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This study couples an iterative sparse coding in a transformed space with an ensemble smoother with multiple data assimilation
(ES-MDA) for providing a set of geologically plausible models that preserve the non-Gaussian distribution of lithofacies in a
channelized reservoir. Discrete cosine transform (DCT) of sand-shale facies is followed by the repetition of K-singular value
decomposition (K-SVD) in order to construct sparse geologic dictionaries that archive geologic features of the channelized
reservoir such as pattern and continuity. Integration of ES-MDA, DCT, and K-SVD is conducted in a complementary way as
the initially static dictionaries are updated with dynamic data in each assimilation of ES-MDA. This update of dictionaries
allows the coupled algorithm to yield an ensemble well conditioned to static and dynamic data at affordable computational
costs. Applications of the proposed algorithm to history matching of two channelized gas reservoirs show that the hybridization
of DCT and iterative K-SVD enhances the matching performance of gas rate, water rate, bottomhole pressure, and channel
properties with geological plausibility.

1. Introduction

Calibration of a subsurface system is an essential process to
forecast fluid behaviors in a variety of geoenvironments such
as aquifers, geothermal reservoirs, and petroleum reservoirs.
History matching is an inverse process to find reservoir
model parameters honoring observations by integration of
static (e.g., core, logging, and seismic) and dynamic data
(e.g., oil and gas rate, water cut, bottomhole pressure, and
subsidence/uplift) [1]. Ensemble-based data assimilation
approaches have been successfully utilized for history match-
ing to provide subsurface models that are well conditioned to
observations. For example, the ensemble Kalman filter
(EnKF) [2–5], ensemble smoother (ES) [6, 7], and ES with

multiple data assimilation (ES-MDA) [8–10]. However, the
ensemble-based data assimilation approaches have difficulty
in preserving non-Gaussian distributions of model parame-
ters such as lithofacies [11–14]. In the ensemble-based data
assimilation approaches, model parameters lose the non-
Gaussianity of their original distributions that are initially
constrained and the distributions of the model parameters
get close to Gaussian ones.

Shin et al. [14] and Zhou et al. [15] suggested using
normal score transform in the ensemble-based data assimila-
tion approaches to preserve non-Gaussian distributions of
model parameters. Non-Gaussian model parameters are
transformed into Gaussian model parameters using normal
score transform, and then finally, updated model parameters
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are backtransformed. Moreover, transformation can take
advantage of parameterization if the number of essential
transformed parameters is smaller than the number of origi-
nal parameters in terms of saving computational cost and
figuring out main features of parameters. For example,
the discrete cosine transform (DCT) [16–21], fast Fourier
transform [22, 23], grid connectivity transform [24], level
set [13, 25], and sparse geologic dictionaries [26, 27] have
been applied to reservoir characterization. In particular,
Fourier transform-based methods such as DCT are capable
of capturing essential traits such as main shapes and patterns
of a facies channel reservoir [16, 17] but reveal a deficiency in
describing a crisp contrast among different facies because of
data loss from inverse transformation [28].

Sparse coding refers to the process of computing repre-
sentation coefficients based on the given signal and dictionar-
ies [29]. In sparse coding, the dictionaries indicate groups of
features capable of brief expressions to represent various phe-
nomena in the environment [30]. In geological modeling,
sparse geologic dictionaries are used to represent models
with sparse linear combinations of basis vectors that are
essential geologic features of a reservoir [29]. Extracting
essential geologic features and reducing the number of reser-
voir variables can be accomplished using sparse coding,
thereby facilitating ensemble-based history matching [27].
Aharon et al. [29] showed the efficacy of K-singular value
decomposition (K-SVD) resulting from the accelerated con-
vergence for image reconstruction, which led Sana et al.
[31] to build an archive of essential geologic features called
sparse geologic dictionaries from thousands of static reser-
voir models using K-SVD and calibrate reservoir models with
the dictionaries using EnKF. One drawback of K-SVD is its
large size of sparse geologic dictionaries. References showed
that sparse coding with a transformation of parameter space
could reduce both computational complexity and costs that
are simultaneously required for model calibration [26, 27,
32]. In this study, we note that the previous works have not
considered the quality of sparse geologic dictionaries. The
quality indicates how well reservoir models can be properly
reconstructed by prototypes of dictionaries. Also, we expect
an improvement in the history-matching performance by
enhancing the quality of sparse geologic dictionaries.

This study proposes a hybridized ES-MDA algorithm
that implements sparse coding in a transformed space to out-
perform previous history-matching methods by providing
more accurate reconstructions of highly non-Gaussian model
parameters. The proposed algorithm transforms multimodal
facies into coefficients of discrete cosine functions using
DCT. Invoking DCT is followed by iterating K-SVD for
updating sparse geologic dictionaries. In each assimilation
of ES-MDA, the combination of DCT and iterative K-SVD
is performed to update the dictionaries and improve the
quality of reservoir models. For brevity, the proposed algo-
rithm with updated sparse geologic dictionaries is called
ES-MDA-DCT-i-K-SVD in this paper. The performance of
ES-MDA-DCT-i-K-SVD is tested with applications for chan-
nelized gas reservoirs and is compared with those of four ES-
MDA algorithms: conventional ES-MDA, ES-MDA coupled
with DCT (called ES-MDA-DCT in this paper), ES-MDA

coupled with K-SVD (called ES-MDA-K-SVD in this paper),
and ES-MDA coupled with DCT and K-SVD (called ES-
MDA-DCT-K-SVD in this paper).

2. Methodology

The novelty of the proposed algorithm ES-MDA-DCT-i-
K-SVD is the integration of ES-MDA (Section 2.1), the
dimensionality reduction of the parameter space using DCT
(Section 2.2), and construction (Section 2.3) and updating
(Section 2.4) of geologic dictionaries using sparse coding in
the reduced space. Section 2.5 describes how the methods
operate in the framework of ES-MDA-DCT-i-K-SVD in a
complementary manner.

2.1. ES-MDA. The goal of history matching can be formu-
lated as

min  J m , 1

where J is the objective function of history matching andm is
the state vector composed of reservoir variables (e.g., perme-
ability and facies).

The typical form of J m for ensemble-based history
matching is presented as [33]

J m = m −mb
T
B−1 m −mb

+ dobs − d
T
R−1 dobs − d ,

2

wheremb is the state vector before update and the superscript
b refers to background; B is the covariance matrix ofmb; dobs

is the observed responses; d = f m is the dynamic vector
composed of simulated responses obtained by running a res-
ervoir simulator f for the state vectorm; and R is the covari-
ance matrix of observation error. Note that the right-hand
side of (2) is the addition of background and observation
error terms [33]. Because m can contain any unknown vari-
ables such as facies indexes, coefficients of discrete cosine
functions or dictionary coefficients depending on the type
of algorithms were used in this study.

∂J m /∂m = 0 can be used to derive the update equation
for m as [8, 33]

mi =mb
i + Cmd Cdd + αpCD

−1 dunci − di  for i = 1,… ,Nens,

3

where the subscript i refers to the ith ensemble member;
Cmd is the cross-covariance matrix of m and d; Cdd is the
autocovariance matrix of d; αp is the coefficient to inflate
CD, which is the covariance matrix of the observed data
measurement error [8]; dunc is the observation data per-
turbed by the inflated observed data measurement error;
and Nens is the ensemble size (i.e., number of reservoir
models in the ensemble). Conventionally, ensemble-based
history matching updates Nens reservoir models simulta-
neously. In (3), Cmd Cdd + αpCD

−1 refers to Kalman gain
K , which is computed with regularization by SVD using
99.9% of the total energy in singular values [8].
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The main difference between ES and ES-MDA is the
update process of the state vector m. ES updates the state
vector of each ensemble member using observation data
measured at all time steps (Emerick and Reynolds, 2011).
Compared to the single assimilation of ES, ES-MDA assimi-
lates every state vector Na times using an inflated covariance
matrix of measurement error [8, 9]. Here, Na is the number
of assimilations in ES-MDA.

Definitions of Cmd and Cdd are as follows:

Cmd =
1

Nens − 1
〠
Nens

i=1
mi −m di − d T ,

Cdd =
1

Nens − 1
〠
Nens

i=1
di − d di − d T ,

4

where m is the mean of state vectors and d is the mean of
dynamic vectors.

In ES-MDA, αp is constrained to

〠
Na

p=1

1
αp

= 1 5

In ES, Na = 1 and αp=1 = 1 due to its single assimilation.
The perturbed observation data dunc shown in (3) is com-

puted as

dunci = dobs + αpC1/2
D zd,i for i = 1,… ,Nens 6

The second term on the right-hand side of (6) is the per-
turbation term, which reflects the uncertainty associated with

data measurement, processing, and interpretation. Stochastic
characteristics of CD are reflected by zd~N 0, INd

. zd is the
random error matrix to observations, which is generated with
a mean of zero and a standard deviation of INd

, where Nd is
the number of time steps in observations.

2.2. Extraction of Geologic Features Using Discrete Cosine
Transform. Discrete cosine transform (DCT) has been uti-
lized as an image-processing tool for characterization of
channelized reservoirs due to the periodicity of cosine
functions [34]. DCT converts parameters into coefficients
of discrete cosine functions. The coefficients are sorted in
descending order from the top left, capturing the overall
trend of channel patterns, to bottom right, delineating
details in channel patterns. Previous studies have shown
that non-Gaussian channel patterns can be reproduced
sufficiently via inverse transform of essential DCT coeffi-
cients [18, 28, 35]. Updating the truncated DCT coefficients
can yield a calibrated model set. Another advantage of DCT
is the improvement in computational efficiency resulting
from data compression, which is effective in constructing
sparse geologic dictionaries described in Section 2.3.

Figure 1 illustrates how to extract geologic features from
an image of a target channelized reservoir using a truncated
DCT and reproduce the target reservoir through an inverse
DCT (IDCT). Two images in the first row represent the phys-
ical state of sand and shale facies in the target reservoir, that
is, the original image on the left and the reproduced image on
the right. Let Ngrid and NDCT denote the number of grid-
blocks of the reservoir model and the number of essential
DCT coefficients, respectively. Applying DCT to the original
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Figure 1: Example of discrete cosine transform (DCT) and inverse DCT (IDCT) applied to the reproduction of shale and sand facies of a
channelized reservoir.
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75 by 75 image yields an image composed of DCT coeffi-
cients, as shown in the bottom-left corner of Figure 1. In
the bottom-right corner of Figure 1, filtering the coefficient
state selects 465 components in the dotted triangle as essen-
tial ones. It seems that this small number of components is
sufficient to restore the original image of the physical state
(i.e., channel patterns) when comparing the two subfigures
in the first row.

2.3. Construction of Geologic Dictionaries Using Sparse
Coding. Figure 2 presents a procedure of sparse coding to
construct geologic dictionaries using static data in the DCT
domain. Sparse coding starts from building a library matrix
Y, which is a Npara by N lib matrix. Npara is the number of
parameters in each reservoir model, and N lib is the number
of reservoir models in Y. Equiprobable reservoir models are
generated using a geostatistical technique. Figure 2(a) shows
a training image used for creating initial channelized reser-
voir models (see Figure 2(b)) by invoking single normal
equation simulation (SNESim) [36]. In Figures 2(a) and
2(b), each reservoir model consists of two facies: shale and
sand with 0 and 1 indexes, respectively. Each column vector
of Y corresponds to either a reservoir model or an encoded
reservoir model because Npara is determined depending on
the type of assimilation algorithms in this study. Npara =
Ngrid (e.g., Y in Figure 2(b)) in the conventional ES-MDA,
while Npara =NDCT (e.g., YDCT in Figure 2(c)) if DCT is

applied to ES-MDA. In Figure 2(c), each column vector of
YDCT consists of DCT coefficients filtered from the corre-
sponding column vector in Y. That is, the data compression
ratio is Ngrid/NDCT. In Figure 2, Ngrid/NDCT = 75 × 75/465 ≈
12 1. Data compression using DCT reduces the dimension
of the parameter space, thereby saving computing time
required for sparse coding [37]. Meanwhile, a sufficiently
large N lib needs to be chosen to cover a variety of geologically
plausible scenarios in Y. Previous investigators adopted N lib
in the range of 1000 to 2000 [31, 37]. In this paper, N lib is a
constant of 3000 for maintaining the diversity of library
models. Note that generating N lib models is computationally
inexpensive because all the models are static. No dynamic
reservoir simulation is required for any static model.

Library matrix Y is numerically decomposed into dictio-
nary matrix D and weight matrix X using K-SVD: Y ≅DX.
D and X are an Npara by Ndict matrix and an Ndict by N lib
matrix, respectively, where Ndict is the number of reservoir
models in D. Thus, both Y and D are sets of reservoir
models. Each column vector of D, called a realization in
this paper, represents either an original or an encoded reser-
voir model. We expect that every realization exhibits distin-
guishable geological features in a well-organized dictionary.
Ndict is to be predetermined considering computational
costs associated with the sparse coding process. In this paper,
Ndict is fixed as one third of N lib. As a rule of thumb,
N lib ≫Ndict ≫Nens.

Nlib: number of reservoir models in a library NDCT: number of essential DCT coefficients

Ngrid: number of gridblocks of a reservoir modelNdict: number of reservoir models in a library
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Figure 2: Construction of sparse geologic dictionaries using DCT and K-SVD: (a) training image, (b) generation of initial channel models (Y)
using SNESim, (c) transformation of Y into DCT coefficients, (d) construction of D and X from Y using K-SVD in DCT domain, and (e)
reconstruction of Y from D and X.
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Figure 2(d) illustrates how to decompose Y into D and X
using K-SVD in the DCT coefficient domain. Note that col-
umn vectors in Y are sorted at random, while column vectors
in D are sorted from left to right in descending order of
energy to help us conveniently check the reservoir model
quality. The term energy indicates the norm of a row vector
in X corresponding to the realization in D. Greater norms
in X indicate more essential principal components in D.

The next task is how to decomposeD and X from Y. Due
to the large size of the three matrices, matrix decomposition
is conducted numerically to minimize the discrepancy
between Y and DX. In other words,

min   Y − Y′
F
, 7

where · F is the Frobenius norm and Y′ =DX.
More specifically, matrix decomposition is performed by

iterating sparse coding that is an orthogonal matching pur-
suit (OMP) [38, 39] followed by K-SVD [29], as described
by Sana et al. [31]. The first step of matrix decomposition
is to initialize D and X. The second step is to compute X
with a fixed D using OMP. The third step is update D
and X simultaneously using K-SVD through the following
three equations.

min   Y − Y′
F
=min   Y − 〠

Ndict

i=1
drixi

F

, 8

where dri is the ith column vector (i.e., realization) inD and xi
is the ith row vector in X.

The right-hand side of (8) is rearranged as follows:

min   Y −〠
i≠j
drixi − drjx j

F

=min   Ej − drjx j
F
 for j = 1,… ,Ndict,

9

where the subscript j ∈ 1,… ,Ndict indicates the pivot and
Ej is the discrepancy term.

To achieve (9), optimal drj and x j are explored from j = 1
to j =Ndict. The right-hand side of (9) is rearranged as

min   EjΩj − drjx jΩ j
F

≅min   UΔVT − drjx jΩj
F
 for j = 1,… ,Ndict,

10

where Ωj is the matrix of which every element is either zero
or one. At each j, x j multiplied by Ωj returns a row vector
of nonzero elements in x j. The size of Ωj is N lib by the num-
ber of nonzero elements in x j. EjΩj is decomposed using

SVD for determining drj and x j at each j, which results in U
ΔVT , where U is the first column vector from the left-
singular vectors’ matrix, Δ is the first element of the singular
values’ matrix, and V is the first column vector from the
right-singular vectors’matrix of EjΩj, respectively. As a con-
sequence, drj is the first column vector of U and x jΩj is the
first column vector of V multiplied by the first diagonal ele-
ment of Δ. x j is obtained by multiplying the inverse Ω j. Note
that the updated drj and x j are used for the calculation of (9)
at the subsequent js. Performing (10) at all js completes the
update of D and X.

After the update of the dictionary matrices, the second
step of matrix decomposition is reinvoked to tune X for fur-
ther achieving (7). Then, the tuned X and D are reimported
to (8) for conducting the third step again. This sequence
of the second and third steps is iterated until a conver-
gence criterion is satisfied. The criterion could be sparsity
of X, a threshold to accept the discrepancy shown in (7)
or the maximum number of iterations. In this study, the
criterion is the maximum number of iterations (set to ten)
for all experiments.

In summary, Figures 2(a)–2(d) describe how to construct
the original sparse geologic dictionary matrices Y, D, and X
using static data. Figure 2(e) is an example to show that per-
forming an IDCT yields YDCT′ while capturing geological
features of the original YDCT despite a diffusion in facies
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DXa
ens Ya

DCT,ens

Ya
qual Ya

DCT,qual Ya
DCT,qual YDCT

YDCT is decomposed by OMP & K - SVD

YNewY DCT

Ya
ens

Facies index Facies assigned

=

Updated DCT coefficient

Updated realizations Nens

Selected realizations Nqual

IDCT Assign

DCTQualified
members

=

NDCT by Nqual + Nlib

New Xens is obtained by OMP

YDCT DXNlib

a

a aYDCT,ens and D Xens

2

0

−2

−4

−6

2

0

−2

−4

−6

2

0

−2

−4

−6

2

0

−2

−4

−6

2

0

−2

−4

−6

2

0

−2

−4

−6

2
0
−2
−4
−6

2
0
−2
−4
−6

2
0
−2
−4
−6

2
0
−2
−4
−6

2
0
−2
−4
−6

2
0
−2
−4
−6

Y 
gr

id

25

50

75

1

0.5

0

755025
X grid

Y 
gr

id

25

50

75

1

0.5

0

755025
X grid

Y 
gr

id

25

50

75

1

0.5

0

755025
X grid

Y 
gr

id

25

50

75

1

0.5

0

−0.5

1

0.5

0

−0.5755025
X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75

1

0.5

0

755025
X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

755025
X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

755025
X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75
755025

X grid

Y 
gr

id

25

50

75
755025

X grid

(a) (b) (c)

(d) (e) (f) (g)

Se
le

ct
ed

 re
al

iz
at

io
n 

1

Se
le

ct
ed

 re
al

iz
at

io
n 

2

Se
le

ct
ed

 re
al

iz
at

io
n 
N

qu
al

N
D

CT
 co

effi
ci

en
t 1

N
D

CT
 co

effi
ci

en
t 2

N
D

CT
 co

effi
ci

en
t N

lib

Figure 3: Update of sparse geologic dictionaries during assimilations.
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designation. Note that the diffusion is filtered out using a
cutoff method in this study. We employ the arithmetic
mean of the two facies indexes (i.e., 0.5) as the threshold to
determine either shale (if facies index< 0.5) or sand (if facies
index≥ 0.5) in each gridblock.

2.4. Update of Sparse Geologic Dictionaries during Multiple
Data Assimilation. Once original sparse geologic dictionary
matrices Y, D, and X are constructed using static data, the
proposed algorithm updates the dictionary matrices by con-
ditioning dynamic observations (e.g., gas rate and bottom-
hole pressure (BHP)) to the ensemble. Figure 3 explains

how to update the dictionary matrices during assimilations
of the proposed algorithm. Let Npara =NDCT and Y = YDCT
in the proposed algorithm.

The weight matrix Xens is the state vector of the proposed
algorithm. Only for the first assimilation, Nens realizations
are randomly selected from X in order to compose the initial
Xens. Thus, Xens is a Ndict by Nens matrix while X is a Ndict by
N lib matrix. Let the superscript a denotes assimilation. Then,
Xa

ens denotes the updated weight matrix after assimilation.
Using D from Section 2.3 (Figure 3(a)),
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where Ya
DCT,ens is the NDCT by Nens matrix composed of DCT

coefficients of ensemble members.
Through IDCT, the updated DCT coefficients of Ya

DCT,ens
are restored to facies indexes (Figure 3(b)). Each facies index
map is transformed into its facies distribution map using a
cutoff (Figure 3(c)): Ya

DCT,ens → Ya
ens. The facies models are

converted into petrophysical models and used for reservoir
simulation. The simulation results are compared with obser-
vations for checking a quality of each reservoir model in Ya

ens.
The quality is quantified in terms of εqual, which indicates the
discrepancy between observation and simulation results of an
ensemble member:

ε =
1
Nd

〠
Nd

i=1

di − dobsi

dobsi

2

, 12

(b) Forward simulation and transformation

(a) Generation of initial reservoir realizations

Library Nlib realizations are generated by
geostatistical method, SNESim 

Random selection of
Nens realizations for

initial ensemble

Forward simulations for
Nens realizations

Transform parameters
corresponding to

five methods

(c) Calculate Kalman gain and update models

(d) Post process of updated models

① ES-MDA
② ES-MDA-DCT
③ ES-MDA-K-SVD
④ ES-MDA-DCT-K-SVD
⑤ ES-MDA-DCT-i-K-SVD 

Assimilation, p = 1

Assimilation, p = p + 1 
(e) Assimilation,

p < Na

(f) Well behaviors prediction of updated models

Yes

No

① Facies indexes ② DCT coefficients ③ Weights
④ Weights of DCT ⑤ Weights of DCT and update of dictionary matrix

Retransformation into
facies index state

Cutoff facies by the average index
of sand 1 and shale 0 

Na: number of assimilations

Figure 5: Flow chart of five ES-MDA algorithms investigated in this study. The proposed algorithm corresponds to the number five in the
boxes (b) and (c).

εqual,i =
1

N type
〠
N type

j=1
εj for i = 1,… ,Nens, 13

where N type is the number of data types.
LetNqual be the number of qualified models selected from

the ensemble. Nqual models are selected among Nens models:
Ya
ens → Ya

qual, as seen in Figure 3(d). Figure 4, for example,
shows to select Nqual = 20 realizations from Nens = 100 reali-
zations regarding gas rate and BHP. It seems that the simu-
lated responses of the selected models are closer to the
reference results than the rest of the ensemble members.
Figure 3(e) shows that facies of the Nqual models are trans-
formed into DCT coefficients: Ya

qual → Ya
DCT,qual, where

Ya
DCT,qual is theNDCT by Nqual matrix composed of DCT coef-

ficients of qualified ensemble members.

7Geofluids



After obtaining the qualified models, the library matrix
YDCT is updated as (Figure 3(f))

YDCT = Ya
DCT,qual YDCT 14

Note that (14) enhances both the quantity and quality
of geologic libraries by conditioning YDCT (which is con-
ditioned to static observation data initially) to dynamic
observation data with a relatively small number of reser-
voir simulation runs (Nqual ≪N lib) for qualified ensemble
members.

The updated YDCT is decomposed to obtain newly
updated D and X using OMP and K-SVD, as addressed in
Section 2.3 (Figure 3(g)). With the new D and Ya

DCT,ens in
(11), Xa

ens is reupdated using OMP: Ya
DCT,ens =DXa

ens. This
reupdated Xa

ens is used as mb in (2) as the state vector of
the next assimilation.

2.5. Framework of ES-MDA-DCT-i-K-SVD. Figure 5 is a
flowchart of the proposed ES-MDA algorithm that is com-
pared with those of the other four ES-MDA algorithms inves-
tigated in this study. The general operating procedure for the
algorithms is as follows: generation of an initial ensemble,
reservoir simulation and selection of the qualified ensemble,
Kalman-gain calculation and model update, facies designa-
tion, iteration of the above processes until the iteration num-
ber reaches the number of assimilations Na, and acquisition
of qualified reservoir models. Differences between the algo-
rithms are found in the types of state vectors and model
update processes, as presented in Figures 5(b) and 5(c).

Table 1 compares state vectors and sparse geologic dictio-
naries for the algorithms. ES-MDA updates gridblock facies
indexes (originally assigned 0 and 1 for shale and sand, resp.).
ES-MDA-DCT updates filtered DCT coefficients in the facies
domain. ES-MDA-K-SVD tunes weights in facies domain
with only one application of K-SVD before ES-MDA, while
ES-MDA-DCT-K-SVD tunes weights in the DCT domain
with only one application of K-SVD before ES-MDA. Finally,
the proposed ES-MDA-DCT-i-K-SVD updates weights in
the DCT domain with iterative K-SVD during ES-MDA.

3. Results and Discussions

The performance of the proposed algorithm (i.e., ES-
MDA-DCT-i-K-SVD) is tested with applications to history
matching of two channelized gas reservoirs. The algorithm
performance is compared to those of four ES-MDA algo-
rithms described in Table 1 to investigate coupling effects
of dimensionality reduction and iterative sparse coding. Note

that the developed algorithm updates dictionaries with
dynamic data in each assimilation of ES-MDA. Neither ES-
MDA nor ES-MDA-DCT adopts dictionaries. Dictionaries
generated using static data are unchanged during data assim-
ilation for ES-MDA-K-SVD and ES-MDA-DCT-K-SVD.

3.1. Field Description. Table 2 summarizes gas reservoir
properties used in Case 1 and Case 2. For each case, the
gas reservoir consists of sand and shale facies. Each facies
has its relative permeability curves and absolute perme-
ability value; permeabilities of sand and shale facies are
300 and 0.1, respectively. Reservoir boundaries are sur-
rounded by numerical aquifers modeled by employing pore
volume multipliers.

Figure 6 compares training images and reference
models of the two cases. The size of the reservoir domain,
well location, and well name are the same in both cases;
eight vertical wells (P1, P4, P6, P7, P9, P12, P14, and P15)
are drilled in the sand formation, and the other eight vertical
wells (P2, P3, P5, P8, P10, P11, P13, and P16) are drilled in
the shale formation. These 16 facies data at the well locations
are regarded as hard data used for model generation. Both the
reference model and N lib reservoir models are generated with
hard data using SNESim that employs the training image
shown in Figure 6(a) for Case 1.

The main differences between Case 1 and Case 2 are the
shapes and widths of the channels. First, the reference model

Table 1: State vectors and update processes of sparse geologic dictionaries for five ES-MDA algorithms investigated in this study.

ES-MDA algorithm State vector m Update of sparse geologic dictionaries

ES-MDA Facies index N/A

ES-MDA-DCT DCT coefficients in facies domain N/A

ES-MDA-K-SVD Weight matrix X in facies domain Single K-SVD before ES-MDA

ES-MDA-DCT-K-SVD X in DCT domain Single K-SVD before ES-MDA

ES-MDA-DCT-i-K-SVD X in DCT domain Iterative K-SVD during ES-MDA

Table 2: Experimental setting of reservoir parameters used in Case
1 and Case 2.

Parameter Value

Number of gridblocks in the x-direction (Nx)
(dimensionless)

75

Number of gridblocks in the y-direction (Ny)
(dimensionless)

75

Number of gridblocks in the z-direction (Nz)
(dimensionless)

1

Grid size (ft3) 200× 200× 100
Initial gas saturation (fraction) 0.75

Initial water saturation (fraction) 0.25

Initial reservoir pressure (psia) 3000

Porosity (fraction) 0.2

Permeability of sand facies (md) 300

Permeability of shale facies (md) 0.1

Index of sand facies (dimensionless) 1

Index of shale facies (dimensionless) 0
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of Case 1 contains an S-shaped sand channel in the shale
background, while the reference model of Case 2 has three
parallel channels for which the orientation is NW-SE direc-
tion. Secondly, the channel width of the training image of
Case 2 is 1.2 times thicker than that of Case 1, making that
the channel width of the reference model of Case 2 is 1.2
times thicker as well. Despite the differences, this study inten-
tionally reuses the initial ensemble designed for Case 1 as the
initial ensemble of Case 2. The manipulation of an initial

ensemble amplifies intrinsic reservoir uncertainty that is
hard to infer from prior information (i.e., training image)
for Case 2.

Table 3 describes operating conditions of 16 wells (from
P1 to P16), the well coordinates of which are shown in
Figure 6(a). Table 4 presents the number of parameters used
in the five ES-MDA algorithms. Implementing DCT yields
the data compression ratio Ngrid/NDCT = 12 1. All experi-
ments were set up such that Na = 4 and αp = 4 according to
(5). The proportion of the ensemble update in sparse geologic
dictionaries Nqual/N lib is 0.67%.

Sand Shale
X grid

Y 
gr

id

25 50 75

25

50

75 −2

0

2

4

SNESim

Training image

N
at

ur
al

 lo
g 

pe
rm

ea
bi

lit
y,

 
ln

(m
d)

Reference

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

(a)

X grid
Y 

gr
id

25 50 75

25

50

75 −2

0

2

4

SNESim

Training image of thick channels

Reference

(b)

Figure 6: Training images and reference models adopted for history matching of (a) Case 1 and (b) Case 2.

Table 3: Experimental data for well parameters used in Case 1 and
Case 2.

Parameter Value

Observed well data Gas rate and BHP

Maximum well gas
production rate (MSCF/day)

15000

Minimum well BHP (psia) 1000

Total simulation period (day) 7000

History matching period
(day)

3500

Prediction period (day) 3500

Coordinates of well locations
in sand facies

(14, 14), (62, 14), (30, 30), (46, 30),
(14, 46), (62, 46), (30, 62), (46, 62)

Coordinates of well locations
in shale facies

(30, 14), (46, 14), (14, 30), (62, 30),
(30, 46), (46, 46), (14, 62), (62, 62)

Table 4: Number of parameters used for construction and update of
sparse geologic dictionaries.

Parameter Symbol Value

Number of static reservoir models for
constructing an initial library matrix Y N lib 3000

Number of static reservoir models for
constructing an initial dictionary matrix D Ndict 1000

Number of gridblocks in each reservoir model Ngrid 5625

Number of filtered DCT coefficients in each
reservoir model

NDCT 465

Number of ensemble members Nens 100

Number of qualified ensemble members Nqual 20
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3.2. Case 1. Figure 7 shows the evolution of realizations in D
achieved by invoking the proposed algorithm. We present
five realizations having higher energy than the others, which
are the first to the fifth column vectors in D, in each assimi-
lation. Qualified realizations vary until the second assimila-
tion is complete, implying a deficiency in the assimilation
process due to a large dispersion of realizations. In the third
assimilation, it seems that the first and fourth realizations
conform to the reference model (Figure 6(a)). The first
and second realizations in the fourth assimilation capture
the S-shaped channel pattern of the reference model. This
increase in the similarity among realizations implies an
increase in the probability that sparse geologic dictionaries
sufficiently represent the target gas reservoir.

Figure 8 compares history-matching results (day 1–day
3500) and prediction results (day 3501–day 7000) of the ini-
tial and updated ensembles against the reference results. Gas
production rate and BHP are matching parameters of each
ES-MDA algorithm. Water production rate is excluded from
the matching dataset because it is a watch parameter. The
three data types measured at wells P1, P4, P9, and P15 are

shown because these wells installed in sand facies exhibit
larger uncertainty than the other wells. In particular, water
breakthrough does not occur at well P15 during the
history-matching period. Thus, well P15 has the largest
uncertainty in this case study. Solid gray, blue, dark blue,
and red lines present well behaviors of the initial ensemble,
the updated ensemble, the mean of the updated ensemble,
and the reference model, respectively. The same initial
ensemble is provided for each ES-MDA algorithm for a fair
comparison. ES-MDA and ES-MDA-DCT expose a weak-
ness in matching the reference results (Figures 8(a) and
8(b)). Improvements in matching accuracy are accomplished
in the simulation results of the updated ensembles obtained
using ES-MDA coupled with sparse coding (Figures 8(c)–
8(e)). Executing sparse coding in the reduced parameter
space has the result that most subfigures include the refer-
ence results within the bandwidth of the simulation results
of the updated ensembles (Figures 8(d) and 8(e)), thereby
improving the matching accuracy. Figure 8(d) results from
the execution of ES-MDA-DCT-K-SVD of which the library
matrix Y is constructed using static data only. In Figure 8(d),
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simulation results of some updated ensemble members devi-
ate from the reference results at wells P4 and P9. It can be
said that the update of Y described in Section 2.4 yields an
increase in matching accuracy and a reduction in dispersion

of simulation results (Figure 8(e)). For water breakthrough,
underestimation of reservoir uncertainty is seen at well P15
in the simulation results obtained using the proposed algo-
rithm. P15 showed the worst matching results among the
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Figure 8: History matching results of Case 1: gas production rate, water production rate, and BHP measured at wells P1, P4, P9, and P15.
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16 wells as the breakthrough time is not detected during the
matching period. It is reasonable to have moderate results
at some matching targets despite the overall good matching
performance [40, 41].

The performances of the algorithms in terms of both
history-matching (HM) and prediction (PD) periods are
summarized in Table 5. The quality of the updated ensembles
was assessed using the following:

με =
1/Nens 〠Nens

i=1 ε
upd
i

1/Nens 〠Nens
i=1 ε

init
i

× 100 % ,

σε =
1/Nens − 1 〠Nens

i=1 εupdi − εupdi

2

1/Nens − 1 〠Nens
i=1 εiniti − εiniti

2
× 100 % ,

15

where με is the normalized average of error ε (see (12)) and
σε is the normalized standard deviation of ε. The superscripts
upd and init refer to the updated ensemble member and the

initial ensemble member, respectively. Smaller values of με
indicate a more accurate updated ensemble. Smaller values
of σε indicate a smaller degree of reservoir uncertainty asso-
ciated with the ensemble. Any value larger than 100% indi-
cates deterioration of the ensemble quality, as revealed in
the results obtained using ES-MDA and ES-MDA-DCT. In
terms of gas rate, for example, the updated ensemble of ES-
MDA-DCT amplifies the degree of dispersion compared to
the initial ensemble. Furthermore, the behaviors of its ensem-
ble mean do not follow those of the reference model. The
proposed algorithm yields acceptable με values and σε values
that are smaller than those of the other ES-MDA algorithms.
Most observations are included within the bandwidths of the
simulated profiles. The inclusion is also captured in the field
cumulative production profiles of gas and water (Figure 9).
Nonetheless, a remaining task is the construction of more
robust dictionary matrices to improve the matching quality
at every well target.

Figure 10 compares ensemble mean maps and histo-
grams of permeability obtained using the five ES-MDA algo-
rithms. A task herein is to investigate whether the ES-MDA

Table 5: Statistical parameters of history matching (HM) and prediction (PD) errors in terms of gas rate, water rate, and BHP (Case 1). με and
σε refer to the mean and standard deviation of ensemble error, respectively.

ES-MDA algorithm με (%) σε (%) με (%) σε (%) με (%) σε (%)

Gas rate (HM) Water rate (HM) BHP (HM)

ES-MDA 46.44 122.79 18.61 20.99 55.84 53.01

ES-MDA-DCT 195.30 257.77 4.91 6.31 99.01 67.86

ES-MDA-K-SVD 11.83 34.88 6.04 2.94 27.72 29.78

ES-MDA-DCT-K-SVD 5.75 54.78 5.39 4.51 68.11 73.71

ES-MDA-DCT-i-K-SVD 0.98 1.69 6.29 2.40 39.36 16.54

Gas rate (PD) Water rate (PD) BHP (PD)

ES-MDA 37.05 48.74 13.11 10.24 27.85 27.70

ES-MDA-DCT 134.51 151.60 13.91 8.22 47.83 30.78

ES-MDA-K-SVD 26.03 16.08 2.54 0.01 8.13 11.79

ES-MDA-DCT-K-SVD 22.97 33.58 3.16 0.01 12.84 14.49

ES-MDA-DCT-i-K-SVD 24.68 13.39 4.62 0.01 13.15 3.54
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Figure 9: History matching results of Case 1: cumulative gas production and cumulative water production in the field.
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algorithms can capture the overall trend of the sand channel
while preserving shale facies in the background. In the refer-
ence model, for example, the shortest path between wells P6
and P9 is filled with shale. Each ensemble member consists of
sand facies with a permeability of 300md and shale facies
with a permeability of 0.1md. However, the histogram of
the initial ensemble mean (Figure 10(a)) does not follow

the bimodal distribution. On the other hand, it seems that
the histogram of each updated ensemble follows the
bimodal distribution. The ensemble mean maps obtained
using ES-MDA and ES-MDA-DCT (Figures 10(b) and
10(c)) conform less to the reference model than those
obtained using the algorithms coupled with K-SVD. When
comparing the log-scale permeability histograms, it seems

−5 0 5 10
0

2000

4000

Log permeability (md)

Fr
eq

ue
nc

y

−5 0 5 10
0

2000

4000

Log permeability
Fr

eq
ue

nc
y

−5 0 5 10
0

2000

4000

Log permeability

Fr
eq

ue
nc

y

−5 0 5 10
0

2000

4000

Log permeability

Fr
eq

ue
nc

y

−5 0 5 10
0

2000

4000

Log permeability

Fr
eq

ue
nc

y

−5 0 5 10
0

2000

4000

Log permeability

Fr
eq

ue
nc

y

−5 0 5 10
0

2000

4000

Log permeability

Fr
eq

ue
nc

y

X grid

Y 
gr

id

25 50 75

25

50

75 −2

0

2

4

X grid

Y 
gr

id

25 50 75

25

50

75 −2

0

2

4

X grid

Y 
gr

id

25 50 75

25

50

75 −2

0

2

4

X grid

Y 
gr

id
25 50 75

25

50

75 −2

0

2

4

X grid

Y 
gr

id

25 50 75

25

50

75 −2

0

2

4

X grid

Y 
gr

id

25 50 75

25

50

75 −2

0

2

4

Ensemble mean

X grid

Y 
gr

id

25 50 75

25

50

75 −2

0

2

4

Reference
N

at
ur

al
 lo

g 
pe

rm
ea

bi
lit

y,
 

ln
(m

d)

Histogram of
permeability values 

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

(a) Initial ensemble

(b) ES-MDA 

(c) ES-MDA-DCT

(d) ES-MDA-K-SVD

(e) ES-MDA-DCT-K-SVD

(f) ES-MDA-DCT-i-K-SVD

Figure 10: Permeability distribution of the ensemble means and their histogram of permeabilities obtained after history matching of Case 1.
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that the unconformity is proportional to the frequencies of
undesirable permeabilities between ln 0.1 (≈−2.3) md and
ln 300 (≈5.7) md in the histograms. DCT is advantageous
for preserving channel connectivity; however, an artificial
sand channel connects wells P6 and P9. In addition, trun-
cated DCT coefficients smooth out borders between the sand

channel and background shale, as shown in Figure 10(c). ES-
MDA-K-SVD, ES-MDA-DCT-K-SVD, and ES-MDA-DCT-
i-K-SVD reproduce channel patterns and the connectivity
of the reference model (Figures 10(d)–10(f)), although
Figure 10(e) contains undesirable sand facies between wells
P6 and P9. A crisp contrast between shale and sand facies is
observed in the outcome of the assimilation algorithms cou-
pling DCT and K-SVD (Figures 10(e) and 10(f)). The devel-
oped algorithm reveals clearer shale facies in the path than
the other algorithms (Figure 10(f)).

Figure 11 compares characterization results of a chan-
nelized reservoir with regards to sand-shale facies distribu-
tion. The initial five realizations reveal diverse channel
patterns in terms of orientation and shape (Figure 11(a)).
Pixel-based perturbation using ES-MDA delivers a broken
channel with a low-channel connectivity after assimilation
(Figure 11(b)). In Figure 11(c), the shortest path between
wells P6 and P9 is filled not with shale but sand in the
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Figure 11: Permeability distribution of five qualified reservoir models obtained after history matching of Case 1.

Table 6: Comparison of computational costs required for
dictionary construction and update.

ES-MDA algorithm Computational costs (min)

ES-MDA 0.0

ES-MDA-DCT 0.0

ES-MDA-K-SVD 218.0

ES-MDA-DCT-K-SVD 5.7

ES-MDA-DCT-i-K-SVD 21.4 (=5.7 + 15.7)
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second and fifth realizations, while part of the channel is
disconnected in the first and third realizations. Interest-
ingly, data loss during DCT made the channel width irreg-
ular. K-SVD helps conserve the connectivity and pattern
of the channel (Figure 11(d)). Parameterization followed
by sparse coding delivers satisfactory results in preserving
overall channel characteristics (Figures 11(e) and 11(f)).
Figure 11(e) connects well P6 and well P9 with an artificial
sand channel, but Figure 11(f) does not. That is, conditioning
dictionaries to dynamic data through the iterative sparse cod-
ing provides opportunities to calibrate the rock facies distri-
bution between well P6 and well P9. The five realizations of
the proposed algorithm keep the channel patterns similar to
the reference, while maintaining shale facies on the shortest
path between well P6 and well P9 (Figure 11(f)). Most
realizations have a broken sand channel near the upper left
corner of the domain. This phenomenon would be an intrin-
sic limitation of geostatistical methods arising from a lack of
observation data.

Table 6 compares computational costs paid for the
construction and update of dictionaries. The hardware

specification utilized for comparison was Intel® Core™ i5-
7200U @ 2.5GHz with 8GB RAM. The runtime of the reser-
voir simulation was excluded from the comparison. ES-MDA
and ES-MDA-DCT cost nothing for dictionary construction.
ES-MDA-K-SVD was a relatively costly algorithm. It took
218 minutes to obtain the original dictionary matrices D
and X via Y despite the matrix construction one time. DCT
helped save computational costs required for sparse coding.
ES-MDA-DCT-K-SVD was the cheapest algorithm (taking
5.7 minutes) thanks to the reduced number of parameters
due to DCT. Updating sparse geologic dictionaries in each
assimilation resulted in an additional 15.7 minutes in the
subsequent four assimilations. Nevertheless, it seems this
amount of extra cost is within a reasonable range. ES-
MDA-DCT-K-SVD was 38.2 times as fast as ES-MDA-K-
SVD, and ES-MDA-DCT-i-K-SVD was 10.2 times faster
than ES-MDA-K-SVD.

3.3. Case 2. This case study checks whether the updated
ensemble can describe the shape and orientation of three par-
allel sand channels under uncertainty associated with the
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Figure 12: Evolution of realizations in the dictionary matrix D during multiple data assimilation (Case 2).
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underestimated channel width. Figure 12 shows the evolu-
tion of realizations in the dictionary matrixD obtained using
the proposed algorithm during multiple data assimilation.
The trend of evolution is consistent with that presented in

Case 1 (Figure 7). For example, the first and second realiza-
tions in the fourth assimilation sufficiently resemble the
reference model. This similarity implies that the quality of
geologic dictionaries is improved by adding Nqual models
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Figure 13: History matching results of Case 2: gas production rate, water production rate, and BHP measured at wells P1, P4, P9, and P15.
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conditioned to dynamic observations to the initially static
library pool in each assimilation.

Figure 13 compares production profiles obtained using
the five ES-MDA algorithms. Each algorithm reuses the ini-
tial ensemble introduced in Case 1, as mentioned in Section
3.1. The proposed algorithm yields smaller standard devia-
tions than the other algorithms and reduces reservoir uncer-
tainty with reasonable matching accuracy (Table 7). The
matching accuracy is comparable to those of the algorithms
coupling sparse coding. Matches and prediction results for
gas and water rate are decent. In terms of BHP, the proposed
method shows the best conformance to observations except
for well P9. The overestimated BHP is related to the underes-
timation of the water rate at well P9. Our inference is that this
happens because of incorrect prior knowledge of the channel
width. Field cumulative production profiles of gas and water
are presented in Figure 14. Figure 15 compares averaged per-
meability distribution of the updated ensemble obtained
using the five algorithms. The proposed algorithm outper-
forms the other algorithms by preserving the separation
among the channels with NW-SE orientation and a distinct
contrast at the borders between the shale background and

sand channels. Facies index maps of individual ensemble
members obtained after history matching also support the
reliability of the proposed algorithm (Figure 16).

4. Conclusions

The hybridized ES-MDA algorithm coupled with iterative
sparse coding in reduced parameter space was able to cali-
brate channelized reservoir models using and updating the
repository of geologic features called sparse geologic dictio-
naries. The first library composed of thousands of reservoir
models generated using SNESim was only conditioned to
static data. Dimensionality reduction performed using DCT
was effective in reducing the size of the library by converting
gridblock facies into coefficients of discrete cosine functions.
The weight matrix obtained by decomposing the library was
imported to ES-MDA as a state vector. In each assimilation
of ES-MDA, update of weights resulted in reservoir models
that were well conditioned to both static and dynamic data.
Adding the history-well-matched reservoir models as new
members in the existing library was the critical factor for
attaining improved matching accuracy and reduced model

Table 7: Statistical parameters of history matching (HM) and prediction (PD) errors in terms of gas rate, water rate, and BHP (Case 2). με and
σε refer to mean and standard deviation of the ensemble error, respectively.

ES-MDA algorithm με (%) σε (%) με (%) σε (%) με (%) σε (%)

Gas rate (HM) Water rate (HM) BHP (HM)

ES-MDA 2.00 8.07 5.99 7.63 23.38 16.12

ES-MDA-DCT 6.64 27.96 2.44 3.12 19.70 16.00

ES-MDA-K-SVD 3.28 7.35 7.52 11.04 39.48 44.94

ES-MDA-DCT-K-SVD 1.66 2.48 15.25 24.38 29.09 34.30

ES-MDA-DCT-i-K-SVD 4.15 1.45 1.04 0.94 32.15 4.51

Gas rate (PD) Water rate (PD) BHP (PD)

ES-MDA 4.39 3.74 14.19 5.66 28.54 26.98

ES-MDA-DCT 2.67 0.64 8.38 6.17 25.48 12.27

ES-MDA-K-SVD 5.53 8.71 35.74 24.21 101.10 63.86

ES-MDA-DCT-K-SVD 10.02 6.90 20.23 12.09 23.95 26.59

ES-MDA-DCT-i-K-SVD 1.53 0.28 12.20 2.36 29.77 2.49
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Figure 14: History matching results of Case 2: cumulative gas production and cumulative water production in the field.
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dispersion because of the reflection of dynamic data in the
updated dictionaries. The unprecedented consideration of dic-
tionary update was the originality of this study and the
contribution to researches about combinations of machine
learning and ensemble-based data assimilation methods.

History-matching results of two channelized gas reser-
voirs (i.e., the S-shaped channel for Case 1 and three parallel

channels for Case 2) indicated that the achievements arose
from an iterative update of dictionaries of the proposed algo-
rithm: the improved matching accuracy in both history and
forecast in terms of well and total production, the reduced
dispersion of production behaviors and permeability distri-
bution, and the well-connected channel body of reservoir
models with geological plausibility. ES-MDA with the
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Figure 15: Permeability distribution of the ensemble means and their histogram of permeabilities obtained after history matching of Case 2.
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dictionary update yielded higher matching accuracy values
and lower dispersion values than ES-MDA incorporated with
a fixed dictionary matrix. The increase in computational
costs paid during the dictionary update was affordable com-
pared to the assimilation algorithms not coupled with sparse
coding. Improving the matching accuracy at some well-based
levels remains as an outstanding task for the proposed tech-
nique despite the overall enhanced matching quality. We also
anticipate that future works will adopt a more generalized
sparse coding for diversifying the utility of the proposed
framework in a variety of geoenvironments (e.g., naturally
fractured reservoirs).

Nomenclature

B: Covariance matrix of state vectors
CD: Covariance matrix of observed measurement error
Cdd: Autocovariance matrix of simulation data d

Cmd: Cross-covariance matrix of state vector m and
simulation data d

d: Simulation data
dobs: Observation data
dunc: Perturbed observation data
dr: Column vector of the dictionary matrix D

(i.e., realization)
d: Mean of simulation data
D: Dictionary matrix
Ej: Discrepancy between the library matrix Y and the

reconstructed library matrix Y′ except the jth drjx j
f : Reservoir simulator
J : Objective function
m: State vector of a reservoir model
m: Mean of state vectors
mb: State vector of a reservoir model before update
INd

: Nd by Nd identity matrix
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Figure 16: Permeability distribution of five qualified reservoir models obtained after history matching of Case 2.
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K : Kalman gain
Na: Number of assimilations
Nd: Number of time steps in observations
NDCT: Number of essential DCT coefficients
Ndict: Number of reservoir models in the dictionary

matrix D
Nens: Number of ensemble members
Ngrid: Number of gridblocks in a reservoir model
N lib: Number of reservoir models in the library matrix Y
Npara: Number of parameters in a reservoir model
Nqual: Number of qualified ensemble members
N type: Number of data types
R: Covariance matrix of observation error
x: Row vector of the weight matrix X
X: Weight matrix
Y: Library matrix
Y′: Reconstructed library matrix
zd: Random error to observations
αp: Inflation coefficients of CD
ε: Error
εqual: Discrepancy between observation and simulation

results of an ensemble member
μ: Average
σ: Standard deviation.

Subscripts

DCT: Discrete cosine transform
dict: Dictionary
ens: Ensemble
lib: Library
qual: Qualified
para: Parameter.

Superscripts

a: Assimilation
init: Initial
obs: Observation
upd: Update.
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