.The design ensures that the rainfall and potential
surface runoff flow into the river swiftly. The toe of the river
basin has a drainage point (the pressure head is 0m). The
grid size is 0.1m × 0.1m.The observation time of the process
is 4 hours and the rainfall input lasts 1 hr. The procedures
involving fine and coarse materials are as follows:

(1) 𝑃left (pore water pressure in the slope) and 𝑃right
(pore water pressure in the river) under rainfall of
45mm/hr are used as training data for the parameters
of the modified tank model.

(2) 𝑃left and 𝑃right induced by a rainfall event of 65mm/hr
are predicted using the modified tank model.

The slope part and the river part are treated as a double tank
(the left tank is the slope part; the right tank is the river part).
Figure 11 indicates the change of the PWP in the left and right
tanks under rainfall intensities of 45 and 65mm/hr. Figure 12
indicates prediction of the modified tank model based on the
parameters from the nonincremental learning algorithm.

Figure 14 indicates the change of PWP in the left and right
tanks under rainfall intensities of 45 and 65mm/hr. Figure 15
indicates the prediction of the modified tank model based
on the parameters given by the nonincremental learning
algorithm.



Geofluids 9

0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6
Time (hr)

Left tank
Right tank

4

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6
Po

re
 w

at
er

 p
re

ss
ur

e (
kP

a)

(a)

0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6
Time (hr)

Left tank
Right tank

0

1

2

3

4

5

6

7

Po
re

 w
at

er
 p

re
ss

ur
e (

kP
a)

(b)

Figure 11: Monitoring data of numerical model (fine materials): (a) 45mm/hr rainfall intensity and (b) 65mm/hr rainfall intensity.
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Figure 12: Prediction by modified tank model (fine material): (a) left tank and (b) right tank.

7. Concluding Remarks

Modelling of river-groundwater interactions under rainfall
events is executed based on tank model experiments. These
experiments involve fine (coarse)materials and rainfall inten-
sities of 45 and 65mm/hr.We developedmodified tankmod-
els with nonincremental and incremental learning algorithms
to describe the process. A numerical case reproduces the
river-groundwater interactions and validates the prediction
by our modified model. Future work will take the direction
of obtaining field measurements in order to compare model
predictions against field observations.

Currently, the valuable conclusions include the following:
(1) The modified tank model not only describes the

changes of PWP in the slope and river more accurately than
the original model but also has a simpler structure.

(2) The model based on the incremental learning algo-
rithm can more accurately predict the PWP trend but needs
continuous parameter estimation. The model based on the
nonincremental learning algorithm only needs to perform
parameter estimation once, based on historical data, but has
low accuracy.

(3)Themodified tankmodel canmatch the deterministic
method well based on the numerical model case.
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Figure 13: Permeability coefficient (coarse material): (a) matric suction versus conductivity and (b) matric suction versus water content.
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Figure 14: Monitoring data of numerical model (coarse materials): (a) 45mm/hr rainfall intensity and (b) 65mm/hr rainfall intensity.

0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6
Time (hr)

Left tank observation
Left tank prediction

3

3.5

4

4.5

5

5.5

6

6.5

Po
re

 w
at

er
 p

re
ss

ur
e (

kP
a)

(a)

0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6
Time (hr)

Right tank observation
Right tank prediction

3

3.5

4

4.5

5

5.5

6

6.5

Po
re

 w
at

er
 p

re
ss

ur
e (

kP
a)

(b)

Figure 15: Prediction by modified tank model (coarse material): (a) left tank and (b) right tank.
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