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Formation water chemistry, sulfate sulfur isotopes, and associated H
2
S contents and sulfur isotopes were measured from the

Ordovician in Tazhong area, Tarim Basin. The aim is to elucidate the effects of geochemical composition of formation water on
thermochemical sulfate reduction (TSR) and potential usage of SO

4
/Cl ratios as a new proxy for TSR extents in areas, where H

2
S

and thiaadamantanes (TAs) data are not available. The formation water has SO
4
/Cl ratios from 0.0002 to 0.016, significantly lower

than 0.04 to 0.05 from 3 to 7 times evapoconcentrated seawater.Thus, the low values are explained to result fromTSR. Furthermore,
the SO

4
/Cl ratios shownegative correlation relationships to TAs andH

2
S concentrations, indicating that TSR occurred in a relatively

closed system and SO
4
/Cl ratio can be used to indicate TSR extents in this area. Extensive TSR in the Cambrian in the Tazhong

area, represented by low SO
4
/Cl ratios and high H

2
S and TAs concentrations, is accompanied by formation water with high TDS

and Mg concentrations, indicating the effects of water chemistry on TSR under a realistic geological background. In contrast, the
low TSR extent in the Ordovician may have resulted from limited TSR reaction duration and total contribution of aqueous SO

4

2−.

1. Introduction

Thermochemical sulfate reduction (TSR), a process whereby
aqueous sulfate and petroleum compounds react at tem-
peratures higher than 120∘C (C

𝑛
H
2𝑛+2

+ SO
4

2− → CO
2

+ H
2
S + altered petroleum), is considered to result in

elevated H
2
S concentrations in many carbonate reservoirs

[1–8]. Significant advance has occurred on mechanisms of
TSR. A great number of organic sulfides such as thiols and
thiolanes [7, 9, 10] and 1- to 3-cage thiadiamondoids with 1
to 4 sulfur atoms were detected from TSR areas [11–14]. The
presence of these organic sulfur compounds, especially labile
sulfur compounds such as 1-pentanethiol or diethyl disulfide,

has been experimentally showed to significantly increase the
rate of TSR [15]. However, hydrocarbons cannot directly
react with solid sulfate in temperature from 180∘C to 350∘C
in the laboratory [16]. Reactions between solid sulfate and
gaseous hydrocarbon are quite slow even under temperatures
of several hundred degrees Celsius (Kiyosu et al., 1990).Water
is the solvent for chemical species and provides the aqueous
matrix for all chemical reactions. Theoretical calculations by
Ma et al. [17] showed that bisulfate ions (HSO

4

−) and/or
magnesium sulfate contact ion-pairs (MgSO

4
CIP) are most

likely reactive sulfur species involved in TSR. Experiments
indicated that the concentrations of MgSO

4
CIP are related

to temperatures and SO
4
/Mg ratios in the solutions [18, 19].
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Consequently, water chemistry and geologic environment
can strongly influence the TSR process [8, 17]. However, the
effects of water chemistry on TSR are limited to theoretical
and experimental studies. More researches in the real geolog-
ical setting should be done.

H
2
S, common in the Ordovician carbonate reservoir

in the Tazhong area, is generated by TSR [20, 21]. H
2
S

concentration from theOrdovician in the Tazhong area is less
than 10%, which is lower than that in the Khuff formation in
Abu Dhabi (up to 50% [6]), the Nisku Formation in western
Canada (up to 31% [22]), and the Feixianguan Formation in
the northeastern Sichuan basin (up to 17% [23, 24]). The low
concentrations of H

2
S in the Tazhong area are considered

to result from TSR process which is limited by the burial
temperature [25, 26]. Besides, TSR process can be limited
by water chemistry [8]. The Tazhong area is chosen as a
research target and compared with the northeastern Sichuan
Basin because relatively abundant information about TSR
and formation water was published by previous studies. The
work presented here seeks to address the following research
questions: (1) what is the effect of water chemistry on TSR
process and/or extent? (2)Why TSR extent in the Ordovician
Yingshan Formation in the Tazhong area is low? A better
understanding about the TSR mechanism will be provided
through this work.

2. Geological Setting

2.1. Structural Units and Stratigraphy. Tazhong area is located
in the center of Tazhong Uplift, Tarim Basin, northwest
China. It is surrounded by the Manjiaer Sag, South Depres-
sion, Bachu Uplift, and Tadong Uplift (Figure 1(a)). It can
be divided into number 1 Fault-slope Zone, North Slope,
number 10 Structural Belt, Central Faulted Horst Belt, South
Slope, and East Burial Hill Zone (Figure 1(b)). Tazhong
Uplift is one of the major petroleum production areas in the
Tarim Basin. Oils and natural gases have been found in the
Cambrian-Ordovician carbonate reservoirs and the Silurian-
Carboniferous clastic reservoirs [27].

The general stratigraphic columns of the Tazhong area
were described previously [20, 25, 28, 29]. Briefly, the Cam-
brian strata are composed of tidal, platform, and platform-
marginal carbonates. The Ordovician strata include the
Upper Ordovician Sangtanmu (O

3
s) and Lianglitage (O

3
l)

Formations and the Lower and Middle Ordovician Yingshan
(O
1-2y) and Penglaiba (O

1
p) Formations (Figure 2). The

Lower Ordovician is predominantly composed of thick,
platform facies dolomite in the lower part and limestone
in the upper part. The Upper Ordovician is represented by
reef and shoal facies packstone and bioclastic limestone and
slope facies limestone and marlstone [9] The Silurian to the
Carboniferous sequence consists of marine sandstones and
mudstones. The Permian strata are composed of lacustrine
sediments and volcanic rocks. The Mesozoic and the Ceno-
zoic are nonmarine sandstones and mudstones [20, 30, 31].

Anhydritic dolomites and anhydrite were observed in
supratidal facies of the Middle Cambrian. Bedded anhydrites
of 44m∼98m thick are present in the eastern ZS1 and ZS5
wells [21]. No anhydritic carbonate was observed in the

Ordovician, which makes the geological background of TSR
in the Tazhong area differentiate from the northeast Sichuan
Basin.

2.2. Burial andThermal History. TZ12 is located at the central
part of number 10 Structural Belt (Figure 1(b)). Based on
the burial history that rebuilt on well TZ12 (Figure 3(a)),
the Lower Ordovician reached temperature of 120∘C at the
late Cretaceous and then reached to the maximum depth of
5000m and temperature of 150∘C at present day, whereas the
Triassic Feixianguan Formation has reached temperature of
150∘C since the end of the Triassic and reached temperature
of 200∘C at the middle Jurassic (Figure 3(b)). TSR occurred
in the limestone reservoirs of the Yingshan Formation above
a temperature of 120∘C [20, 29].

3. Sample Collection and Analysis

A total of 17 water samples were collected from wells in
the Tazhong area. These samples are used for analysis of
water chemistry and S isotopic compositions of SO

4

2−. 7
H
2
S samples were collected and analyzed for S isotope. TAs

concentrations in oils are obtained from previous studies.
pH was measured using an electrode method within 2

hours after sampling in the field. TDS were measured by the
gravimetric method according to Clescerl et al. [32]. After
filtration with a 0.45ml filter, 0.5ml samples of the brines
were dried at 180∘C until a constant weight was reached.
The anions were measured by ion chromatography following
appropriate dilution (5000 times for Cl and 1000 times for
Br and SO

4
) with a Dionex ICS900 instrument with an AS19

ion-exchange column. The analytical precisions were better
than 0.8% for Cl and 4.3% for SO

4

2−. The major cations
in the diluted solutions (5000 times for all cations) were
analyzedwith aVarianVista-Pro inductively coupled plasma-
optical emission spectrometer (ICP-OES) with an analytical
precision better than 5%.

Dissolved SO
4

2− was quantitatively precipitated as BaSO
4

by reacting with excess BaCl
2
. This reaction was performed

at a pH between 3 and 4 with HCl to prevent precipitation
of BaCO

3
. The precipitation of BaSO

4
was then filtered using

a Buchner funnel and washed with distilled water. And then
precipitation of BaSO

4
was dried and used for sulfur isotopic

analysis on a Thermo Finnigan Delta S mass spectrometer.
H
2
S was precipitated immediately in the field by the quantita-

tive reactionwith excess zinc acetate, Zn(CH
3
COO)

2
, to form

ZnS at a pH in the range of 10-11 (the pH was adjusted with
NaOH). The solution with ZnS was put aside overnight and
then filtered with a 0.45𝜇m filter on site. In the laboratory,
ZnS was transformed to Ag

2
S by adding HCl and passing

the evolved H
2
S under an inert atmosphere through AgNO

3

solution at a pH of 4. Ag
2
S were used for sulfur isotopic

analysis on a Thermo Finnigan Delta S mass spectrometer
calibrated by a series of International Atomic Energy Agency
standards. Results are presented as 𝛿34S relative to the Vienna
Canyon Diablo Troilite (VCDT) standard. The reproducibil-
ity for 𝛿34S measurement is ±0.3‰.
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Figure 1: (a) Map of the Tarim Basin showing tectonic units and location of Tazhong Uplift; (b) map of the study area showing geological
tectonics and location of wells from where formation waters were collected.

4. Results

4.1. Water Chemistry. Chemical compositions of formation
water are shown in Table 1. The Yingshan Formation (O

1-2y)
formation waters have Na+ concentrations ranging from
20140mg/L to 64000mg/L and Cl− concentrations ranging

from 50861mg/L to 126000mg/L, characterized by Na/Cl
molar ratios of 0.54∼0.89 with an average of 0.74. The
range of SO

4

2− concentrations is from 31mg/L to 891mg/L.
The SO

4
/Cl ratios (expressed in weight units) range from

0.0002 to 0.016 with a mean value of 0.005 (SO
4
/Cl ratio

of seawater is 0.144). The range of Mg2+ concentrations of
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Figure 2: Stratigraphic column for the Tazhong Uplift.

O
1-2y formation waters is from 92mg/L to 1070mg/L with an

average of 638mg/L, and the Mg/Cl ratios lie between 0.002
and 0.014 with amean value of 0.007 (Mg/Cl ratio of seawater
is 0.067). Na/Cl molar ratios of formation water are close to
that of seawater (0.86). SO

4
/Cl andMg/Cl ratios of formation

water are significantly depleted compared to seawater and
vary largely compared to Na/Cl molar ratios.

The Cambrian formation water has SO
4

2− concentration
of 182mg/L, Cl− concentration of 164000mg/L, SO

4
/Cl ratio

of 0.001 which is lower than most of the O
1-2y formation
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Figure 4: Sulfur isotopic composition of water, H
2
S, and anhydrite.

Sulfur isotopic of bedded anhydrite is from Cai et al. [10]. Sulfur
isotopic of H

2
S in the Cambrian is from Cai et al. [21].

water. The Cambrian formation water has Mg2+ concentra-
tion of 25500mg/L and Mg/Cl ratios of 0.155 which is higher
than that of the O

1-2y formation water.

4.2. Sulfur Isotopic Composition. 𝛿34SH2S values in the O
1-2y

carbonate reservoir range from 11.9‰ to 16.3‰ with an
average of 14.2‰ (Table 1). 𝛿34S value of H

2
S from the

Cambrian is 33‰ which is significantly higher than that
from the O

1-2y carbonate reservoir. 𝛿34SSO4 values of the
O
1-2y formation water range from 22.7‰ to 29.8‰ with

an average of 26‰ which is slightly heavier than that of
coeval seawater (Figure 4). 𝛿34S values of the Cambrian
bedded anhydrite lie between 26.2‰ and 33.7‰, which is
similar to the Cambrian seawater. 𝛿34S values of H

2
S from

theOrdovician are lighter than that of theCambrian seawater,
theOrdovician seawater, and theCambrian bedded anhydrite
(Figure 4). Sulfur isotope fractionation between SO

4
andH

2
S

in the Ordovician lies between 8.7‰ and 12.3‰ with an
average of 10.6‰.

5. Discussion

5.1. Sulfur Isotope Composition and Fractionation. H
2
S from

the Ordovician carbonate reservoir in this and previous
studies have 𝛿34S values from 12‰ to 16‰ which are 15‰∼
20‰ lighter than the counterpart in the Cambrian (33‰)
[10, 21, 34]. The large differences indicate that the H

2
S in the

Ordovician was probably generated from in situ TSR rather
than TSR that happened in the Cambrian [13, 21]. A positive
relationship exists between 𝛿34SH2S values and 𝛿

34SSO4 values
(Figure 5(a)). 𝛿34SSO4 values tend to increase with a decrease
of SO
4

2− concentrations in the formation water (Figure 5(b)).
This indicates that 𝛿34S values of H

2
S are related to those of

the remaining SO
4

2−.There is a positive relationship between
𝛿34SSO4-H2S and SO

4
/Cl ratios (Figure 5(c)), likely indicating

that the more dissolved SO
4

2− is converted to H
2
S, the

smaller sulfur isotope fractionation occurs. This may imply
that 𝛿34SH2S values are controlled by both 𝛿

34SSO4 values and
TSR extent.

Sulfur isotope fractionation is nearly negligible if com-
plete conversion of the available sulfate during TSR [5]
(Krouse, 2001). Sulfur isotope fractionation is observed when
only part of sulfate was reduced during TSR [35]. H

2
S in

the Cambrian carbonate reservoir has 𝛿34SH2S values close
to coeval bedded anhydrite (Figure 4), whereas H

2
S in the
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Figure 5: Relationship between (a) 𝛿34SSO4 and 𝛿
34SH2S; (b) SO4/Cl and 𝛿

34SSO4; (c) SO4/Cl and 𝛿
34SSO4-H2S.

Ordovician carbonate reservoir has 𝛿34SH2S values lighter
than coeval seawater (22∼26‰, [36]) and formation water
(Figure 4). 𝛿34SSO4-H2S differences of the Ordovician in the
study area fall within a range of 8.7‰ to 12.3‰ with a
mean value of 10.6‰ (Table 1). The differences of 𝛿34S
values between H

2
S and SO

4

2− in the Ordovician carbonate
reservoir are higher than those of the Khuff Formation (2‰
to 3‰; [6]). This is probably due to the different geologic
settings between the Abu Dhabi and the Tazhong area. TSR
in the Khuff Formation of Abu Dhabi happened in the gas
intervals with faster sulfate reduction than supply of reactive
sulfates from anhydrite dissolution; consequently, almost all
dissolved SO

4

2− are converted into H
2
S and thus H

2
S shows

similar 𝛿34S values to the parent anhydrite [6]. In contrast,
TSR in the Tazhong area may have happened at the oil-
water transition zone [13, 14, 21]. TSR around the oil-water
transition zone may have not consumed all the dissolved
SO
4

2−; 34SO
4

2− may have been reduced preferentially as

the result of kinetic isotopic fractionation; thus, significant
𝛿34SSO4-H2S differences are observed. Similar cases were
reported from gas-water transitions in local areas from the
western Canadian Basin [5] and the northeastern Sichuan
Basin (Cai et al., 2010).The relatively lowerH

2
S concentration

and higher 𝛿34SSO4-H2S differences in the O
1-2y Formation

than those in the Cambrian may indicate that only part of
the dissolved SO

4

2− was reduced in situ in the Tazhong area,
and TSR in the Ordovician is in the early stage. Zhang et al.
[25] and Su et al. [26] also suggested that the overall TSR
extent in the Ordovician of the Tazhong area is limited by
the burial temperatures that reservoirs experienced. In other
words, TSR extent is low and dissolved SO

4

2− is excessive for
in situ TSR in the Ordovician of the Tazhong area. SO

4
/Cl

ratios, relating to the remaining dissolved SO
4

2− amounts in
formation water, probably can be used as a proxy of in situ
TSR extent under some circumstances, where H

2
S and TAs

concentrations are unavailable.
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Figure 6: Relationship between (a) SO
4
/Cl ratios and H

2
S concentrations; (b) SO

4
/Cl ratios and TAs concentrations.

5.2. SO4/Cl Ratio: A Potential Proxy of TSR Extent

5.2.1. Effects ofWater Evolution on SO4/Cl Ratio. When initial
seawater is evaporated and concentrated to 10 times, SO

4
/Cl

ratio of seawater decreases from 0.144 to 0.04 as the result of
the precipitation of sulfates [37, 38]. TDS of formation water
in the study area lies between 84 g/L and 206 g/L with an
average of 144 g/L, which is 3 to 7 folds of seawater (35 g/L).
SO
4
/Cl ratios of 3 times and 7 times concentrated seawater

are 0.05 and 0.04, respectively. Whereas the O
1-2y formation

water has SO
4
/Cl ratios from 0.0002 to 0.016, which are

significantly lower than that which can be generated from
the seawater evaporation. Assuming that the Cambrian to
the Middle Ordovician seawater has a similar SO

4
/Cl ratio,

formation waters from both the Cambrian and O
1-2y evolved

from evaporated seawater alone are expected to have SO
4
/Cl

ratios higher than 0.04; thus, it is unlikely for the mixing of
evaporated formation water between the Cambrian and the
O
1-2y Formation to have the low SO

4
/Cl ratios (<0.016).

5.2.2. Consumption of Aqueous SO4
2− by TSR. TSR is ubiq-

uitous in the carbonate reservoirs the Tazhong area [13, 20,
21, 29, 39, 40]. TSR in the Cambrian is more extensive than
that in the Ordovician, as higher H

2
S concentration, higher

TAs concentration, and lower SO
4
/Cl ratio were observed

(Table 1). TSR consumes dissolved SO
4

2−, leading to lower
SO
4
/Cl ratios in the formation water than original seawater.

The depletion of SO
4

2− in the O
1-2y formation water was

not compensated by anhydrite dissolution as no anhydrite or
anhydritic carbonate rocks develop in the Ordovician strata
(Figure 2).

H
2
S, a direct product of TSR, can dissolve in formation

water, precipitate as pyrite, and be incorporated into oils
and solid bitumens producing alkylthiolanes, alkylthiols, and
alkyl 2-thiaadamantanes [7, 13, 21]. Thiaadamantanes (TAs)
concentrations in petroleum are considered to better reflect
TSR extents because TAs is quite stable even under high

temperature [13, 14, 41]. However, TAs concentrations are
only measured in several wells. Negative relationships exist
in SO
4
/Cl ratios versus H

2
S concentrations and SO

4
/Cl ratios

versus TAs concentrations (Figures 6(a) and 6(b)). This
indicates that SO

4

2− was transformed to H
2
S by TSR and

subsequently to incorporate into TAs in a relatively closed
system. Thus, SO

4
/Cl ratio is expected to be a good proxy

to reflect TSR extent if they are not significantly changed by
water mixing or anhydrite dissolution.

5.3. Influence of Water Chemistry on TSR Initiation. TSR
is commonly observed in carbonate reservoirs with high-
temperature, but it is difficult to repeat the TSR process in
the laboratory under conditions resembling nature.Dissolved
SO
4

2−, with symmetrical molecular structure and spherical
electronic distributions, have extremely low reactivity in the
absence of catalysis [17]. TSR reactions that occur in natural
environments are most likely to involve magnesium sulfate
(MgSO

4
) rather than “free” dissolved sulfate ions (SO

4

2−) or
solvated sulfate ion-pairs. MgSO

4
has been proved to be an

effective catalysis for TSR in the laboratory [17, 42]. MgSO
4

exists as a main magnesium-bearing specie in solutions with
Mg2+ being dominant [43]. As temperature increases,MgSO

4

solutionswere separated intoMgSO
4
-rich phase andMgSO

4
-

poor phase due to the formation of the complex Mg2+-SO
4

2−

ion association in the fused silica capillary capsules, and
the phase separation temperature decreases with increasing
Mg/SO

4
ratios [19]. This indicates that formation water with

highMg concentrations and high temperature is preferable to
formMgSO

4
and initiate TSR.

Figures 7(a), 7(b), and 7(c) show a negative relationship
betweenMg concentrations and SO

4
/Cl ratios, a positive rela-

tionship betweenMg concentrations andH
2
S concentrations,

and a positive relationship between Mg concentrations and
TAs concentrations. This indicates that the TSR extent is
high in formation water with high Mg concentrations, which
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Figure 7: Relationship between (a) SO
4
/Cl ratios and Mg concentrations; (b) H

2
S concentrations and Mg concentrations; (c) TAs

concentrations and Mg concentrations; (d) SO
4
/Cl ratios and TDS; (e) H

2
S concentrations and TDS; (f) TAs concentrations and TDS.

prove the catalysis of MgSO
4
. TDS concentrations show a

negative correlation with SO
4
/Cl ratios, a positive correlation

with H
2
S concentrations, and a positive correlation with

TAs concentrations (Figures 7(d), 7(e), and 7(f)). This also
indicates the catalysis of MgSO

4
as Mg concentration is in

proportion to TDS in this study.
Mean Mg/Cl ratios in the formation water from the

Yingshan Formation is 0.007, which is similar to that from
the Feixianguan Formation (0.009 [44]). But averageMg/SO

4

ratio in the formation water from the Yingshan Formation
is 6.24, which is significantly higher than that from the
Feixianguan Formation (0.035 [44]). The low Mg/SO

4
ratios

in the formation water from the Feixianguan Formation
resulted from the high SO

4
concentration contributed by

anhydrite dissolution. The limitation on TSR initiation from
low Mg/SO

4
ratios in the Feixianguan Formation was prob-

ably compensated by the high temperature in the reservoir
(Figure 3(b)). Similarly, the limitation on TSR initiation from
low temperature in the Yingshan Formation was compen-
sated by the high Mg/SO

4
ratios in the formation water.

Duration time of TSR in the Feixianguan Formation is much
longer than that in the Yingshan Formation as temperature
of the Feixianguan Formation has reached 200∘C since the
Middle Jurassic (Figure 3(b)). And reaction rate of TSR
in the Feixianguan Formation is also faster than that in
the Yingshan Formation. Moreover, contribution of total
aqueous SO

4

2− in the Feixianguan Formation is more than
that in the Yingshan Formation as many anhydrites develop
in the Feixianguan Formation. These are probably the main
reasons for the lower H

2
S concentrations in the Tazhong area

than that in the northeast Sichuan Basin.

6. Conclusions

Formation water is the solvent for sulfates, and water chem-
istry has a great influence on TSR which explain the low TSR
extent in the Tazhong area.

(1) MgSO
4
contact ion pair in formation water is catalyst

for TSR. High Mg/SO
4
ratios and high temperatures are

preferable to form MgSO
4
contact ion pair in solutions and

thus will increase TSR extent. High Mg/SO
4
ratios of the

O
1-2y formation water compensated the low temperature

which would limit the initiation of TSR in the Tazhong area.
(2) The lower TSR extent in the Tazhong area is limited

by the shorter reaction time and less total aqueous SO
4

2−

contribution in the reservoir.
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